
Review of Relational Databases

• Relational model

• Schemas

• Relational algebra

• Relational calulus

• SQL

• Constraints (keys, foreign keys)

Beijing 1 Topics in Foundations of DB

The relational model

• Data is organized in relations (tables)

• Relational database schema:

set of table names

list of attributes for each table

• Tables are specified as: <table name>:<list of attributes>

• Examples:

Account: number, branch, customerId

Movie: title, director, actor

Schedule: theater, title

• Attributes within a table have different names

• Tables have different names

Beijing 2 Topics in Foundations of DB

Declarative vs Procedural

• In our queries, we ask what we want to see in the output.

• But we do not say how we want to get this output.

• Thus, query languages are declarative: they specify what is needed in
the output, but do not say how to get it.

• Database system figures out how to get the result, and gives it to the
user.

• Database system operates internally with different, procedural lan-
guages, which specify how to get the result.

Beijing 3 Topics in Foundations of DB

Declarative vs Procedural: example

Declarative:

{ title | (title, director, actor) ∈ movies }

Procedural:

for each tuple T=(t,d,a) in relation movies do

output t

end

In relational algebra: πtitle(Movies).

in SQL:

SELECT title FROM Movies

Beijing 4 Topics in Foundations of DB

Relational Calculus

• Codd 1970: Relational databases are queried using first-order predicate
logic.

• Relational calculus: another name for it. Queries written in the logical
notation using:

relation names (e.g., Movies)

constants (e.g., ’Shining’, ’Nicholson’)

conjunction ∧, disjunction ∨, negation ¬

existential quantifiers ∃, universal quantifiers ∀

• ∧,∃,¬ suffice:

∀xF (x) = ¬∃x¬F (x)

F ∨G = ¬(¬F ∧ ¬G)

Beijing 5 Topics in Foundations of DB

Relational Calculus cont’d

• Bound variable: a variable x that occurs in ∃x or ∀x

• Free variable: a variable that is not bound.

• Free variables are those that go into the output of a query.

• Two ways to write a query:

Q(~x) = F , where ~x is the tuple of free variables

{~x | F}

• Examples:

{x, y | ∃z (R(x, z) ∧ S(z, y))}

{x | ∀yR(x, y)}

{ dir | ∀ (th, tl) ∈ schedule
∃ (tl’, act): (tl’,dir,act) ∈ movies ∧ (th, tl’) ∈ schedule }

Beijing 6 Topics in Foundations of DB

Relational Algebra

• Procedural language

• Six (= 5+ 1) operations:

◦ Projection π

◦ Selection σ

◦ Cartesian product ×

◦ Union ∪

◦ Difference −

◦ Renaming ρ

• Renaming changes names of attributes

• ρA←C,B←D(R) turns a relation with attributes C,D into a relation with
attributes A, B.

Beijing 7 Topics in Foundations of DB

Relational Algebra cont’d

• Projection: chooses some attributes in a relation

• πA1,...,An(R): only leaves attributes A1, . . . , An in relation R.

• Selection: Chooses tuples that satisfy some condition

• σc(R): only leaves tuples t for which c(t) is true

• Conditions: conjunctions of

R.A = R.A′ – two attributes are equal

R.A = constant – the value of an attribute is a given constant

Same as above but with 6= instead of =

Beijing 8 Topics in Foundations of DB

Relational Algebra cont’d

• Cartesian Product: puts together two relations

• R1 ×R2 puts together each tuple t1 of R1 and each tuple t2 of R2

• Example:

R1 A B

a1 b1

a2 b2

×

R2 A C

a1 c1

a2 c2

a3 c3

=

R1.A R1.B R2.A R2.C

a1 b1 a1 c1

a1 b1 a2 c2

a1 b1 a3 c3

a2 b2 a1 c1

a2 b2 a2 c2

a2 b2 a3 c3

Beijing 9 Topics in Foundations of DB

Relational Algebra cont’d

• Union R ∪ S is the union of relations R and S

• R and S must have the same set of attributes.

• Difference R− S: tuples in R but not in S.

• Every declarative query has a procedural implementation:

Relational Calculus = Relational Algebra

Beijing 10 Topics in Foundations of DB

SQL

• Structured Query Language

• Developed originally at IBM in the late 70s

• First standard: SQL-86

• De-facto standard of the relational database world – replaced all other
languages.

Beijing 11 Topics in Foundations of DB

Examples of SQL queries

• Find titles of current movies

SELECT Title

FROM Movies

• SELECT lists attributes that go into the output of a query

• FROM lists input relations

Beijing 12 Topics in Foundations of DB

Examples of SQL queries cont’d

• Find theaters showing movies in which Nicholson played:

SELECT Schedule.Theater

FROM Schedule, Movies

WHERE Movies.Title = Schedule.Title

AND Movies.Actor=’Nicholson’

Differences:

• SELECT now specifies which relation the attributes came from – because
we use more than one.

• FROM lists two relations

• WHERE specifies the condition for selecting a tuple.

Beijing 13 Topics in Foundations of DB

Joining relations

• WHERE allows us to join together several relations

• Consider a query: list directors, and theaters in which their movies are
playing

SELECT Movies.Director, Schedule.Theater

FROM Movies, Schedule

WHERE Movies.Title = Schedule.Title

• This operation is called join.

• Notation: Schedule ✶ Movies

Beijing 14 Topics in Foundations of DB

Join cont’d

• Join is not a new operation of relational algebra

• It is definable with π, σ,×

• Suppose R is a relation with attributes A1, . . . , An, B1, . . . , Bk

• S is a relation with attributes A1, . . . , An, C1, . . . , Cm

• R ✶ S has attributes A1, . . . , An, B1, . . . , Bk, C1, . . . , Cm

R ✶ S

= πA1,...,An, B1,...,Bk,C1,...,Cm(σR.A1=S.A1∧...∧R.An=S.An(R× S))

Beijing 15 Topics in Foundations of DB

Conjunctive queries

• Also known as select-project-join queries

• Fragment of relational algebra that consists of σ, π,✶ (or σ, π,×)

• In logic, ∃ and ∧

• Theaters showing movies where Nicholson played:

πtheater(σactor=Nicholson(Movies ✶ Schedule))

(hence called SPJ – select, project, join – queries)

∃t∃d Movies(t, d,Nicholson) ∧ Schedule(t, th)

often write as rules:

Q(th) :– Movies(t, d,Nicholson), Schedule(t, th)

Beijing 16 Topics in Foundations of DB

Beyond simple queries

• So far we mostly used π, σ, ✶ in relational algebra.

• It is harder to do queries with “for all conditions”.

• Query: Find directors whose movies are playing in all theaters:

πdirector(M)−πdirector(πtheater(S)×πdirector(M)− πtheater,director(M ✶ S))

• They don’t look easy in relational algebra

Beijing 17 Topics in Foundations of DB

For all and negation in SQL

• Find directors whose movies are playing in all theaters.

• SQL’s way of saying this: Find directors such that there does not exist
a theater where their movies do not play.

• Because: ∀x f(x) ⇔ ¬∃x ¬f(x).

SELECT M1.Director

FROM Movies M1

WHERE NOT EXISTS (SELECT S.Theater

FROM Schedule S

WHERE NOT EXISTS (SELECT M2.Director

FROM Movies M2

WHERE M2.Title=S.Title

AND

M1.Director=M2.Director))

Beijing 18 Topics in Foundations of DB

Other features of SQL

• Datatypes, type-specific operations

• Table declaration, constraint enforcement

• Aggregation

Beijing 19 Topics in Foundations of DB

Simple aggregate queries

Count the number of tuples in Movies

SELECT COUNT(*)

FROM Movies

Add up all movie lengths

SELECT SUM(Length)

FROM Movies

Find the number of directors.

SELECT COUNT(DISTINCT Director)

FROM Movies

Beijing 20 Topics in Foundations of DB

Aggregation and grouping

For each theaters playing at least one long (over 2 hours) movie, find the
average length of all movies played there:

SELECT S.Theater, AVG(M.Length)

FROM Schedule S, Movies M

WHERE S.Title=M.Title

GROUP BY S.Theater

HAVING MAX(M.Length) > 120

Beijing 21 Topics in Foundations of DB

Database Constraints

• In our examples we assumed that the title attribute identifies a movie.

• But this may not be the case:

title director actor
Dracula Browning Lugosi
Dracula Fischer Lee
Dracula Badham Langella
Dracula Coppola Oldman

• Database constraints: provide additional semantic information about
the data.

• Most common ones: functional and inclusion dependencies, and their
special cases: keys and foreign keys.

Beijing 22 Topics in Foundations of DB

Constraints cont’d

• If we want the title to identify a movie uniquely (i.e., no Dracula situ-
ation),
we express it as a functional dependency

title → director

• In general, a relation R satisfies a functional dependency A → B,
where A and B are attributes, if for every two tuples t1, t2 in R:

πA(t1) = πA(t2) implies πB(t1) = πB(t2)

Beijing 23 Topics in Foundations of DB

Functional dependencies and keys

• More generally, a functional dependency is X → Y where X, Y are
sequences of attributes. It holds in a relation R if for every two tuples
t1, t2 in R:

πX(t1) = πX(t2) implies πY (t1) = πY (t2)

• A very important special case: keys

• Let K be a set of attributes of R, and U the set of all attributes of
R. Then K is a key if R satisfies functional dependency K → U .

• In other words, a set of attributes K is a key in R if for any two tuples
t1, t2 in R,

πK(t1) = πK(t2) implies t1 = t2

• That is, a key is a set of attributes that uniquely identify a tuple in a
relation.

Beijing 24 Topics in Foundations of DB

Inclusion constraints

• We expect every Title listed in Schedule to be present in Movies.

• These are referential integrity constraints: they talk about attributes
of one relation (Schedule) but refer to values in another one (Movies).

• These particular constraints are called inclusion dependencies (ID).

• Formally, we have an inclusion dependency R[A] ⊆ S[B] when every
value of attribute A in R also occurs as a value of attribute B in S:

πA(R) ⊆ πB(S)

• As with keys, this extends to sets of attributes, but they must have the
same number of attributes.

• There is an inclusion dependency R[A1, . . . , An] ⊆ S[B1, . . . , Bn]
when

πA1,...,An(R) ⊆ πB1,...,Bn(S)

Beijing 25 Topics in Foundations of DB

Foreign keys

• Most often inclusion constraints occur as a part of a foreign key

• Foreign key is a conjunction of a key and an ID:

R[A1, . . . , An] ⊆ S[B1, . . . , Bn] and

{B1, . . . , Bn} → all attributes of S

• Meaning: we find a key for relation S in relation R.

• Example: Suppose we have relations:
Employee(EmplId, Name, Dept, Salary)

ReportsTo(Empl1,Empl2).

• We expect both Empl1 and Empl2 to be found in Employee; hence:
ReportsTo[Empl1] ⊆ Employee[EmplId]

ReportsTo[Empl2] ⊆ Employee[EmplId].

• If EmplId is a key for Employee, then these are foreign keys.

Beijing 26 Topics in Foundations of DB

