Background knowledge

e Conjunctive queries: the basis for data integration/exchange, metadata
management, ontology-based data access, a very important class of
database queries

e Chase: reasoning about constraints and a way to build new database
Instances

e Datalog: a recursive database language

Beijing 1 Topics in Foundations of DB

Optimization of conjunctive queries

e Reminder:

conjunctive queries
SPJ queries

rule-based queries
= simple SELECT-FROM-WHERE SQL queries

(only AND and equality in the WHERE clause)

e Extremely common, and thus special optimization techniques have been
developed

e Reminder: for two relational algebra expressions ey, ey, €1 = €5 is un-

decidable.

e But for conjunctive queries, even e; C ey is decidable.

e Main goal of optimizing conjunctive queries: reduce the number of
joins.

Beijing 2 Topics in Foundations of DB

Optimization of conjunctive queries: an example

e Given a relation R with two attributes A, B

e Two SQL queries:

Q1 Q2

SELECT R1.B, R1.A SELECT R3.A, R1.A

FROM R R1, R R2 FROM R R1, R R2, R R3

WHERE R2.A=R1.B WHERE R1.B=R2.B AND R2.B=R3.A

e Are they equivalent?
e If they are, we saved one join operation.
e In relational algebra:
Q1 = ma1(02=3(R X R))
Q2 = 7T5,1(02:4A4=5(R X R X R))

Beijing 3 Topics in Foundations of DB

Optimization of conjunctive queries cont'd

e Are (); and (), equivalent?

e If they are, we cannot show it by using equivalences for relational algebra
expression.

e Because: they don't decrease the number of X or X operators, but (),
has 1 join, and ()5 has 2.

e But ()7 and (), are equivalent. How can we show this?

e But representing queries as databases. This representation is very close
to rule-based queries.

Qi(x,y) — R(y,x), R(x,2)
Q2(x,y) - Ry, z), R(w,x), R(x,u)

Beijing 4 Topics in Foundations of DB

Conjunctive queries into tableaux

e Tableau: representing of a conjunctive query as a database
e \We first consider queries over a single relation

e Qi(z,y) = R(y,z), R(z,2)

e Qo(r,y) — R(y,x), R(w,x), R(x,u)

e Tableaux:
A B
A B
X
y X ‘
W X
X Z
. X U
X y <«— answer line :
X y <«— answer line

e Variables in the answer line are called distinguished

Beijing 5 Topics in Foundations of DB

Tableau homomorphisms

e A homomorphism of two tableaux f : 77 — 15 is a mapping
f : {variables of T} — {variables of T5} (] {constants}

e For every distinguished z, f(z) =«
e For every row x1, ..., x5 in 11, f(x1),..., f(xy) is a row of T5
e Query containment: () C Q" if Q(D) C Q'(D) for every database D

¢ Homomorphism Theorem: Let (), ()’ be two conjunctive queries,
and T, T" their tableaux. Then

QC
if and only if
there exists a homomorphism f : 17" — T

Beijing 6 Topics in Foundations of DB

T1

X

Applying the Homomorphism Theorem: Q)1 = ()2

T2

2

< | >
N>w
< | >
c X x| W@

X

<

X
X
T1 T2
A B A
y X y
X Z/N
X
X y

fx)=x, f(y)=y
f(u)=z, f(w)=y

Hence Q1 < Q2

f()=x, f(y)=y
f(z)=u

Hence Q2C— Q1

Beijing

Topics in Foundations of DB

Applying the Homomorphism Theorem: Complexity

e Given two conjunctive queries, how hard is it to test if ()1 = Q27

e it is easy to transform them into tableaux, from either SPJ relational
algebra queries, or SQL queries, or rule-based queries

e But testing the existence of a homomorphism between two tableaux is
hard: NP-complete. Thus, a polynomial algorithm is unlikely to exists.

e However, queries are small, and conjunctive query optimization is pos-
sible in practice.

Beijing 8 Topics in Foundations of DB

Minimizing conjunctive queries

e Goal: given a conjunctive query (), find an equivalent conjunctive query
()" with the minimum number of joins.

e Assume () is
Q(Z) = Ri(ty),..., Ry(uy)
e Assume that there is an equivalent conjunctive query)’ of the form
Q'(Z) = Si(th),...,S(0)
with [< k
e Then () is equivalent to a query of the form

Q/<f> — Ril(a)ﬁ); ..y Rl<ﬁil)

e In other words, to minimize a conjunctive query, one has to delete some
subqueries on the right of :—

Beijing 9 Topics in Foundations of DB

Minimizing conjunctive queries cont'd

e Given a conjunctive query (), transform it into a tableau T’

e Let ()’ be a minimal conjunctive query equivalent to (). Then its
tableau 1" is a subset of 1.

e Minimization algorithm:
T =T
repeat until no change
choose a row t in 1"
if there is a homomorphism f:T" — T" — {t}
then 7" :=T" — {t}
end

e Note: if there exists a homomorphism 7" — T" — {t}, then the queries

defined by 7" and T" — {t} are equivalent. Because: there is always a
homomorphism from 7" — {t} to T". (Why?)

Beijing 10 Topics in Foundations of DB

Minimizing SPJ/conjunctive queries: example

e 1? with three attributes A, B, C
e SPJ query

Q = maplop=4(R)) X mpc(map(R) X mac(op=4(R)))
e Translate into relational calculus:
(F21 R(x,y, z21) Ay = 4) A zq ((F20 R(21, 9, 20)) A (T R(z1, y1, 2)Ayr = 4))
e Simplify, by substituting the constant, and putting quantifiers forward:
21, 21, 20 (R(7,4, 21) N R(x1,4, 20) AN R(21,4,2) Ny = 4)

e Conjunctive query:

Q(xa Y, Z) :—R(ZC, 47 Zl)a R(SE’l, 47 22)7 R<I1,4, Z): Y= 4

Beijing 11 Topics in Foundations of DB

Minimizing SPJ/conjunctive queries cont'd

e [ableau T
A B C

r 4 z
1 4 29
r1 4 =z
r 4 z

e Minimization, step 1: is there a homomorphism from 1’ to
A B C

I 4 29
r1 4 z
r 4 z

e Answer: No. For any homomorphism f, f(x) = = (why?), thus the
image of the first row is not in the small tableau.

Beijing 12 Topics in Foundations of DB

Minimizing SPJ/conjunctive queries cont'd

A B C
r 4 21
r1 4 =z
r 4 z

e Step 2: Is T equivalent to

e Answer: Yes. Homomorphism f: f(z3) = z, all other variables stay
the same.

e The new tableau is not equivalent to

A B C A B C
r 4 z or r1 4 z
r 4 z rx 4 z

e Because f(x) = z, f(2) = 2, and the image of one of the rows is not
present.

Beijing 13 Topics in Foundations of DB

Minimizing SPJ/conjunctive queries cont'd

A B C
r 4 21
r1 4 =z
r 4 z

e Minimal tableau:

e Back to conjunctive query:

Q'(z,y,2) = R(x,y,21), R(x1,y,2),y =4

e An SPJ query:
op=1(map(R) X mpc(R))

e Pushing selections:

7TAB<O'B:4(R>) X WBC(O'B=4(R>)

Beijing 14 Topics in Foundations of DB

Review of the journey

e \We started with
map(0p=4(R)) X mpo(map(R) X mac(op-4(R)))
e [ranslated into a conjunctive query
e Built a tableau and minimized it
e Translated back into conjunctive query and SPJ query

e Applied algebraic equivalences and obtained
map(op=4(R)) X mpc(op-4(R))

e Savings: one join.

Beijing 15 Topics in Foundations of DB

All minimizations are equivalent

e Let () be a conjunctive query, and ()1, ()2 two conjunctive queries
equivalent to ()

e Assume that () and ()9 are both minimal, and let 7 and I5 be their
tableaux.

e Then T} and I are isomorphic; that is, 15 can be obtained from 77 by
renaming of variables.

e That is, all minimizations are equivalent.

e In particular, in the minimization algorithm, the order in which rows are
considered, is irrelevant.

Beijing 16 Topics in Foundations of DB

Equivalence of conjunctive queries: the general case

e So far we assumed that there is only one relation R, but what if there
are many”?

e Construct tableaux as before:

Q(I, y):_B@ja y)? R<y7 Z)? R(y7 ’UJ), R(w7 y)

e [ableau:
A B
B: AB R: y ¢
X Y y W
Wy
X y

e Formally, a tableau is just a database where variables can appear in
tuples, plus a set of distinguished variables.

Beijing 17 Topics in Foundations of DB

Tableaux and multiple relations

e Given two tableaux 77 and T, over the same set of relations, and the
same distinguished variables, a homomorphism h : 17 — 15 is a map-

ping
f : {variables of T1} — {variables of 75}
such that
- f(x) = x for every distinguished variable, and

- for each row ¢ in R in T}, f(t) is in R in Tb.

e Homomorphism theorem: let (); and ()5 be conjunctive queries, and
17, T5 their tableaux. Then

Q2 € Q1
if and only if

there exists a homomorphism f : T} — 15

Beijing 18 Topics in Foundations of DB

Minimization with multiple relations

e The algorithm is the same as before, but one has to try rows in different
relations. Consider homomorphism f(z) = w, and f is the identity for
other variables. Applying this to the tableau for () yields

A B

B:AB R: y w

X Yy Wy
X y

e This cannot be further reduced, as for any homomorphism f, f(x) = «x,
fly) =y.

e Thus () is equivalent to
Q'(z,y) = B(x,y), Ry, w), R(w,y)

e One join is eliminated.

Beijing 19 Topics in Foundations of DB

Static analysis of conjunctive queries: complexity

e Problem: given queries ()1, ()2, is ()1 contained in ()57
e For full relational calculus, undecidable.
e For conjunctive queries, there is an algorithm:

o guess a mapping h between the tableaux of () and)y

o check if it is a homomorphism.
o Thus it is in NP.

e The problem is in fact NP-complete (sketch: blackboard).
e Hence efficient algorithms unlikely to exist unless P=NP.

e But the input is a query, not a database, hence algorithms are quite
practical (heavily used in data integration)

o still in the worst case they need exponential time

Beijing 20 Topics in Foundations of DB

Query optimization and integrity constraints

e Additional equivalences can be inferred if integrity constraints are known

e Example: Let R have attributes A, B,C. Assume that R satisfies
A — B.

e Then R satisfies A — B and thus
R = WAB(R> X 7TA(](R)
e Tableaux can help with these optimizations!

o Tap(R) X mac(R) as a conjunctive query:

Q(xa Y, Z>:_R($7 Y, Zl)a R('CE) Yi, Z)

Beijing 21 Topics in Foundations of DB

Query optimization and integrity constraints cont'd

e [ableau:

A B C
T Y 2
T Y z
T Yy z

e Using the FD A — B infer y = y;

e Next, minimize the resulting tableau

A B C ABC
T Y 21 S 2y oz
T Yy z Ty oz
T Y z

e And this says that the query is equivalent to Q'(z,y, 2)—R(x,y, 2),
that is, R.

Beijing 22 Topics in Foundations of DB

Query optimization and integrity constraints cont'd

e General idea: simplify the tableau using functional dependencies and
then minimize.

e Given: a conjunctive query (), and a set of FDs F’

e Algorithm:
Step 1. Compute the tableau T' for ().
Step 2. Apply algorithm CHASE(T, F).
Step 3. Minimize output of CHASE(T, F').
Step 4. Construct a query from the tableau produced in Step 3.

Beijing 23 Topics in Foundations of DB

The CHASE

Assume that all FDs are of the form X — A, where A is an attribute.

foreach X — A in F do
for each t1,t5 in T such that ¢t1.X =1¢,.X and t;.A # t5.A do
case t1.A, t5. A of
both nondistinguished =
replace one by the other
one distinguished, one nondistinguished =
replace nondistinguished by distinguished
one constant, one variable =
replace variable by constant
both constants =
output () and STOP
end
end

Beijing 24 Topics in Foundations of DB

Query optimization and integrity constraints: example

e Risover A, B,C; F contains B— A
[Q = 730(0A24(R>) X 7TAB<R)

e () as a conjunctive query:

Q(xa Y, Z) = R(47 Y, Z)a R('CE) Y, Zl)

e Tableau:
A B C A B C AB C
4 y z cHASE 4y =z minimize
— — 4 y z
r Yy z 4 Yy =1 4 >
T Yy z 4 vy z 4

e Final result: Q(x,y,2) — R(x,y,2),x =4, that is, c4—4(R).

Beijing 25 Topics in Foundations of DB

Query optimization and integrity constraints: example

e Same R and F’; the query is:
Q = 7pe(oa=4(R)) X map(oa=s(R))

e As a conjunctive query:

Q('rayaz) - R<4,y,2),R(I’,y,Zl>,ZC:5

e [ableau:
A B C
4 vy z CHASE 0
S5 Y 2
by z

e Final result: ()

e This equivalence is not true without the FD B — A

Beijing 26 Topics in Foundations of DB

Query optimization and integrity constraints: example

e Sometimes simplifications are quite dramatic

e Same R, FD is A — B, the query is
Q = wap(R) X ma(op=4(R)) X map(mac(R) X mpc(R))
e Convert into conjunctive query:

Q(xa y) - R(SE’, Y, Zl)a R(ﬂf, Y1, Z): R(xla Y, Z)a R(ﬂf, 47 ZQ)

e [ableau:

A B C A B C

T Y 21 r 4 = AB C
xr Yy =2 CI—ASE r 4 z mini_r)nize r 4
T Y 2 r1 4 z 1
r 4 2z r 4 2z .
Ty r 4

Beijing 27 Topics in Foundations of DB

Query optimization and integrity constraints: example cont'd

C
2z

Is translated into

o
SHESEP =
Iy v

Qr,y) = Rlz,y,2),y=4
e or, equivalently m4p(op=4(R)).
e [hus,
TaB(R) X ma(0p=4(R)) X map(mac(R) X mpc(R)) = mwap(op=4(R))
in the presence of FD A — B.
e Savings: 3 joins!

e This cannot be derived by algebraic manipulations, nor conjunctive
query minimization without using CHASE.

Beijing 28 Topics in Foundations of DB

Chase procedures

e In general, CHASE may refer to a family of procedures of a similar
flavor: keep changing entries in a database instance as dictated by
constraints

e Main uses:

o checking constraints satisfiability and implication (and thus impor-
tant for reasoning about metadata)
o building instances that satisfy constraints (e.g., in data exchange)

e Many papers refer to CHASE procedures; we now review the classical
one for implication of functional and join dependencies

Beijing 29 Topics in Foundations of DB

FD and JD implication by CHASE

e Reminder: JDs are join dependencies
e AID: XI[Xy,..., X,
e It holds in a relation R iff
R =mx,(R)X ... X7y (R)

e Important for decomposing relations and normalizing databases
e An FD X — Y over attributes U implies a JD X [XY, X (U — Y]

o a simple exercise

e Let F be a set of FDs, J a set of JDs, and 6 a dependency (FD or
JD)

o 7, J = 0 (in words, F and J imply) if for every relation R, if all
of F and J dependencies are true in R, then 6 is true in R.

Beijing 30 Topics in Foundations of DB

CHASE: tableaux and rules

e CHASE procedure consists of CHASE steps that apply to instances or
tableaux. In tableaux, we shall mark distinguished variables in bold:

A B C
X 'V I
o Y Z
L2 Yy I3

e Rules for FDs we have already seen

Beijing 31 Topics in Foundations of DB

CHASE: JD rule

Let J contain a join dependency X [X7, ..., X,,] and let T be a tableau.

If u is a tuple not in 1" such that there are tuples uq, ..., u, € T such that
w;| X;] = ulX;] for every ¢ € [1,m], then the result of applying this JD over
T is the new tableau 77" =T U {u}.

Beijing 32 Topics in Foundations of DB

CHASE sequences

e A CHASE sequence of 1" by a set of FDs and JDs is a sequence of
tableaux 1" = Ty, 13, 15, ..., such that for each ¢ > 0, T}, is the

result of applying some dependency to T;.

e For JDs and FDs, all such sequences are finite (in other cases they
won't be, and chase termination is a very important issue, particularly
in data exchange).

e A sequence terminates when no more rules apply.

e No matter how we apply the rules, sequences terminate with the same
tableau (up to renaming of non-distinguished variables)

e This tableau is denoted by chaser 7(T)

Beijing 33 Topics in Foundations of DB

CHASE for dependency implication

To check if 7, J E 0

e Construct a tableau 7j
e Compute chaser 7(1p)

e Check if a certain condition is satisfied.
If 0 = Ay,..., Ay — Ajyq (attributes are Ay,..., A,):

o T has two rows: (X1,...,X;) and (X1, ..., Xk, Yrts- - - Ym)

e Condition: chaser 7(Ty) has only distinguished variables for Aj;

Beijing 34 Topics in Foundations of DB

Example: {X [AB, AC], AB—-C} £ A—C

A B C
TA—>C: X 'Yy 1z
X T To
A B C
Chase sequence: use X [AB, AC] and get: XYy z
X X1 I9
X ¥y 22
A B C
Then use AB — C' and get X yV Z
X T1 Z

Only distinguished variables in column C.

Beijing 35 Topics in Foundations of DB

CHASE for JDs

o Let 0 be X | X7,..., X,].
e Ty has n rows.

e The ith row has distinguished variables in the X,-columns and non-
distinguished variables in the remaining columns.

e Each non-distinguished variable appears exactly once.

e Condition: chaser 7(T') has a row with all distinguished variables.

Beijing 36 Topics in Foundations of DB

Length of chase sequences

e In general, could be exponential

e An important question is when it is polynomial
e Then implication is solved in polynomial time
e Conditions known: essentially acyclicity of JDs

e We shall come back to the idea of acyclicity and polynomial chase
termination in data exchange: this is how instances of exchanged data
are constructed

Beijing 37 Topics in Foundations of DB

Complexity classes: a very brief intro

e In databases, we reason about complexity in two ways:
o The big-O notation (O(nlogn) vs O(n?) vs O(2"))
o Complexity-theoretic notions: PTIME, NP, DLOGSPACE, etc

e You see a lot of the latter in the literature

e Advantage of complexity-theoretic notions: if you have a O(2") algo-
rithm, is it because the problem is inherently hard, or because we are
not smart enough to come up with a better algorithm (or both)?

Beijing 38 Topics in Foundations of DB

The big divide
PTIME (computable in polynomial time, i.e. O(n*) for some fixed k)

Inside PTIME: tractable queries (although high-degree polynomial are real-
life intractable)

Outside PTIME: intractable queries (efficient algorithms are unlikely)

Way outside PTIME: provably intractable queries (efficient algorithms do
not exist)

e EXPTIME: c"-algorithms for a constant c. Could still be ok for not
very large inputs

e Even further — 2-EXPTIME: ¢¢". Cannot be ok even for small inputs
(compare 21V and 2210).

Beijing 39 Topics in Foundations of DB

Inside PTIME

AC' ¢ TC” € NC' C DLOG C NLOG C PTIME

o AC": very efficient parallel algorithms (constant time, simple circuits)
— relational calculus
o TC": very efficient parallel algorithms in a more powerful computational
model with counting gates

— basic SQL (relational calculus/grouping/aggregation)

o NC!: efficient parallel algorithms
— regular languages

e DLOG: very little — O(logn) — space is required
— SQL + (restricted) transitive closure

e NLOG: O(logn) space is required if nondeterminism is allowed
— SQL + transitive closure (as in the SQL3 standard)

Beijing 40 Topics in Foundations of DB

Beyond PTIME

NP

PTIME C {coNP

} C PSPACE

e PTIME: can solve a problem in polynomial time
e NP: can check a given candidate solution in polynomial time

o another way of looking at it: guess a solution, and then verify if
you guessed it right in polynomial time
e coNP: complement of NP — verify that all “reasonable” candidates are
solutions to a given problem.

o Appears to be harder than NP but the precise relationship isn't
known

e PSPACE: can be solved using memory of polynomial size (but perhaps
an exponential-time algorithm)

Beijing 41 Topics in Foundations of DB

Complete problems

e These are the hardest problems in a class.

e If our problem is as hard as a complete problem, it is very unlikely it
can be done with lower complexity.

e For NP:
o SAT (satisfiability of Boolean formulae)
o many graph problems (e.g. 3-colourability)

o Integer linear programming etc

e For PSPACE:
o Quantified SAT

o Are two regular languages equivalent?

o Many games, e.g., Geography.

Beijing 42 Topics in Foundations of DB

Measuring complexity in databases

Problem: Given a database D, and a query @, find Q(D).

Complexity measurements are defined for decision problems, so: Given D,
(), and a tuple u, is u € Q(D)?

e Combined complexity: all D, (), u are inputs to the problem.

e Data complexity: () is fixed.

o Rationale: () is much smaller than D, can disregard it

Beijing 43 Topics in Foundations of DB

Limitations of SQL

e Reachability queries:
Flights| Src Dest

'EDI" 'LHR’
'EDI" 'EWR’
'EWR" 'LAX

e Query: Find pairs of cities (A, B) such that one can fly from A to B
with at most one stop:

SELECT F1.Src, F2.Dest
FROM Flights F1, Flights F2
WHERE F1.Dest=F2.Src
UNION
SELECT * FROM Flights

Beijing 44 Topics in Foundations of DB

Reachability queries cont'd

e Query: Find pairs of cities (A, B) such that one can fly from A to B
with at most two stops:

SELECT F1.Src, F3.Dest

FROM Flights F1, Flights F2, Flights F3

WHERE F1.Dest=F2.Src AND F2.Dest=F3.Src
UNION

SELECT F1.Src, F2.Dest

FROM Flights F1, Flights F2

WHERE F1.Dest=F2.Src
UNION

SELECT * FROM Flights

Beijing 45 Topics in Foundations of DB

Reachability queries cont'd

e For any fixed number &k, we can write the query

Find pairs of cities (A, B) such that one can fly from A to B
with at most k stops

in SQL.
e What about the general reachability query:

Find pairs of cities (A, B) such that one can fly from A to B.

e SQL cannot express this query.

e Solution: SQL3 adds a new construct that helps express reachability
queries. (May not yet exist in some products.)

Beijing 46 Topics in Foundations of DB

Reachability queries cont'd

e To understand the reachability query, we formulate it as a rule-based
query:

reach(x,y) — flights(x,y)
reach(x,y) = flights(z,z), reach(z,y)
e One of these rules is recursive: reach refers to itself.

e Evaluation:

- Step 0: reachy is initialized as the empty set.
- Step 7 + 1: Compute

reachiﬂ(:v, y) = ﬂ’ight5<ﬂfa y)
reach; 1(x,y) — flights(x,z), reach;(z,y)

- Stop condition: If reach; 1 = reach;, then it is the answer to the
query.

Beijing 47 Topics in Foundations of DB

Evaluation of recursive queries

e Example: assume that flights contains (a,b), (b, c), (¢, d).

e Step 0: reach = ()

e Step 1: reach becomes {(a,b), (b, c),(c,d)}.

e Step 2: reach becomes {(a,b), (b, c), (c,d), (a,c), (b,d)}.

e Step 3: reach becomes {(a,b), (b, c), (c,d), (a,c),(b,d),(a,d)}.

e Step 4: one attempts to use the rules, but infers no new values for
reach. The final answer is thus:

{(a,0),(b,c), (¢, d),(a,c), (b,d), (a,d)}

Beijing 48 Topics in Foundations of DB

Recursion in SQL3

e SQL3 syntax mimics that of recursive rules:

WITH RECURSIVE Reach(Src,Dest) AS
(
SELECT * FROM Flights
UNION
SELECT F.Src, R.Dest
FROM Flights F, Reach R
WHERE F.Dest=R.Src

)
SELECT *x FROM Reach

Beijing 49

Topics in Foundations of DB

Recursion in SQL3: syntactic restrictions

e There is another way to do reachability as a recursive rule-based query:

reach(x,y) — flights(x,y)
reach(x,y) = reach(x, z), reach(z,y)

e This translates into an SQL3 query:

WITH RECURSIVE Reach(Src,Dest) AS
(SELECT * FROM Flights
UNION
SELECT R1.Src, R2.Dest
FROM Reach R1, Reach R2
WHERE R1.Dest=R2.Src)
SELECT * FROM Reach

e However, most implementations will disallow this, since they support
only ltnear recursion: recursively defined relation is only mentioned

once in the FROM line.

Beijing 50 Topics in Foundations of DB

Recursion in SQL3 cont'd

e A slight modification: suppose Flights has another attribute aircraft.

e Query: find cities reachable from Edinburgh.

WITH Cities AS SELECT Src,Dest FROM Flights
RECURSIVE Reach(Src,Dest) AS

SELECT * FROM Cities
UNION
SELECT C.Src, R.Dest
FROM Cities C, Reach R
WHERE C.Dest=R.Src
)
SELECT R.Dest
FROM Reach R
WHERE R.Src=’EDI’

Beijing 51 Topics in Foundations of DB

A note on negation

e Problematic recursion:

WITH RECURSIVE R(A) AS
(SELECT S.A
FROM S
WHERE S.A NOT IN
SELECT R.A FROM R)

SELECT * FROM R

e Formulated as a rule:

r(x) = s(x),-r(z)

Beijing 52 Topics in Foundations of DB

A note on negation cont'd

e Let s contain {1,2}.

e Evaluation:
After step 0: 7o = 0:
After step 1: 1 = {1,2};
After step 2: 79 = ():
After step 3: 73 = {1,2};

After step 2n: ry, = 0;
After step 2n + 1: 19,11 = {1, 2}.

e Problem: it does not terminate!

e What causes this problem? Answer: Negation (that is, NOT IN).

Beijing 53 Topics in Foundations of DB

A note on negation cont'd

e Other instances of negation:
EXCEPT
NOT EXISTS

e SQL3 has a set of very complicated rules that specify when the above
operations can be used in WITH RECURSIVE definitions.

e A general rule: it is best to avoid negation in recursive queries.

Beijing 54 Topics in Foundations of DB

Notes on proposed papers

1. Ashok K. Chandra, Philip M. Merlin: Optimal Implementation of Con-
junctive Queries in Relational Data Bases. STOC 1977: 77-90

Criterion for CQ containment/equivalence
2. Mihalis Yannakakis: Algorithms for Acyclic Database Schemes. VLDB
1981: 82-94

Notion of acyclicity of CQs and fast evaluation scheme based on it

3. Georg Gottlob, Nicola Leone, Francesco Scarcello: The complexity of
acyclic conjunctive queries. Journal of the ACM 48(3):431-498 (2001)

An in-depth study of acyclicity
4. Georg Gottlob, Nicola Leone, Francesco Scarcello: Hypertree Decom-

positions and Tractable Queries. J. Comput. Syst. Sci. 64(3):579-627
(2002)

A hierarchy of classes of efficient CQs, the bottom level of which is
acyclic queries

Beijing 55 Topics in Foundations of DB

5. Martin Grohe, Thomas Schwentick, Luc Segoufin: When is the evalu-
ation of conjunctive queries tractable? STOC 2001: 657-666

A different way of characterizing efficiency of CQs, this time via the

notion of bounded treewidth

6. Moshe Y. Vardi: The Complexity of Relational Query Languages (Ex-
tended Abstract) .STOC 1982: 137-146

Different types of complexity of database queries, and a language for

PTIME

7. Christos H. Papadimitriou, Mihalis Yannakakis: On the Complexity of
Database Queries. J. Comput. Syst. Sci. 58(3): 407-427 (1999)

A finer way of measuring complexity, between data and combined

8. Neil Immerman: Languages that Capture Complexity Classes. SIAM J.
Comput. 16(4): 760-778 (1987)

Query languages that correspond to complexity classes

9. Martin Grohe: Fixed-point definability and polynomial time on graphs
with excluded minors. Journal of the ACM 59(5): 27 (2012)

Beijing 56 Topics in Foundations of DB

We can capture PTIME on some databases if they satisfy certain struc-
tural (graph-theoretic) restrictions

10. Phokion G. Kolaitis, Moshe Y. Vardi: Conjunctive-Query Containment
and Constraint Satisfaction. J. Comput. Syst. Sci. 61(2): 302-332
(2000)

An intriguing connection between conjunctive queries and a central Al
problem of constraint satisfaction

11. Martin Grohe: From polynomial time queries to graph structure theory.
Commun. ACM 54(6): 104-112 (2011)

A general account of connections between structural properties of databases
and languages that capture efficient queries over them

12. Leonid Libkin: The finite model theory toolbox of a database theoreti-
cian. PODS 2009: 65-76

A toolbox for reasoning about expressivity and complexity of query
languages

13. Leonid Libkin: Expressive power of SQL. Theor. Comput. Sci. 296(3):

Beijing 57 Topics in Foundations of DB

379-404 (2003)
.. and a specific application for SQL
14. David Maier, Alberto O. Mendelzon, Yehoshua Sagiv: Testing Impli-

cations of Data Dependencies. ACM Trans. Database Syst. 4(4):
455-469 (1979)

The paper that proposed CHASE

15. Alin Deutsch, Alan Nash, Jeffrey B. Remmel: The chase revisited.
PODS 2008: 149-158

and the paper that looked at how to make it efficient more often

Beijing 58 Topics in Foundations of DB

