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SQL’s handling of incompleteness is problematic

“. . . this topic cannot be described in a manner that is
simultaneously both comprehensive and comprehensible”
“Those SQL features are . . . fundamentally at odds with the
way the world behaves”

C. Date & H. Darwen, ‘A Guide to SQL Standard’

“If you have any nulls in your database, you’re getting wrong
answers to some of your queries. What’s more, you have no
way of knowing, in general, just which queries you’re getting
wrong answers to; all results become suspect. You can never
trust the answers you get from a database with nulls”

C. Date, ‘Database in Depth’
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But it must be handled...

I Incomplete data is everywhere.

I Represented by nulls in relational databases.

I The more data we accumulate, the more incomplete data we
accumulate.

I Sources:
I Traditional (missing data, wrong entries, etc)
I The Web
I Integration/translation/exchange of data, etc

I The importance of it was recognized early
I Codd, “Understanding relations (installment #7)”, 1975.

I And yet the state is very poor.
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Company database – orders, customers, payments

Orders Pay Customer
order id title price

Ord1 “Big Data” 30
Ord2 “SQL” 35
Ord3 “Logic” 50

cust id order
c1 Ord1
c2 Ord2

cust id name
c1 John
c2 Mary

Queries, as we teach students to write them:

Unpaid orders Customers without an order
SELECT O.order id select C.cust id from Customer C

FROM Orders O where not exists

where O.order id not in (SELECT * from Orders O, Pay P

(select order from Pay) where C.cust id=P.cust id

and P.order=O.order id)

Answer: Ord3 Answer: none
Answer: //////Ord3 none Answer: /////none c2
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What it’s blamed on: 3-valued logic

SQL used 3-valued logic, or 3VL, for databases with nulls.

Normally we have two truth values: true t, false f. But comparisons
involving nulls evaluate to unknown (u): for instance, 5 = null is u.

They are propagated using 3VL rules:

∧ t f u
t t f u
f f f f
u u f u

∨ t f u
t t t t
f t f u
u t u u

∨
t f
f t
u u

I Committee design from 30 years ago, leads to many problems,

I but is efficient and used everywhere
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What does theory have to offer?

The notion of correctness — certain answers.

I Answers independent of the interpretation of missing information.

I Typically defined as

certain(Q,D) =
⋂

Q(D ′)

over all possible worlds D ′ described by D

I Standard approach, used in all applications: data integration and
exchange, inconsistent data, querying with ontologies, data cleaning,
etc.

I First need to define what an incomplete database can represent.
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The model

Marked (aka labeled or naive) nulls. Idea: missing values, that can
repeat.

Semantics: closed world

A B C

1 2 ⊥1

⊥2 ⊥1 3

⊥3 5 1

2 ⊥3 3

h(⊥1) = 4
h(⊥2) = 3
h(⊥3) = 5

=⇒

A B C

1 2 4

3 4 3

5 5 1

2 5 3

SQL model: a special case when all nulls are distinct.
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Open worlds semantics

A B C

1 2 ⊥1

⊥2 ⊥1 3

⊥3 5 1

2 ⊥3 3

h(⊥1) = 4
h(⊥2) = 3
h(⊥3) = 5

=⇒

A B C

1 2 4

3 4 3

5 5 1

2 5 3

7 9 12

11 8 10
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Semantics via homomorphisms/valuations

Maps h are homomorphisms whose range does not include nulls. They
are called valuation. A normal homomorphism:

I h(c) = c for every constant value c

I h(⊥) could be a null or a constant value

In a valuation,

I h(c) = c for every constant value c

I h(⊥) must be a constant value

They define open world semantics [[D]]owa and closed world semantics
[[D]]cwa

I semantics under open world and closed world assumptions
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Semantics via homomorphisms/valuations

[[D]]cwa = {h(D) | h is a valuation}

[[D]]owa = {complete D ′ | ∃ valuation h : D → D ′}

Alternatively:

[[D]]owa = {h(D) ∪ D0 | h is a valuation,D0 does not have nulls}
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Certain answers

Tuples present in query answers in all possible world:

certainCWA(Q,D) =
⋂
{Q(D ′) | D ′ ∈ [[D]]cwa}

certainOWA(Q,D) =
⋂
{Q(D ′) | D ′ ∈ [[D]]owa}

Note that tuples in certain answers cannot have nulls, i.e. they only have
constant values.
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Can SQL evaluation and certain answers be the same?

No!

Complexity argument:

I Finding certain answers for relational calculus queries in coNP-hard

I SQL is very efficient (DLOGSPACE; even AC0)
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Complexity of certain answers

Query Q from relational calculus/algebra, i.e., first-order logic. Assume it
is a sentence (yes/no query).

Look at OWA first.

certainOWA(Q,D) = t ⇔ ∀D ′ ∈ [[D]]owa : D ′ |= Q

But: [[∅]]owa = all databases!

Therefore:
certainOWA(Q, ∅) = t ⇔ ∀D ′ : D ′ |= Q

or Q ′ is a valid sentence.
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Validity and certain answers

What do we know about validity of first-order sentences? It is
undecidable!

This is a classical result in logic. But here we are in a different world, all
databases are finite. Does it help?

No! It is even worse, not even recursively enumerable (even infinite time
does not help!)
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Does CWA help? Somewhat....

certainCWA(Q,D) = t ⇔ ∀ valuations h : h(D) |= Q

There are still infinitely many valuations, but actually only finitely many
suffice (blackboard).

This means checking whether certainCWA(Q,D) = f is in NP:

I guess a valuation h

I check if h(D) |= ¬Q (in PTIME in data complexity)

Thus checking whether certainCWA(Q,D) = t is in coNP.
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CWA: can we do better? No...

Checking whether certainCWA(Q,D) = t is coNP-complete.

Reduction from 3-colorability.

Take a graph G = (V ,E ) and create a database DG with nulls ⊥v for
each v ∈ V and edges (⊥v ,⊥v ′) whenever (v , v ′) ∈ E .

Q = 4 different vertices ∨ ∃xE (x , x)

where 4 different vertices is ∃x , y , z , u (x 6= y ∧ y 6= z ∧ . . .)

Then certainCWA(Q,DG ) = t iff G is not 3-colorable.
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The bottom line

SQL is very efficient (for the relational calculus fragment, AC0)

Certain answers range from coNP-complete to undecidable for different
semantics.

Hence provably SQL cannot compute certain answers.
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Wrong behaviors: false negatives and false positives

False negatives: missing some of the certain answers

False positives: giving answers which are not certain

Complexity tells us:

SQL query evaluation cannot avoid both!

False positives are worse: they tell you something blatantly false rather
than hide part of the truth

And we have seen SQL generates both.
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What to do?

We now analyze evaluation procedures.

Goal: to see when we can effectively

I compute or

I approximate

certain answers.

So first we need to define evaluation procedures.
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Evaluation procedures for first-order queries

Given a database D, a query Q(x̄), a tuple ā

Eval(D,Q(ā)) ∈ set of truth values

I 2-valued logic: truth values are t (true) and f (false)

I 3-valued logic: t, f, and u (unknown)

Meaning: if Eval(D,Q(ā)) evaluates to

I t, we know ā ∈ Q(D)

I f, we know ā 6∈ Q(D)

I u, we don’t know whether ā ∈ Q(D) or ā 6∈ Q(D)

DMBDA 2018 incomplete and inconsistent data 20/78



Evaluation procedures and queries results

A procedure defines the result of evaluation:

Eval(Q,D) = {ā | Eval(D,Q(ā)) = t}

Think of the WHERE clause in SQL: we only look at values that make it
true (and discard those that make it false or unknown).
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Standard semantics for logical connectives

All evaluation procedures are completely standard for ∨,∧,¬, ∀,∃:

Eval(D,Q ∨ Q ′) = Eval(D,Q) ∨ Eval(D,Q ′)

Eval(Q ∧ Q ′,D) = Eval(D,Q) ∧ Eval(D,Q ′)

Eval(D,¬Q) = ¬Eval(D,Q)

Eval(D, ∃x Q(x , ā)) =
∨
{Eval(D,Q(a′, ā)) | a′ ∈ adom(D)}

Eval(D, ∀x Q(x , ā)) =
∧
{Eval(D,Q(a′, ā)) | a′ ∈ adom(D)}
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Standard semantics for logical connectives cont’d

Of course ∨,∧,¬ are given by truth tables for the logic: the usual
Boolean logic for relational calculus, or the 3-valued logic for SQL.

So we just need to define rules for atoms, R(x̄) and basic comparisons.

We assume comparisons are just equalities a = b.
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FO evaluation procedure

EvalFO(D,R(ā)) =

{
t if ā ∈ R

f if ā 6∈ R

EvalFO(D, a = b) =

{
t if a = b

f if a 6= b
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Correctness via EvalFO

Recall:
EvalFO(Q,D) = {ā | EvalFO(D,Q(ā)) = t}

We want at least simple correctness guarantees

constant tuples in EvalFO(Q,D) ⊆ certain(Q,D)

Ideally:

constant tuples in EvalFO(Q,D) = certain(Q,D)
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Correctness for CQs

UCQ: unions of conjunctive queries, or positive relational algebra
π, σ,on,∪.

For UCQs,

constant tuples in EvalFO(Q,D) = certain(Q,D)

for both open and closed world semantics.

First, [[D]]cwa and [[D]]owa have a “copy” of D (replace all nulls by new
constants) so if certainOWA(D,Q) = t or certainCWA(D,Q) = t then
D |= Q.
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Correctness for CQs cont’d

Now we need the converse: if D |= Q, then
certainOWA(D,Q) = certainCWA(D,Q) = t.

Idea: let’s look at a Boolean CQ Q with a tableau TQ . Then

D |= Q
⇒ TQ 7→ D
⇒ ∀D ′ : D 7→ D ′ implies TQ 7→ D ′

⇒ ∀D ′ : D 7→ D ′ implies D ′ |= Q
⇒ ∀D ′ ∈ [[D]]owa( or in [[D]]cwa) : D ′ |= Q
⇒ certainOWA(D,Q) = certainCWA(D,Q) = t

Same idea works for UCQs with free variables.
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Correctness for CQs cont’d

Can the class of UCQs be extended? Answer:

I no under open world semantics, and

I yes under closed world semantics.

If Q is a relational calculus query, and

D |= Q ⇔ certainOWA(D,Q) = t

for all D, then Q is equivalent to a UCQ.
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Correctness for CQs under closed world

Recall: UCQ is the fragment of relational calculus without ∀ and ¬.
That is, ∧,∨,∃.

RelCalccertain — UCQs extended with the formation rule:

if ϕ(x̄ , ȳ)) is a query in RelCalccertain, then so is:

∀ȳ (atom(ȳ)→ ϕ(x̄ , ȳ))

Here atom is R(ȳ) or y1 = y2.
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Correctness for CQs under closed world cont’d

Also recall: UCQs are positive relational algebra, π, σ,on,∪.

RelCalccertain is its extension with the division operator ÷
I but only Q ÷ R queries

I meaning: find tuples ā that occur in Q(D) together with every tuple
b̄ in R

For RelCalccertain queries,

constant tuples in EvalFO(Q,D) = certainCWA(Q,D)
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SQL evaluation procedure

All that changes is the rule for comparisons.

SQL’s rule: if one attribute of a comparison is null, the result is unknown.

EvalSQL(D, a = b) =


t if a = b and NotNull(a, b)

f if a 6= b and NotNull(a, b)

u if null(a) or null(b)

We write null(a) if a is a null and NotNull(a) if it is not.
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When does it work?

For UCQs,

constant tuples in EvalSQL(Q,D) ⊆ certain(Q,D)

Question:

I can we extend this, say to all of relational calculus? That is, get an
evaluation without false positives?
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What’s wrong with SQL’s 3VL?

It gives us both false positives and false negatives. Can we eliminate false
positives?

SQL is too eager to say no.

If we say no to a result that ought to be unknown, when negation
applies, no becomes yes! And that’s how false positives creep in.

Consider R =
A B

1 null

What about (null, null) ∈ R?

SQL says no but correct answer is unknown: what if null is really 1?
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Towards a good evaluation: unifying tuples

Two tuples t̄1 and t̄2 unify if there is a mapping h of nulls to constants
such that h(t̄1) = h(t̄2).

( 1 ⊥ 1 3 )
( ⊥′ 2 ⊥′ 3 )

=⇒ ( 1 2 1 3 )

but
( 1 ⊥ 2 3 )
( ⊥′ 2 ⊥′ 3 )

do not unify.

This can be checked in linear time.
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Proper 3-valued procedure

Eval3v(D,R(ā)) =


t if ā ∈ R

f if ā does not unify with any tuple in R

u otherwise

Eval3v(D, a = b) =


t if a = b

f if a 6= b and NotNull(a, b)

u otherwise
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Simple correctness guarantees: no false positives

If ā is a tuple without nulls, and Eval3v(D,Q(ā)) = 1 then
ā ∈ certain(Q,D).

Simple correctness guarantees:

constant tuples in Eval3v(Q,D) ⊆ certainCWA(Q,D)

Thus:

I Fast evaluation (checking Eval3v(D,Q(ā)) = 1 in AC0)

I Correctness guarantees: no false positives
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Strong correctness guarantees: involving nulls

How can we give correctness guarantees for tuples with nulls? By a
natural extension of the standard definition (proposed in 1984 but
quickly forgotten).

A tuple without nulls ā is a certain answer if

ā ∈ Q(h(D)) for every valuation h of nulls.

An arbitrary tuple ā is a certain answers with nulls if

h(ā) ∈ Q(h(D)) for every valuation h of nulls.

Notation: certain⊥(Q,D)
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Certain answers with nulls: properties

certain(Q,D) ⊆ certain⊥(Q,D) ⊆ EvalFO(Q,D)

Moreover:

I certain(Q,D) is the set of null free tuples in certain⊥(Q,D)

I certain⊥(Q,D) = EvalFO(Q,D) for RelCalccertain queries
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Correctness with nulls: strong guarantees

I D – a database,

I Q(x̄) – a first-order query

I ā – a tuple of elements from D.

Then:
I Eval3v(D,Q(ā)) = t =⇒ ā ∈ certain⊥(Q,D)

I Eval3v(D,Q(ā)) = f =⇒ ā ∈ certain⊥(¬Q,D)

3-valuedness extended to answers: certainly true, certainly false, don’t
know.
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Same in relational algebra
There is an effective translation of queries

Q 7→
(
Qt ,Q f

)
such that:

I Qt approximates certain answers to Q

I Q f approximates certain answers to the negation of Q

I both queries have AC0 data complexity

certain(Q,D) certain(¬Q,D)Qt(D) Q f(D)

DMBDA 2018 incomplete and inconsistent data 40/78



Relational algebra translations: Qt

For a relation R: Rt = R

For op ∈ {∩ , ∪ , ×}: (Q1 op Q2)t = Qt
1 op Qt

2

For projection: πα(Q)t = πα(Qt)

For difference: (Q1 − Q2)t = Qt
1 ∩ Q f

2

For selection: σθ(Q)t = σθ∗(Q
t)

where (A = B)∗ = (A = B)

(A 6= B)∗ = (A 6= B) ∧ not null(A) ∧ not null(B)

(θ1 op θ2)∗= θ∗1 op θ∗2 for op ∈ {∧ , ∨}
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Relational algebra translations: Q f

R f =
{
r̄ ∈ adomar(R) | r̄ does not match any tuple inR

}
(Q1 ∪ Q2)f = Q f

1 ∩ Q f
2

(Q1 ∩ Q2)f = Q f
1 ∪ Q f

2

(Q1 − Q2)f = Q f
1 ∪ Qt

2

(σθ(Q))f = Q f ∪ σ(¬θ)∗
(
adomar(Q)

)
(Q1 × Q2)f = Q f

1 × adomar(Q2) ∪ adomar(Q1) × Q f
2(

πα(Q)
)f

= πα(Q f)− πα
(
adomar(Q) − Q f

)
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Does it work in practice?

Not a chance: With as few as 1000 tuples and 3 attributes
bad queries start computing relations with billions of tuples!

Inefficient translations

R f =
{
r̄ ∈ adomar(R) | r̄ does not match any tuple inR

}
(σθ(Q))f = Q f ∪ σ(¬θ)∗

(
adomar(Q)

)
(Q1 × Q2)f = Q f

1 × adomar(Q2) ∪ adomar(Q1) × Q f
2(

πα(Q)
)f

= πα(Q f)− πα
(
adomar(Q)−Q f

)
With the best tricks we can only handle a few hundred tuples:

AC0 and efficiency are NOT the same!
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Let’s rethink the basics

We only needed Q f to handle difference: (Q1 − Q2)t = Qt
1 ∩ Q f

2

Intuition: A tuple is for sure in Q1 − Q2 if

I it is certainly in Q1 and

I it is certainly not in Q2

This is not the only possibility

A tuple is for sure in Q1 − Q2:

I it is certainly in Q1 and

I it does not match any tuple that could be in Q2
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What is “match”?

Unification: Two tuples unify if there is an instantiation of nulls
with constants that makes them equal

Left unification antijoin

R nu S =
{
r̄ ∈ R | @s̄ ∈ S : s̄ unifies with r̄

}
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Second translation

Translate Q into
(
Q+, Q?

)
where:

I Q+ approximates certain answers

I Q? represents possible answers

certain(Q,D)

Q?(D)Q+(D)

(Q1 − Q2)+ = Q+
1 nu Q

?
2

R? = R

(Q1 ∪ Q2)? = Q?
1 ∪ Q?

2

(Q1 ∩ Q2)? = Q?
1 nu Q

?
2

(Q1 − Q2)? = Q?
1 − Q+

2(
σθ(Q)

)?
= σ¬(¬θ)∗

(
Q?
)

(Q1 × Q2)? = Q?
1 × Q?

2(
πα(Q)

)?
= πα

(
Q?
)
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Certain and possible answers

For every valuation h of nulls:

h(Q+(D)) ⊆ Q(h(D))

Q(h(D)) ⊆ h(Q?(D))

I in particular, Q+(D) ⊆ certain⊥(Q,D)
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New translation: example

For queries with difference, Q+ is much more efficient than Qttt .

Q = R −
(
πα(T )− σθ(S)

)
of arity k.

Translations:

Qttt = R ∩
(
(πα(adomk nu T )− πα(adomk nu T )) ∪ σθ∗(S)

)
(uncomputable in practice) but

Q+ = R nu

(
πα(T )− σθ∗(S)

)
(easy to compute)
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Does it work in practice?
Run queries and translations on TPC-H instances with nulls
and measure the relative runtime performance of Q+ w.r.t. Q

I SQL was designed for efficiency
=⇒ we cannot expect to outperform native SQL

I but we can hope for the overhead to be acceptable

We observed the following behaviors:

I The good: small overhead
(less than < 4%)

I The fantastic: significant speed-up
(more than 103 times faster)

I The tolerable: moderate slow-down
(half the speed on 1GB instances, a quarter on 10GB ones)
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But do we solve a real poroblem?
That is, do false positives occur?

Nullrate: the probability a null occurs in an attribute that has not been
declared as not null
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And do nulls occur?
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The good

Q3 Find orders supplied entirely by a specific supplier

SELECT o_orderkey

FROM orders

WHERE NOT EXISTS (

SELECT *

FROM lineitem

WHERE l_orderkey = o_orderkey

AND l_suppkey <> $supp_key

)

In relational algebra: πo orderkey

(
ordersnθ lineitem

)
becomes πo orderkey

(
ordersn¬(¬θ)∗ lineitem

)
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The good: Results

< 4% overhead (the same behavior scales up to 10GB instances)
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The fantastic

Q2 Identify countries where there are customers
who may be likely to make a purchase

SELECT c_custkey, c_nationkey

FROM customer

WHERE c_nationkey IN ($countries)
AND c_acctbal > (

SELECT avg(c_acctbal) FROM customer

WHERE c_acctbal > 0.00

AND c_nationkey IN ($countries) )

AND NOT EXISTS (

SELECT * FROM orders

WHERE o_custkey = c_custkey )
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The fantastic: Results

Over 103 times faster (same or better up to 10GB)
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The original query spends most of the time looking for wrong answers
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The tolerable

Q4 Orders not supplied with any part of a specific color
by any supplier from a specific country

SELECT o_orderkey

FROM orders

WHERE NOT EXISTS (

SELECT *

FROM lineitem, part, supplier, nation

WHERE l_orderkey = o_orderkey

AND l_suppkey = s_suppkey

AND p_name LIKE ’%’||$color||’%’

AND s_nationkey = n_nationkey

AND n_name = $nation )
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The tolerable: Problems with the optimizer

Query times out. Reason: optimizer resorts to a nested loop plan.

On the smallest benchmark instance, we have relations with

I 6, 000, 000 tuples,

I 200, 000 tuples,

I 10, 000 tuples,

I 100 tuples.

Nested loop: look at 1, 200, 000, 000, 000, 000, 000 tuples.

No chance.
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Join processing by example

R(A,B), S(B,C )

R on S = {(x , y , z) | (x , y) ∈ R, (y , z) ∈ S }

I Nested loop: look at all tuples (x , y) ∈ R, (y ′, z) ∈ S and check if
y = y ′.

I Hopelessly O(n2) — terrible on large data.

I Sort-merge join: Sort on B in O(n log n) and merge sorted lists.
I Without too many repetitions of values of B, sort dominates, merge

is fast, i.e., often O(n log n).

I Hash-join: apply a (good) hash function on the B attribute, only
join tuples with the same hash value.

I As sort-merge, often O(n log n) under some assumptions. Most
commonly used in query processing.
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The tolerable: Problems with the optimizer

Joins with disjunctions in correlated subqueries

R nR.A=S.A

(
S onS .B=T .B ∨ null(S .B) T︸ ︷︷ ︸

nested-loop join

)
As bad as computing a Cartesian product

We can do better

R nR.A=S.A

(
S onS.B=T .B T︸ ︷︷ ︸

hash join

)
∩ R nnull(S .B)

(
S n T︸ ︷︷ ︸

decorrelated EXISTS

)
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Towards an improved translation

Conditions NOT EXISTS ( .... OR .... OR .....)

¬∃(. . . ∨ . . . ∨ . . .) ⇒ ¬∃
∨
ϕi ⇒

∧
i

¬∃ϕi

Eliminate ORs and get conjunctions of nested NOT EXISTS subqueries.

Note: exponential blowup!
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The tolerable: translation
Instructions: don’t read.

WITH part_view AS (SELECT p_partkey FROM part WHERE p_name IS NULL

UNION SELECT p_partkey FROM part WHERE p_name LIKE ’%’||$color||’%’ ),

supp_view AS (SELECT s_suppkey FROM supplier WHERE s_nationkey IS NULL

UNION SELECT s_suppkey FROM supplier, nation WHERE s_nationkey=n_nationkey

AND n_name=’$nation’ )

SELECT o_orderkey FROM orders

WHERE NOT EXISTS (SELECT *

FROM lineitem, part_view, supp_view

WHERE l_orderkey=o_orderkey AND l_partkey=p_partkey AND l_suppkey=s_suppkey)

AND NOT EXISTS (SELECT *

FROM lineitem, supp_view

WHERE l_orderkey=o_orderkey AND l_partkey IS NULL AND l_suppkey=s_suppkey

AND EXISTS (SELECT * FROM part_view))

AND NOT EXISTS (SELECT *

FROM lineitem, part_view
WHERE l_orderkey=o_orderkey AND l_partkey=p_partkey AND l_suppkey IS NULL

AND EXISTS (SELECT * FROM supp_view))

AND NOT EXISTS (SELECT * FROM lineitem
WHERE l_orderkey=o_orderkey AND l_partkey IS NULL AND l_suppkey IS NULL

AND EXISTS (SELECT * FROM part_view) AND EXISTS (SELECT * FROM supp_view))
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What we’ve done

I Exponential blowup of the query.

I Complexity went from |D|O(|Q|) to |D|2O(|Q|)
.

I Double-exponential query complexity!
I Theory teaches us that this is impossible to evaluate.

I Split one nested subquery into several ones.
I Practice teaches us that this is much harder to evaluate.

I What happens in real life?
I The query becomes several orders of magnitude faster!
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The tolerable: Results

Half the speed (on 1GB; a quarter on 10GB instances)

1 2 3 4 5
·10−2

1

1.2

1.4

1.6

1.8

Null rate

A
ve
ra
ge

re
la
ti
ve

p
er
fo
rm

an
ce

Query Q+
4

DMBDA 2018 incomplete and inconsistent data 63/78



The bad and the ugly

I Optimizers (we used PostgreSQL, others seem to be similar).

I Many translations amount to

A = B 7→ A = B OR B IS NULL.

I They can’t handle it, throw away the original plan and resort to
nested loops!

I Why?

I We saw part of the reason above but there is more to it.
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Join size estimate

I We observed that the query planner often underestimates the size of
joins.

I Actually, this is known:
Leis, Gubichev, Boncz, Kemper, Neumann: How Good Are Query
Optimizers, Really? VLDB 2015

I All major ones (Microsoft, Oracle, IBM) and Postgres underestimate
join sizes, sometimes by several orders of magnitude.

I If they wrongly think the join is small, O(n2) nested loop is no big
deal to them compared to O(n log n)
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Disjunctions

I It is not just the IS NULL condition that is problematic, it is also the
OR.

I Take some TPC-H queries, and change conditions like R.A=S.B into
(R.A=S.B OR S.B=0)

I Basic benchmark queries: good plans, low costs

I Modified benchmark queries: nested-loops, high costs, queries dont
terminate.

I In fact optimizers don’t optimize with ORs!
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SQL nulls vs marked nulls

I All theoretical translations assumed the model of marked nulls –
these are special values distinct from the usual ones:

1 2 ⊥1

⊥2 ⊥3 3

⊥4 5 1

I Subtle differences with SQL nulls: comparing a SQL null with itself
is unknown, comparing a marked null with itself is true

I SELECT R.A FROM R WHERE R.B=R.B

I On 1 null it returns nothing.

I On 1 ⊥1 it returns 1
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Summary: incomplete information

I Often disregarded and leads to huge problems

I If you write SQL queries, think in 3-valued logic

I Cannot avoid errors, so need to choose which errors to tolerate

I Some types of errors can be eliminated
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Inconsistent databases

I Often arise in data integration.

I Suppose have a functional dependency name → salary and two
tuples (John, 10K) in source 1, and (John, 20K) in source 2.

I One may want to clean data before doing integration.

I This is not always possible.

I Another solution: keep inconsistent records, and try to address the
issue later.

I Issue = query answering.
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Inconsistent databases cont’d

I Setting:
I a database D;
I a set of integrity constraints IC , e.g. keys, foreign keys, functional

dependencies etc
I a query Q

I D violates IC

I What is a proper way of answering Q?

I Certain Answers :

certainIC (Q,D) =
⋂

Dr is a repair of D

Q(Dr )
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Repairs

I How can we repair an instance to make it satisfy constraints?

I If constraints are functional dependencies: say A→ B and we have

A B C

a1 b1 c1

a1 b2 c2

we have to delete one of the tuples.

I If constraints are referential constraints, e.g. R[A] ⊆ S [B] and we
have

R:

A C

a1 c1

a2 c2

S:

B D

a1 d1

a3 d2

then we have to add a tuple to S .
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Repairs cont’d

I Thus to repair a database to make it satisfy IC we may need to add
or delete tuples.

I Given D and D ′, how far are they from each other?

I A natural measure: the minimum number of deletions/insertions of
tuples it takes to get to D ′ from D.

I In other words,

δ(D,D ′) = (D − D ′) ∪ (D ′ − D)

I A repair is a database D ′ so that
I it satisfies constraints IC , and
I there is no D ′′ satisfying constraints IC with δ(D,D ′′) ⊂ δ(D,D ′)
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How many repairs are there?

Can easily be exponential even for keys: i.e.
√

2
N

.
A B

1 0

1 1

2 0

2 1

... ...

... ...

n 0

n 1

plus key A→ B
REPAIR⇒

A B

1 ·
2 ·
... ...

n ·

I.e. for N = 2n tuples we have 2n =
√

2
N

repairs.
(A side remark: this construction gives us c

√
c
n

repairs for any number c .
What is the maximum of c

√
c?)
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Query answering

I Recall certainIC (Q,D) =
⋂

Dr is a repair of D

Q(Dr ).

I Computing all repairs is impractical.

I Hence one tries to obtain a rewriting Q ′:

Q ′(D) = certainIC (Q,D).

I Is this always possible?
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Query rewriting: a good case

I One relation R(A,B,C )

I Functional dependency A→ B

I Query Q: just return R

I If an instance may violate A→ B, then we can rewrite Q to
R(x , y , z) ∧ ∀u∀v

(
R(x , u, v)→ u = y

)
or

SELECT * FROM R
WHERE NOT EXISTS (SELECT * FROM R R1

WHERE R.A=R1.A AND R.B 6= R1.B)

I This technique applies to a small class of queries: conjunctive
queries without projections, i.e.
SELECT * FROM R1, R2 ...

WHERE
∧
Ri .Aj = Rl .Ak
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Query rewriting: a mildly bad case

I One relation R(A,B); attribute A is a key

I Query Q = ∃x , y , z
(
R(x , z) ∧ R(y , z) ∧ (x 6= y)

)
I When are certain answers false ?

I If there is a repair in which the negation of Q is true.
I What is the negation of Q?

I ¬Q = ∀x , y , z
(
(R(x , z) ∧ R(y , z))→ x = y

)
I This happens precisely when R contains a perfect matching

I But checking for a perfect matching cannot be expressed in SQL.

I Hence, no SQL rewriting for certainIC (Q).
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Query rewriting: the worst

I One can find an example of a rather simple relational algebra query
Q and a set of constraints IC so that the problem of finding

certainIC (Q,D)

is coNP -complete.
I In general for most types of constraints one can limit the number of

repairs but they give rather high complexity bounds
I typically classes “above” PTIME and contained in PSPACE – hence

almost certainly requiring exponential time.
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Other approaches

I Repair attribute values.
I A common example: census data. Don’t get rid of tuples but change

the values.
I Distance: sum of absolute values of squares of differences

new value – old value
I Typically one considers aggregate queries and looks for

approximations or ranges of their values

I A different notion of repair.
I Most commonly: the cardinality of (D − D ′) ∪ (D ′ − D) must be

minimum.
I This is a reasonable measure but the complexity of query answering is

high.
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