
Reasoning with Data

• Names: Ontology Based Query Answering

• Sometimes OBDA (Ontology Based Data Access)

• Scenario:

• data is incomplete

• but is supplemented with additional knowledge

• typically in the form of an ontology

• query answering takes into account both

Ontology-based Query Answering

D

Professor(Alice)

Teaches(Bob,CS100)

Professor(x)

Answer = {Alice}

Ontology-based Query Answering

D

Professor(Alice)

Teaches(Bob,CS100)

TeachingStaff(x)

Answer = { }

Professors are teaching staff

Someone who teaches is teaching staff

Ontology-based Query Answering

O

D

Professor(Alice)

Teaches(Bob,CS100)

TeachingStaff(x)

Ontology-based Query Answering

O

8x (Professor(x)  TeachingStaff(x))

8x8y (Teaches(x,y)  TeachingStaff(x))

D

Professor(Alice)

Teaches(Bob,CS100)

TeachingStaff(x)

Answer = {Alice, Bob}

Ontology-based Data Access: Architecture

D1

Ontology

Mapping

D2 D3

Queries

• Ontology: provides a unified conceptual “global view” of the data

• Data Sources: external and independent (possibly multiple and heterogeneous)

• Mapping: semantically link data at the sources with the ontology

OBDA

D1

Ontology O

Mapping M

D2 D3

OBDA

Virtual

Data Layer

Query Answering in OBDA

D

M(D)

• The sources and the mapping define a virtual data layer M(D)

D1

Ontology O

Mapping M

D2 D3

Query Q

OBDA

Virtual

Data Layer

Query Answering in OBDA

• The sources and the mapping define a virtual data layer M(D)

• Queries are answered against the knowledge base hM(D), Oi

D

M(D)

Ontology O

Query Q

OBDA

Virtual

Data Layer

Query Answering in OBDA

M(D)

Ontology-Based Query Answering

Ontology-based Query Answering (OBQA)

D

O

hD,Oi

D

database

ontology

Q

knowledge base

Certain-Answers(Q,hD,Oi) = \M 2 models(D ^ O) Q(M)

(formal definitions later - once we fix the languages)

Issues in Ontology-based Query Answering

What is the right ontology language?

• A wide spectrum of languages that differ in expressive power and

computational complexity (e.g., description logics, existential rules)

• Data tractability is a key property to be useful in practice

What is the right query language?

• Well-known database query languages (e.g., conjunctive queries)

Few Words on Description Logics (DLs)

• DLs are well-behaved fragments of first-order logic

• Several DL-based languages exist (from lightweight to very expressive logics)

• Strongly influenced the W3C standard Web Ontology Language OWL

• Syntax: We start from a vocabulary with

o Concept names: atomic classes or unary predicates - Parent, Person

o Role names: atomic relations or binary predicates - HasParent

and we build axioms

o Person v 9HasParent.Parent - each person has a parent

o Parent v Person - each parent is a person

• Semantics: Standard first-order semantics

DL-Lite Family

DL-Lite: Popular family of DLs - at the basis of the OWL 2 QL profile of OWL 2

DL-Lite Axioms First-order Representation

A v B 8x (A(x)  B(x))

A v 9R 8x (A(x) 9y R(x,y))

9R v A 8x8y (R(x,y)  A(x))

9R v 9P 8x8y (R(x,y)  9z P(x,z))

A v 9R.B 8x (A(x) 9y (R(x,y) ^ B(y)))

R v P 8x8y (R(x,y)  P(x,y))

A v :B 8x (A(x) ^ B(x) ?)

The Description Logic EL

EL: Popular DL for biological applications - at the basis of the OWL 2 EL profile

EL Axioms First-order Representation

A v B 8x (A(x)  B(x))

A u B v C 8x (A(x) ^ B(x) C(x))

A v 9R.B 8x (A(x) 9y (R(x,y) ^ B(y)))

9R.B v A 8x8y (R(x,y) ^ B(y)  A(x))

…several other, more expressive, description logics exist

A Simple Example

8x (Researcher(x)  9y (WorksFor(x,y) ^ Project(y)))

8x (Project(x)  9y (WorksFor(y,x) ^ Researcher(y)))

8x8y (WorksFor(x,y)  Researcher(x) ^ Project(y))

8x (Project(x)  9y (ProjectName(x,y)))

Some Terminology

• Our basic vocabulary:

o A countable set C of constants - domain of a database

o A countable set N of (labeled) nulls - globally 9-quantified variables

o A countable set V of (regular) variables - used in rules and queries

• A term is a constant, null or variable

• An atom has the form P(t1,…,tn) - P is an n-ary predicate and ti’s are terms

• An instance is a (possibly infinite) set of atoms with constants and nulls

• A database is a finite instance with only constants

Syntax of Existential Rules

• x,y and z are tuples of variables of V

• ' (x,y) and Ã(x,z) are conjunctions of atoms (possibly with constants)

An existential rule is a first-order sentence

body head

8x8y (' (x,y)  9z Ã(x,z))

…a.k.a. tuple-generating dependencies and Datalog§ rules

Homomorphism

• Semantics of existential rules via the key notion of homomorphism

• A substitution from a set of symbols S to a set of symbols T is a function

h : S T - h is a set of mappings of the form s ↦ t, where s 2 S and t 2 T

• A homomorphism from a set of atoms A to a set of atoms B is a substitution

h : C [N [V C [N [V such that:

(i) t 2 C) h(t) = t

(ii) P(t1,…, tn) 2 A) h(P(t1,…, tn)) = P(h(t1),…, h(tn)) 2 B

• Can be naturally extended to conjunctions of atoms

Semantics of Existential Rules

• An instance J is a model of the existential rule

written as J ² ρ, if the following holds:

whenever there exists a homomorphism h such that h(' (x,y)) µ J,

then there exists g ¶ h|X such that g(Ã(x,z)) µ J

• Given a set O of existential rules, J is a model of O, written as J ² O, if the

following holds: for each ρ 2 O, J ² ρ

ρ = 8x8y (' (x,y)  9z Ã(x,z))

{t ↦ h(t) | t 2 x} - the restriction of h to x

Ontology-Based Query Answering (OBQA)

D

Ο

hD,Oi

D

database

ontology

Q

knowledge base

8x8y (' (x,y)  9z Ã(x,z))

existential / Datalog§ rules

Query Languages

• The four most important query languages

o Conjunctive Queries (CQ)

o Unions of Conjunctive Queries (UCQ)

o First-order Queries (FO)

o Datalog

FO Datalog

UCQ

CQ

Syntax of Conjunctive Queries

• x and y are tuples of variables of V

• ' (x,y) is a conjunction of atoms (possibly with constants)

A conjunctive query (CQ) is an expression

9y (' (x,y)) or Ans(x)  ' (x,y)

The most important query language used in practice

Forms the SELECT-FROM-WHERE fragment of SQL

Semantics of Conjunctive Queries

• A match of a CQ 9y (' (x,y)) in an instance J is a homomorphism h such that

h(' (x,y)) µ J - all the atoms of the query are satisfied

• The answer to Q(x) = 9y (' (x,y)) over J is the set of tuples

Q(J) = {h(x) 2 C | h is a match of Q in J}

• The answer consists of the witnesses for the free variables of the query

Conjunctive Queries: Example

Find the researchers who work for the “VADA” project

Researcher(id), Project(id), WorksFor(rid, pid), ProjectName(pid, name)

9y (Researcher(x) ^ WorksFor(x,y) ^ Project(y) ^ ProjectName(y,“VADA”))

SELECT R.id

FROM Researcher R, WorksFor W, Project P, ProjectName N

WHERE R.id = W.rid AND

W.pid = P.id AND

P.id = N.pid AND

N.name = “VADA”

Ontology-based Query Answering (OBQA)

D

Ο

hD,Oi

D

database

ontology

Q

knowledge base

existential / Datalog§ rules

8x8y (' (x,y)  9z Ã(x,z))

conjunctive queries

9y (' (x,y))

Ontology-based Query Answering (OBQA)

D

O

hD,Oi

D

database

ontology

Q

knowledge base

Certain-Answers(Q,hD,Oi) = \M 2 models(D ^ O) Q(M)

{J | J ¶ D and J ² O}

OBQA: Formal Definition

active domain - constants occurring in D

OBQA(L)

Input: database D, ontology O 2 L, CQ Q(x) = 9y ('(x,y)), tuple t 2 adom(D)|x|

Question: t 2 Certain-Answers(Q,hD,Oi) = \M 2 models(D ^ O) Q(M)?

an ontology language based on existential rules

OBQA: Complexity Metrics

• Combined complexity - everything is part of the input

• Data complexity - only D and t are part of the input

OBQA[O,Q]

Input: database D, tuple t 2 adom(D)|x|

Question: t 2 Certain-Answers(Q,hD,Oi)?

OBQA(L) is C-complete in data complexity if:

1. For every O 2 L and CQ Q, OBQA[O,Q] is in C

2. There exists O 2 L and CQ Q such that OBQA[O,Q] is C-hard

OBQA: The Boolean Case

t 2 Certain-Answers(Q,hD,Oi) , 8M 2 models(D ^ O), M ² 9y ('(t,y))

, D ^ O ² 9y ('(t,y))

Boolean CQ - no free variables

OBQA(L)

Input: database D, ontology O 2 L, CQ Q(x) = 9y ('(x,y)), tuple t 2 adom(D)|x|

Question: t 2 Certain-Answers(Q,hD,Oi) = \M 2 models(D ^ O) Q(M)?

OBQA: The Boolean Case

For understanding the complexity of OBQA(L), it suffices to focus on Boolean CQs

OBQA(L)

Input: database D, ontology O 2 L, CQ Q(x) = 9y ('(x,y)), tuple t 2 adom(D)|X|

Question: t 2 Certain-Answers(Q,hD,Oi) = \M 2 models(D ^ O) Q(M)?

OBQA(L)

Input: database D, ontology O 2 L, Boolean CQ Q

Question: D ^ O ² Q?

Why is OBQA technically challenging?

What is the right tool for tackling this problem?

The Two Dimensions of Infinity

Consider the database D, and the ontology O

model of D ^ O

size

…

…

D ^ O admits infinitely many models, of possibly infinite size

The Two Dimensions of Infinity

D = {P(c)} O = {8x (P(x) 9y (R(x,y) ^ P(y)))}

model of D ^ O

size

…

P(c)

R(c,z1)

P(z1)

R(z1,z1)

P(c)

R(c,c)

P(c)

R(c,z1)

P(z1)

R(z1,z2)

P(z2)

R(z2,z2)

P(c)

R(c,z1)

P(z1)

R(z1,z2)

P(z2)

R(z2,z3)

…

P(zk)

R(zk,zk)

…

P(c)

R(c,z1)

P(z1)

R(z1,z2)

P(z2)

R(z2,z3)

…

P(zk)

R(zk,zk+1)

…

z1, z2, z3, … are nulls of N

Taming the First Dimension of Infinity

Key Idea: Focus on a representative,

a model that is as general as possible











model of D ^ O

size

…

P(c)

R(c,z1)

P(z1)

R(z1,z1)

P(c)

R(c,c)

P(c)

R(c,z1)

P(z1)

R(z1,z2)

P(z2)

R(z2,z2)

P(c)

R(c,z1)

P(z1)

R(z1,z2)

P(z2)

R(z2,z3)

…

P(zk)

R(zk,zk)

…

P(c)

R(c,z1)

P(z1)

R(z1,z2)

P(z2)

R(z2,z3)

…

P(zk)

R(zk,zk+1)

…

D = {P(c)} O = {8x (P(x) 9y (R(x,y) ^ P(y)))}

Universal Models (a.k.a. Canonical Models)

U

J1
J2

. . .

Jn

. . .

h1
h2

hn

An instance U is a universal model of D ^ O if the following holds:

1. U is a model of D ^ O

2. 8J 2 models(D ^ O), there exists a homomorphism hJ such that hJ(U) µ J

Query Answering via Universal Models

Theorem: D ^ O ² Q iff U ² Q, where U is a universal model of D ^ O

Proof: ()) Trivial since, for every J 2 models(D ^ O), J ² Q

(() By exploiting the universality of U

U

J1
J2

. . .

Jn

. . .

h1
h2

hn

Q by hypothesis

by universality of U

g

8J 2 models(D ^ O), 9hJ such that hJ(g(Q)) µ J) 8J 2 models(D ^ O), J ² Q
) D ^ O ² Q

The Chase Procedure

• Fundamental algorithmic tool used in databases

• It has been applied to a wide range of problems:

o Checking containment of queries under constraints

o Computing data exchange solutions

o Computing certain answers in data integration settings

o …

… what’s the reason for the ubiquity of the chase in databases?

it constructs universal models

The Chase Procedure

Person(John)

D

O

chase(D,O) = D [

8x (Person(x)  9y (HasParent(x,y) ^ Person(y)))

The Chase Procedure

Person(John)

D

O

chase(D,O) = D [{HasParent(John, z1), Person(z1)

8x (Person(x)  9y (HasParent(x,y) ^ Person(y)))

The Chase Procedure

Person(John)

D

O

chase(D,O) = D [{HasParent(John, z1), Person(z1),

HasParent(z1, z2), Person(z2)

8x (Person(x)  9y (HasParent(x,y) ^ Person(y)))

The Chase Procedure

Person(John)

D

O

chase(D,O) = D [{HasParent(John, z1), Person(z1),

HasParent(z1, z2), Person(z2),

HasParent(z2, z3), Person(z3)

8x (Person(x)  9y (HasParent(x,y) ^ Person(y)))

The Chase Procedure

Person(John)

D

O

chase(D,O) = D [{HasParent(John, z1), Person(z1),

HasParent(z1, z2), Person(z2),

HasParent(z2, z3), Person(z3), …

infinite instance

8x (Person(x)  9y (HasParent(x,y) ^ Person(y)))

The Chase Procedure: Formal Definition

J = {R(a), P(a,b)}

8x (R(x)  9y P(x,y))

h = {x ↦ a} g = {x ↦ a, y ↦ b}



J = {R(a), P(b,a)}

8x (R(x)  9y P(x,y))

h = {x ↦ a}



£
no extension

• Chase rule - the building block of the chase procedure

• A rule ρ = 8x8y ('(x,y) 9z Ã(x,z)) is applicable to instance J if:

1. There exists a homomorphism h such that h('(x,y)) µ J

2. There is no g ¶ h|x such that g(Ã(x,z)) µ J

The Chase Procedure: Formal Definition

• Chase rule - the building block of the chase procedure

• A rule ρ = 8x8y ('(x,y) 9z Ã(x,z)) is applicable to instance J if:

1. There exists a homomorphism h such that h('(x,y)) µ J

2. There is no g ¶ h|x such that g(Ã(x,z)) µ J

• Let J+ = J [{g(Ã(x,z))}, where g ¶ h|x and g(z) are “fresh” nulls not in J

• The result of applying ρ to J is J+, denoted Jhρ,hiJ+ - single chase step

The Chase Procedure: Formal Definition

• A finite chase of D w.r.t. Ο is a finite sequence

Dhρ1,h1iJ1hρ2,h2iJ2hρ3,h3iJ3 ... hρn,hniJn

and chase(D,O) is defined as the instance Jn

• An infinite chase of D w.r.t. O is a fair infinite sequence

Dhρ1,h1iJ1hρ2,h2iJ2hρ3,h3iJ3 ... hρn,hniJn ...

and chase(D,O) is defined as the instance [k ̧0 Jk (with J0 = D)

all applicable rules will eventually be applied

least fixpoint of a monotonic operator - the chase step

Chase: A Universal Model

Theorem: chase(D,O) is a universal model of D ^ O

Proof (sketch):

• By construction, chase(D,O) 2 models(D ^ O)

• It remains to show that chase(D,O) can be homomorphically embedded into every

other model of D ^ O

• Fix an arbitrary instance J 2 models(D ^ O). We need to show that there exists h

such that h(chase(D,O)) µ J

• By induction on the number of applications of the chase step, we show that for every

k ¸ 0, there exists hk such that hk(chase[k](D,O)) µ J, and hk is compatible with hk-1

• Clearly, [k ̧0 hk is a well-defined homomorphism that maps chase(D,O) to J

• The claim follows with h = [k ̧0 hk

the result of the chase after k applications of the chase step

• The result of the chase is not unique - depends on the order of rule application

• But, it is unique up to homomorphic equivalence

•) it is unique for query answering purposes

Chase: Uniqueness Property

D = {P(a)} ρ1 = 8x (P(x)  9y R(y))

Result1 = {P(a), R(z), R(a)}

Result2 = {P(a), R(a)}

ρ1 then ρ2

ρ2 then ρ1

ρ2 = 8x (P(x)  R(x))

Result1

h12

h21

h23

h32

Result2 Result3

Query Answering via the Chase

Theorem: D ^ O ² Q iff U ² Q, where U is a universal model of D ^ O

&

Theorem: chase(D,O) is a universal model of D ^ O

+

Corollary: D ^ O ² Q iff chase(D,O) ² Q

We can tame the first dimension of infinity by exploiting the chase procedure

Can we tame the second dimension of infinity?

Undecidability of OBQA

Theorem: OBQA(9RULES) is undecidable

Proof Idea : By simulating a deterministic Turing machine with an empty tape.

arbitrary existential rules

Gaining Decidability

By restricting the database

• {Start(c)} ^ O ² Q iff the Turing Machine T accepts

• The problem is undecidable already for singleton databases

By restricting the query language

• D ^ O ² 9x Accept(x) iff the Turing Machine T accepts

• The problem is undecidable already for atomic queries

By restricting the ontology language

• Achieve a good trade-off between expressive power and complexity

• Field of intense research (Calabria, Dresden, Edinburgh, Montpellier,

Oxford, Vienna)

Datalog§ Nomenclature

a highly expressive ontology language

• Extend Datalog by allowing in the head:

o Existential quantification (9)

o Equality atoms (=)

o Constant false (?)

Datalog[9,=,?]

• Extend Datalog by allowing in the head:

o Existential quantification (9)

o Equality atoms (=)

o Constant false (?)

• But, already Datalog[9] is undecidable

• Datalog[9,=,?] is syntactically restricted ! Datalog§

Datalog[9,=,?]

Datalog§ Nomenclature

Gaining Decidability

By restricting the database

• {Start(c)} ^ O ² Q iff the DTM M accepts

• The problem is undecidable already for singleton databases

By restricting the query language

• D ^ O ² 9x Accept(x) iff the DTM M accepts

• The problem is undecidable already for atomic queries

By restricting the ontology language

• Achieve a good trade-off between expressive power and complexity

• Field of intense research (Calabria, Dresden, Edinburgh, Montpellier,

Oxford, Vienna)

What is the Source of Non-termination?

D

O

chase(D,O) = D [{HasParent(John, z1), Person(z1),

HasParent(z1, z2), Person(z2),

HasParent(z2, z3), Person(z3), …

1. Existential quantification

2. Recursive definitions

Person(John)

8x (Person(x)  9y (HasParent(x,y) ^ Person(y)))

Termination of the Chase

• Drop existential quantification

o We obtain the class of full existential rules

o Very close to Datalog

• Drop recursive definitions

o We obtain the class of acyclic existential rules

o A.k.a. non-recursive existential rules

Recall our Example

D

O

chase(D,O) = D [{HasParent(John, z1), Person(z1),

HasParent(z1, z2), Person(z2),

HasParent(z2, z3), Person(z3), …

Person(John)

8x (Person(x)  9y (HasParent(x,y) ^ Person(y)))

The above rule can be written as the DL-Lite axiom

Person v 9HasParent.Person

Recall our Example

D

O

chase(D,O) = D [{HasParent(John, z1), Person(z1),

HasParent(z1, z2), Person(z2),

HasParent(z2, z3), Person(z3), …

Person(John)

8x (Person(x)  9y (HasParent(x,y) ^ Person(y)))

Existential quantification & recursive definitions

are key features for modelling ontologies

Research Challenge

1. Existential quantification and recursive definitions coexist

2. OBQA is decidable, and tractable in the data complexity

+

Tame the infinite chase:

Deal with infinite instances without explicitly building them

We need classes of existential rules such that:

Linear Existential Rules

• A linear existential rule is an existential rule of the form

• We denote LINEAR the ontology language based on linear existential rules

• A local property - we can inspect one rule at a time

) given O, we can decide in linear time whether O2 LINEAR

) closed under union

• But, is this a reasonable ontology language?

8x8y (P(x,y)  9z Ã(x,z))

single atom

LINEAR vs. DL-Lite

DL-Lite Axioms First-order Representation

A v B 8x (A(x)  B(x))

A v 9R 8x (A(x) 9y R(x,y))

9R v A 8x8y (R(x,y)  A(x))

9R v 9P 8x8y (R(x,y)  9z P(x,z))

A v 9R.B 8x (A(x) 9y (R(x,y) ^ B(y)))

R v P 8x8y (R(x,y)  P(x,y))

A v :B 8x (A(x) ^ B(x) ?)

DL-Lite: Popular family of DLs - at the basis of the OWL 2 QL profile of OWL 2

Linear Existential Rules

• A linear existential rule is an existential rule of the form

• We denote LINEAR the ontology language based on linear existential rules

• A local property - we can inspect one rule at a time

) given O, we can decide in linear time whether O2 LINEAR

) closed under union

• But, is this a reasonable ontology language? OWL 2 QL

8x8y (P(x,y)  9z Ã(x,z))

single atom

Chase Graph

The chase can be naturally seen as a graph - chase graph

D = {R(a,b), S(b)}

8x8y (R(x,y) ^ S(y)  9z R(z,x))

8x8y (R(x,y)  S(x))
O =

R(a,b) S(b)

R(z1,a) S(a)

R(z2,z1) S(z1)

R(z3,z2) S(z2)

For LINEAR the chase graph is a forest

Definition: An ontology language L enjoys the BDDP if:

for every ontology O 2 L and CQ Q, there exists k ≥ 0 such that,

for every database D, chase(D,O) ² Q) chasek(D,O) ² Q

Bounded Derivation-depth Property (BDDP)

depth k

D

Q

h

chasek(D,O)

Definition: An ontology language L enjoys the BDDP if:

for every ontology O 2 L and CQ Q, there exists k ≥ 0 such that,

for every database D, chase(D,O) ² Q) chasek(D,O) ² Q

Bounded Derivation-depth Property (BDDP)

For LINEAR, k = |Q| ¢ m

with m = |sch(O)| ¢ (2 ¢ maxarity)maxarity

predicates occurring in O

The Blocking Algorithm for LINEAR

The blocking algorithm shows that OBQA(LINEAR) is

• in 2EXPTIME in combined complexity

• in PTIME in data complexity

D

Q

h

chase(D,O)

k = |Q| ¢ |sch(O)| ¢ (2 ¢ maxarity)maxarity

Complexity of OBQA(LINEAR)

Theorem: OBQA(LINEAR) is

• PSPACE-complete in combined complexity

• in LOGSPACE in data complexity

…but, we can do better than the blocking algorithm

Key Observation

at most |Q| atoms

D

Q

depth k

h

depth i

non-deterministic, level-by-level construction

Combined Complexity of LINEAR

L0 = D

Theorem: OBQA(LINEAR) is in PSPACE

Proof (high-level idea):

Combined Complexity of LINEAR

L1

L0 = D

Theorem: OBQA(LINEAR) is in PSPACE

Proof (high-level idea):

Combined Complexity of LINEAR

L1

Theorem: OBQA(LINEAR) is in PSPACE

Proof (high-level idea):

L2

Combined Complexity of LINEAR

Theorem: OBQA(LINEAR) is in PSPACE

Proof (high-level idea):

L2

L3

Combined Complexity of LINEAR

Theorem: OBQA(LINEAR) is in PSPACE

Proof (high-level idea):

Ln

…

Combined Complexity of LINEAR

• At each step we need to maintain

o O(|Q|) atoms

o A counter ctr ∙ |Q|2 ¢ |sch(O)| ¢ (2 ¢ maxarity)maxarity

• Thus, we need polynomial space

• The claim follows since NPSPACE = PSPACE

Theorem: OBQA(LINEAR) is in PSPACE

Proof (high-level idea):

Combined Complexity of LINEAR

Theorem: OBQA(LINEAR) is PSPACE-hard

Proof Idea : By simulating a deterministic polynomial space Turing machine

We cannot do better than the previous algorithm

Complexity of OBQA(LINEAR)

Theorem: OBQA(LINEAR) is

• PSPACE-complete in combined complexity

• in LOGSPACE in data complexity



Query Rewriting

D

QO

evaluation

8D : D ^ O ² Q , D ² QO

compilation

Union of CQs (UCQ)

QO

Query Rewriting

Theorem: OBQA(L) is UCQ-rewritable

) OBQA(L) is in LOGSPACE in data complexity

Proof: Fix O 2 L and CQ Q. We need to show that OBQA[O,Q] is in LOGSPACE:

1. Construct QO in O(1) time (due to UCQ rewritability)

2. Check whether D ² QO in LOGSPACE (classical result)

Complexity of OBQA(LINEAR)

Theorem: OBQA(LINEAR) is

• PSPACE-complete in combined complexity

• in LOGSPACE in data complexity



…it suffices to show that OBQA(LINEAR) is UCQ-rewritable

?

Definition: An ontology language L enjoys the BDDP if:

for every ontology O 2 L and CQ Q, there exists k ≥ 0 such that,

for every database D, chase(D,O) ² Q) chasek(D,O) ² Q

Bounded Derivation-depth Property (BDDP)

depth k

D

Q

h

chasek(D,O)

Proposition: L enjoys the BDDP) OBQA(L) is UCQ-rewritable

Bounded Derivation-depth Property (BDDP)

…

… …

D

each atom is obtained by

at most β atoms

βk atoms

depth k

) to entail a CQ Q we need at most |Q| ¢ βk database atoms

Bounded Derivation-depth Property (BDDP)

Given an ontology O 2 L and a CQ Q:

• Dβ,δ,q be the set of all possible databases of size at most |Q| ¢ βδ

• C = { D 2 Dβ,δ,q | chase(D,O) ² Q }

• Convert C into a UCQ

Proposition: L enjoys the BDDP) OBQA(L) is UCQ-rewritable

Complexity of OBQA(LINEAR)

Theorem: OBQA(LINEAR) is

• PSPACE-complete in combined complexity

• in LOGSPACE in data complexity





Recap

• Ontology-based query answering under existential rules

• Technical challenges and the right technical tool (the chase)

• Tame the infinite chase: linear existential rules - key properties and complexity

…but, is LINEAR the ultimate ontology language?

Research Challenge

1. Existential quantification and recursive definitions coexist

2. OBQA is decidable, and tractable in the data complexity

+

Tame the infinite chase:

Deal with infinite structures without explicitly building them

We need classes of existential rules such that:

Transitive Closure

8x8y (ParentOf(x,y)  AncestorOf(x,y))

8x8y8z (ParentOf(x,y) ^ AncestorOf(y,z)  AncestorOf(x,z))

IDB-Linear Existential Rules

• A predicate that does not occur in the head of a rule is extensional (EDB);

otherwise, is intensional (IDB)

• A set of existential rules is IDB-linear if every rule is of the form

• We denote IDB-LINEAR the obtained ontology language

8x8y ('(x,y)  9z Ã(x,z))

single occurrence of an IDB predicate

Transitive Closure

8x8y (ParentOf(x,y)  AncestorOf(x,y))

8x8y8z (ParentOf(x,y) ^ AncestorOf(y,z)  AncestorOf(x,z))

Complexity of OBQA(IDB-LINEAR)

Theorem: OBQA(IDB-LINEAR) is

• PSPACE-complete in combined complexity

• NLOGSPACE-complete in data complexity

Complexity of IDB-LINEAR

Proof (high-level idea):

L1

L0 = D

L2

L3

Ln

…

non-deterministic

level-by-level construction

8x8y (R(x,y) ^ '(x,y)  9z Ã(x,z))

D

h

and then apply the linear rule

8x8y (R(h(x),h(y))  9z Ã(h(x),z))

Complexity of OBQA(IDB-LINEAR)

Theorem: OBQA(IDB-LINEAR) is

• PSPACE-complete in combined complexity

• NLOGSPACE-complete in data complexity

But

8x8y ('(x,y)  9z Ã(x,z))

single occurrence of an IDB predicate

• We cannot have joins over null values

• We cannot express “complex” recursive definitions

…we need more sophisticated restrictions at the level of variables

Restrict the Use of Body-variables

Classification of body-variables

• Harmless: one that can be satisfied only by constants

• Harmful: one that is not harmless

• Dangerous: one that is harmful, and also appears in the rule-head

8x8y8z (P(x,y), S(y,z)  9w T(y,x,w))

8x8y (P(x,y)  9z Q(x,z))

8x8y8z (T(x,y,z)  9w P(w,z))

Restrict the Use of Body-variables

T[3], P[1], Q[2]

Existential Positions

Classification of body-variables

• Harmless: one that can be satisfied only by constants

• Harmful: one that is not harmless

• Dangerous: one that is harmful, and also appears in the rule-head

8x8y8z (P(x,y), S(y,z)  9w T(y,x,w))

8x8y (P(x,y)  9z Q(x,z))

8x8y8z (T(x,y,z)  9w P(w,z))

Restrict the Use of Body-variables

T[3], P[1], Q[2]

T[2]

Existential Positions

Classification of body-variables

• Harmless: one that can be satisfied only by constants

• Harmful: one that is not harmless

• Dangerous: one that is harmful, and also appears in the rule-head

8x8y8z (P(x,y), S(y,z)  9w T(y,x,w))

8x8y (P(x,y)  9z Q(x,z))

8x8y8z (T(x,y,z)  9w P(w,z))

Restrict the Use of Body-variables

T[3], P[1], Q[2]

T[2], P[2]

Existential Positions

Classification of body-variables

• Harmless: one that can be satisfied only by constants

• Harmful: one that is not harmless

• Dangerous: one that is harmful, and also appears in the rule-head

8x8y8z (P(x,y), S(y,z)  9w T(y,x,w))

8x8y (P(x,y)  9z Q(x,z))

8x8y8z (T(x,y,z)  9w P(w,z))

Restrict the Use of Body-variables

T[3], P[1], Q[2]

T[2], P[2], Q[1]

Existential Positions

Classification of body-variables

• Harmless: one that can be satisfied only by constants

• Harmful: one that is not harmless

• Dangerous: one that is harmful, and also appears in the rule-head

8x8y8z (P(x,y), S(y,z)  9w T(y,x,w))

8x8y (P(x,y)  9z Q(x,z))

8x8y8z (T(x,y,z)  9w P(w,z))

Restrict the Use of Body-variables

T[3], P[1], Q[2]

T[2], P[2], Q[1]

Existential Positions

Classification of body-variables

• Harmless: one that can be satisfied only by constants

• Harmful: one that is not harmless

• Dangerous: one that is harmful, and also appears in the rule-head

8x8y8z (P(x,y), S(y,z)  9w T(y,x,w))

8x8y (P(x,y)  9z Q(x,z))

8x8y8z (T(x,y,z)  9w P(w,z))



Weakly-Frontier-Guarded (WFG)

• A set of existential rules is WFG if every rule is of the form

• We denote WFG the obtained ontology language

8x8y ('(x,y)  9z Ã(x,z))

there exists a guard atom that contains all the dangerous variables

Complexity of OBQA(WFG)

Theorem: OBQA(WFG) is

• 2EXPTIME-complete in combined complexity

• EXPTIME-complete in data complexity

Source of complexity: The guard and the rest of the body share harmful variables

Warded

• A set of existential rules is warded if every rule is of the form

• We denote WARDED the obtained ontology language

8x8y (G(x,y) ^ '(x,y)  9z Ã(x,z))

contains all the dangerous variables, and shares with '(x,y) only harmless variables

Complexity of OBQA(WARDED)

Theorem: OBQA(WARDED) is

• EXPTIME-complete in combined complexity

• PTIME-complete in data complexity

a “nearly” maximal fragment of WFG

at least one occurrence of a dangerous variable that appears in the guard,

appears outside the guard) EXPTIME-complete in data complexity

Warded + Stratified Negation

Warded

RDF Query Language

Ontology Language

Datalog[¬strat]

DB Query Language

SPARQL
+ OWL 2 QL

+ OWL 2 RL

OWL 2 QL

OWL 2 RL

(Fragments of) UML and ER

Modeling Language

…and provides the logical core of VADALOG

…

	introslideobda
	obda-main

