Reasoning with Data



 Names: Ontology Based Query Answering

e Sometimes OBDA (Ontology Based Data Access)

* Scenario:
e data is incomplete
* pbutis supplemented with additional knowledge
o typically in the form of an ontology

e query answering takes into account both



Ontology-based Query Answering

Answer = {Alice}

Professor(Alice)
Teaches(Bob,CS100)

R —_——-
- -
- - o
- <
~

Professor(x)




Ontology-based Query Answering

Answer = {}

Professor(Alice)
Teaches(Bob,CS100)

R —_——-
- -
- - o
- <
~

TeachingStaff(x)




Ontology-based Query Answering

Professors are teaching staff

Someone who teaches is teaching staff

Professor(Alice)
Teaches(Bob,CS100)

?
\ £

TeachingStaff(x)




Ontology-based Query Answering

Vx (Professor(x) — TeachingStaff(x))
VxVy (Teaches(x,y) — TeachingStaff(x))

- -——
- - o

- <

~

- TeachingStaff(x)

Professor(Alice)
Teaches(Bob,CS100)




Ontology-based Data Access: Architecture

Queries

A

/OBDA ) \

Ontology

A

Mapping

\" "’/

« Ontology: provides a unified conceptual “global view” of the data
« Data Sources: external and independent (possibly multiple and heterogeneous)

« Mapping: semantically link data at the sources with the ontology



Query Answering in OBDA

KDBDA

Ontology O

ata Laye

M(D)

/ Napping M

e
b D

"

/

The sources and the mapping define a virtual data layer M(D)



Query Answering in OBDA

Query Q

KDBDA

A

y

Ontology O

~

A

~ Data Laye

A

M(D)

AN
Wapping M

e
b D

"

/

« The sources and the mapping define a virtual data layer M(D)

* Queries are answered against the knowledge base (M(D), O)



Query Answering in OBDA

Query Q

/OBDA .

Ontology O

M(D)

Ontology-Based Query Answering



Ontology-based Query Answering (OBQA)

database

knowledge base
Y
N

(D,0)

0nt0|09y/ E)j
O \/

k\

Certain-Answers(Q,(D,0)) = ﬁMemodeB(DAO) Q(M)

(formal definitions later - once we fix the languages)



Issues in Ontology-based Query Answering

What is the right ontology language?

» A wide spectrum of languages that differ in expressive power and

computational complexity (e.g., description logics, existential rules)

» Data tractability is a key property to be useful in practice

What is the right query language?

« Well-known database query languages (e.g., conjunctive queries)



Few Words on Description Logics (DLSs)

DLs are well-behaved fragments of first-order logic
Several DL-based languages exist (from lightweight to very expressive logics)

Strongly influenced the W3C standard Web Ontology Language OWL

Syntax: We start from a vocabulary with
o Concept names: atomic classes or unary predicates - Parent, Person
o Role names: atomic relations or binary predicates - HasParent

and we build axioms
o Person C dJHasParent.Parent - each person has a parent

o Parent C Person - each parentis a person

Semantics: Standard first-order semantics



DL-Lite Family

DL-Lite: Popular family of DLs - at the basis of the OWL 2 QL profile of OWL 2

DL-Lite Axioms First-order Representation

ACB Vx (A(X) = B(x))
AC 3R Vx (A(X) = Jy R(x,y))
SRCA vxvy (R(X,y) = A(x))

3R C 3P Vxvy (R(X,y) = 3z P(x,2))

AC 3JR.B VX (A(x) — 3y (R(x,y) A B(y)))
RCP vxvy (R(x,y) = P(xy))
AC -B vx (A(X) A B(x) > L)




The Description Logic EL

EL: Popular DL for biological applications - at the basis of the OWL 2 EL profile

EL Axioms First-order Representation
ACB Vx (A(X) = B(x))
ANBCC Vx (A(X) A B(x) = C(x))
ALC IR.B vx (A(x) = 3y (R(x,y) A B(y)))
JRBCA vxvy (R(X,y) A B(y) = A(X))

...several other, more expressive, description logics exist



A Simple Example

vx (Researcher(x) — 3y (WorksFor(x,y) A Project(y)))
vx (Project(x) — Jy (WorksFor(y,x) A Researcher(y)))
VxVvy (WorksFor(x,y) — Researcher(x) A Project(y))

VX (Project(x) — dy (ProjectName(x,y)))



Some Terminology

* Our basic vocabulary:

o A countable set C of constants - domain of a database
o A countable set N of (labeled) nulls - globally 3-quantified variables

o A countable set V of (regular) variables - used in rules and queries
« Atermis a constant, null or variable
* An atom has the form P(t,,...,t,) - P is an n-ary predicate and t/'s are terms
* Aninstance is a (possibly infinite) set of atoms with constants and nulls

« Adatabase is a finite instance with only constants



Syntax of Existential Rules

An existential rule is a first-order sentence

VXYY (p(x,y) = 3z 9(x,z))

« X,yand z are tuples of variables of V

*  (x,y) and v(x,z) are conjunctions of atoms (possibly with constants)

...a.k.a. tuple-generating dependencies and Datalog® rules



Homomorphism

* Semantics of existential rules via the key notion of homomorphism

» A substitution from a set of symbols S to a set of symbols T is a function

h:S —>T - hisasetof mappings of the forms —»t, whereseSandte T

A homomorphism from a set of atoms A to a set of atoms B is a substitution
h:CUNUV —> CuUNUYV such that:

(i) teC = h(t)=t
(i) P(ty,...t) €A = h(P(t,...,t)) = P(h(t,),..., h(t,)) € B

« Can be naturally extended to conjunctions of atoms



Semantics of Existential Rules

* Aninstance J is a model of the existential rule
p = VXYY (p(xy) > FZ9Y(x,2))
written as J F p, if the following holds:
whenever there exists a homomorphism h such that h(¢(x,y)) C J,
then there exists g 2 hjx such that g(y(x,z)) C J

\

{t »h(t) |t e x} - the restriction of h to x

 Given a set O of existential rules, J is a model of O, written as J = O, if the

following holds: foreachp € O, JE p



Ontology-Based Query Answering (OBQA)

database

knowledge base
Y
N

(D,0)

OntOIOQy/ E)j
o ~_

k\

existential / Datalog* rules

VXVy (p(Xy) = 3z 1(x,z))



Query Languages

» The four most important query languages
o Conjunctive Queries (CQ)
o Unions of Conjunctive Queries (UCQ)
o First-order Queries (FO)

o Datalog

Datalog



Syntax of Conjunctive Queries

A conjunctive query (CQ) is an expression
Jy (p(xy)) or Ans(x) < ¢(x.y)

« x and y are tuples of variables of V

* (x,y) is a conjunction of atoms (possibly with constants)

The most important query language used in practice

Forms the SELECT-FROM-WHERE fragment of SQL



Semantics of Conjunctive Queries

« A match of a CQ dy (¢(x,y)) in an instance J is a homomorphism h such that

h(o(x,y)) € J - all the atoms of the query are satisfied

 The answer to Q(x) = Jy (©(x,y)) over J is the set of tuples
Q(J) = {h(x) € C| his a match of Q in J}

« The answer consists of the withesses for the free variables of the query



Conjunctive Queries: Example

Find the researchers who work for the “VADA” project

Researcher(id), Project(id), WorksFor(rid, pid), ProjectName(pid, name)

Jy (Researcher(x) /A WorksFor(x,y) /A Project(y) /A ProjectName(y,"VADA"))

SELECT R.id
FROM Researcher R, WorksFor W, Project P, ProjectName N
WHERE R.id =W.rid AND

W.pid = P.id AND

P.id = N.pid AND

N.name = “VADA"



Ontology-based Query Answering (OBQA)

database

knowledge base
Y
N

(D,0)

ontology/ @
o 7

k\

~
~
\\___ Q

existential / Datalog* rules conjunctive queries

VXYY (o(X,y) > 3z 1(x,2)) 3y (v(x,y))



Ontology-based Query Answering (OBQA)

database

knowledge base
Y
N

(D,0)

0nt0|09y/ E)j
O \/

k\

Certain-Answers(Q,(D,0)) = [ . models(p n 0) QM)

N

{J|JDDandJE O}



OBQA: Formal Definition

an ontology language based on existential rules

[4

OBQA(L)
Input: database D, ontology O € L, CQ Q(x) = Jy (¢(x,y)), tuple t € adom(D)X

Question: t € Certain-Answers(Q,(D,0)) = [, models(D A O) Q(M)’/

/

active domain - constants occurring in D



OBQA: Complexity Metrics

« Combined complexity - everything is part of the input

« Data complexity - only D and t are part of the input

OBQA[O,Q]
Input: database D, tuple t € adom(D)X
Question: t € Certain-Answers(Q,(D,0))?

OBQA(L) is C-complete in data complexity if:
1. Forevery O € Land CQ Q, OBQA[O,Q]isinC

2. There exists O € L and CQ Q such that OBQA[O,Q] is C-hard



OBQA: The Boolean Case

OBQA(L)
Input: database D, ontology O € L, CQ Q(x) = Jy (¢(x,y)), tuple t € adom(D)X

Question: t € Certain-Answers(Q,(D,0)) = [ . models(D A o) Q(M)?

t € Certain-Answers(Q,(D O)) < VM € models(D A O), M F dy (¢(t,y))

< DAOE3dy(p(ty))

N\

Boolean CQ - no free variables



OBQA: The Boolean Case

OBQA(L)
Input: database D, ontology O € L, CQ Q(x) = Jy (¢(x,y)), tuple t € adom(D)X

Question: t € Certain-Answers(Q,(D,0)) = [, e models(p A0y QUM)?

For understanding the complexity of OBQA(L), it suffices to focus on Boolean CQs

OBQA(L)
Input: database D, ontology O € L, Boolean CQ Q

Question: D A O EQ?




Why is OBQA technically challenging?

What is the right tool for tackling this problem?



The Two Dimensions of Infinity

Consider the database D, and the ontology O

model of D A O ‘

size

D A O admits infinitely many models, of possibly infinite size



The Two Dimensions of Infinity

D = {P(c)} O = {x (P(x) » 3y (R(x,y) A P(y)))}
model of DAO
P(c) P(c) P(c) P(c) Pc) |
R(c,c) R(c,z,) R(c,z,) R(c,z¢) R(c,z,)
P(z) P(z,) P(z) P(z)
R(z4,24) R(z4,2,) - R(z4,2,) - R(z4,2,)
P(z,) P(z,) P(z,)
R(z2.2,) R(z3,23) R(z3,23)
o Pz Pz
R(z.z) R(z,Z+1)

Z4, Z5, Z3, ... @are nulls of N



Taming the First Dimension of Infinity

D = {P(c)} O = {vx (P(x) = Jy (R(x,y) A P(y)))}
model of DAO
Pe) | P | P) P(c) PE) |
R(c,c) R(c,z,) R(c,z,) R(c,z¢) R(c,z,)
X P(z,) P(z,) P(z) P(z)
R(z4,24) R(z4,2,) - R(z4,2,) - R(z4,2,)
X P(z,) P(z,) P(z,)
R(z,,2,) R(z,,23) R(z,,23)
o * Pz, Pz,
R(z.z() R(zy,Z++)
Key Idea: Focus on a representative, v

a model that is as general as possible v




Universal Models (a.k.a. Canonical Models)

-, : :
- Sa
. ~
N

)
)
)
1
hy ..- .
-, ] S
h2 !
] ~
1 S
1 So
1
1
1

An instance U is a universal model of D A O if the following holds:

1. Uis amodel of D A O
2.VJ € models(D A O), there exists a homomorphism h; such that h,(U) C J



Query Answering via Universal Models

Theorem: D A O EQ iff UE Q, where U is a universal model of D A O

(=) Trivial since, for every J € models(D A O), J FQ

Proof:
(<) By exploiting the universality of U
Q by hypothesis
" T
h .- g ] ey by universality of U
. 2! N,

VJ € models(D A O), 3h, such that hy(g(Q)) CJ = ¥VJ e models(DAO),JFQ
= DAOEQ



The Chase Procedure

* Fundamental algorithmic tool used in databases

» It has been applied to a wide range of problems:
o Checking containment of queries under constraints
o Computing data exchange solutions
o Computing certain answers in data integration settings

©)

... what’s the reason for the ubiquity of the chase in databases?

it constructs universal models



The Chase Procedure

D
Person(John)

Vx (Person(x) — dy (HasParent(x,y) /A Person(y)))

chase(D,0)=D U



The Chase Procedure

D
Person(John)

v

VX (Peréon(x) — 3y (HasParent(x,y) /A Person(y)))

/ /

chase(D,0O) = D U {HasParent(John, z,), Person(z,)



The Chase Procedure

D—
Person(John)

vx (Person(x) — dy (HasParent(x,y) /\ Person(y)))
S / /

chase(D,0) = D U {HasParent(John, z,), Peran Z4),

HasParent(z,, z,), Person(z,)



The Chase Procedure

D—
Person(John)

vx (Person(x) — Jy (HasParent(x,y) /A Person(y)))

chase(D,0) = D u {HasParent(Jo n,\z‘f),\ Person(z/),
HasParentfz,, z,), Person(zj),

HasParent(z,, z;), Person(z;)



The Chase Procedure

D—
Person(John)

vx (Person(x) — dy (HasParent(x,y) /\ Person(y)))

chase(D,0) = D u {HasParent(John, z,), Person(z,),

HasParent(z,, z,), Person(z,),

HasParent(z,, z;), Person(z,), ...

infinite instance



The Chase Procedure: Formal Definition

Chase rule - the building block of the chase procedure

Arule p = VxVy (p(x,y) = Jz ¢(X,z)) is applicable to instance J if:
1. There exists a homomorphism h such that h(o(x,y)) C J

2. Thereis no g 2 h, such that g(y/(x,z)) C J

J={R(a), P(a,b)} J = {R(a), P(b,a)}
Ilf k\\ ) /* »
h={xw-a}; V97 {x—a,yr b} h={xwa}, no extension
vx (R(X) = 3y P(X.y)) X (R(X) = 3y P(x.y))

% v




The Chase Procedure: Formal Definition

Chase rule - the building block of the chase procedure

Arule p = VxVy (p(x,y) = Jz ¢(X,z)) is applicable to instance J if:
1. There exists a homomorphism h such that h(o(x,y)) C J

2. Thereis no g 2 h, such that g(y/(x,z)) C J

Let J, = J U {g(¥(x,2))}, where g 2 h, and g(z) are “fresh” nulls not in J

The result of applying p to J is J,, denoted J{(p,h)J, - single chase step



The Chase Procedure: Formal Definition

« Afinite chase of D w.r.t. O is a finite sequence

D{p4,h1)J1(P2,N2)Jo(P3,03) 5 ... {Pn,0p)d,

and chase(D,0) is defined as the instance J,

all applicable rules will eventually be applied

/

* An infinite chase of D w.r.t. O is a fair infinite sequence

D(p1,h1)d1{P2,2)Jo(P3,N3)ds ... {Pr.hn) ..

and chase(D,0) is defined as the instance U, -, J, (with J, = D)

/

least fixpoint of a monotonic operator - the chase step



Chase: A Universal Model

Theorem: chase(D,0O) is a universal model of D A O

Proof (sketch):

» By construction, chase(D,0) € models(D A O)

» It remains to show that chase(D,0) can be homomorphically embedded into every
other model of D A O

« Fix an arbitrary instance J € models(D /A O). We need to show that there exists h
such that h(chase(D,0)) C J

» By induction on the number of applications of the chase step, we show that for every
k > 0, there exists h, such that h,(chasel{(D,0)) C J, and h, is compatible with h,_,

« Clearly, Uy .o hyis a well-defined homomorpkism that maps chase(D,0) to J

 The claim follows with h = U, . h,

the result of the chase after k applications of the chase step




Chase: Unigueness Property

« The result of the chase is not unique - depends on the order of rule application

D = {P(a)} P = Vx (P(x) = Jy R(y)) p2 = Vx (P(x) = R(x))

Result, = {P(a), R(z), R(a)} p, then p,
Result, = {P(a), R(a)} P, then p;,

« But, itis unique up to homomorphic equivalence

= it is unique for query answering purposes



Query Answering via the Chase

Theorem: D A O EQ iff UE Q, where U is a universal model of D A O
&

Theorem: chase(D,0) is a universal model of D A O

4

Corollary: D AOEQ iff chase(D,0)F Q

We can tame the first dimension of infinity by exploiting the chase procedure



Can we tame the second dimension of infinity?



Undecidability of OBQA

arbitrary existential rules

/

Theorem: OBQA(JRULES) is undecidable

Proof Idea : By simulating a deterministic Turing machine with an empty tape.



Gaining Decidability

By restricting the database
« {Start(c)} AOF Q iff the Turing Machine T accepts

« The problem is undecidable already for singleton databases

By restricting the query language
* D AOE dx Accept(x) iff the Turing Machine T accepts

» The problem is undecidable already for atomic queries

By restricting the ontology language

» Achieve a good trade-off between expressive power and complexity

» Field of intense research (Calabria, Dresden, Edinburgh, Montpellier,
Oxford, Vienna)



Datalog®™ Nomenclature

« Extend Datalog by allowing in the head:

o Existential quantification (9) \
o Equality atoms (=) > Datalog[3,=, 1]
o Constant false (1)

a highly expressive ontology language



Datalog®™ Nomenclature

« Extend Datalog by allowing in the head:

o Existential quantification (9) \
o Equality atoms (=) > Datalog[3,=, 1]
o Constant false (1)

« But, already Datalog[d] is undecidable

- Datalog[d,=, 1] is syntactically restricted — Datalog*



Gaining Decidability

By restricting the database
« {Start(c)} AOF Q iff the DTM M accepts

« The problem is undecidable already for singleton databases

By restricting the query language
« DAOE dx Accept(x) iff the DTM M accepts

» The problem is undecidable already for atomic queries

By restricting the ontology language

» Achieve a good trade-off between expressive power and complexity

» Field of intense research (Calabria, Dresden, Edinburgh, Montpellier,
Oxford, Vienna)



What is the Source of Non-termination?

D
Person(John)

vx (Person(x) — dy (HasParent(x,y) /\ Person(y)))

chase(D,0) = D U {HasParent(John, z,), Person(z,),

HasParent(z,, z,), Person(z,),
HasParent(z,, z;), Person(z,), ...
1. Existential quantification

2. Recursive definitions



Termination of the Chase

« Drop existential quantification
o We obtain the class of full existential rules

o Very close to Datalog

* Drop recursive definitions
o We obtain the class of acyclic existential rules

o A.k.a. non-recursive existential rules



Recall our Example

D
Person(John)

Vx (Person(x) — dy (HasParent(x,y) /A Person(y)))

chase(D,0) = D U {HasParent(John, z,), Person(z,),

HasParent(z,, z,), Person(z,),

HasParent(z,, z;), Person(z,), ...

The above rule can be written as the DL-Lite axiom

Person C JHasParent.Person



Recall our Example

D—
Person(John)

vx (Person(x) — dy (HasParent(x,y) /\ Person(y)))

chase(D,0) = D U {HasParent(John, z,), Person(z,),

HasParent(z,, z,), Person(z,),

HasParent(z,, z;), Person(z,), ...

Existential quantification & recursive definitions

are key features for modelling ontologies



Research Challenge

We need classes of existential rules such that;

1. Existential quantification and recursive definitions coexist

2. OBQA is decidable, and tractable in the data complexity

Tame the infinite chase:

Deal with infinite instances without explicitly building them



Linear Existential Rules

« Alinear existential rule is an existential rule of the form

vxvy (P(x,y) > dz v(x,z))

/

single atom
« We denote LINEAR the ontology language based on linear existential rules
 Alocal property - we can inspect one rule at a time
= given O, we can decide in linear time whether O € LINEAR

= closed under union

« But, is this a reasonable ontology language?



LINEAR vs. DL-Lite

DL-Lite: Popular family of DLs - at the basis of the OWL 2 QL profile of OWL 2

DL-Lite Axioms First-order Representation

ACB Vx (A(X) = B(x))

AC 3R Vx (A(X) = Jy R(x,y))
SRCA vxvy (R(X,y) = A(x))

3R C 3P Vxvy (R(X,y) = 3z P(x,2))

AC 3JR.B VX (A(x) = 3y (R(x,y) A B(y)))
RCP vxvy (R(x,y) = P(xy))
AC -B vx (A(X) A B(X) = L)




Linear Existential Rules

« Alinear existential rule is an existential rule of the form

vxvy (P(x,y) > dz v(x,z))

/

single atom
« We denote LINEAR the ontology language based on linear existential rules
* Alocal property - we can inspect one rule at a time
= given O, we can decide in linear time whether O € LINEAR

= closed under union

« But, is this a reasonable ontology language? OWL 2 QL



Chase Graph

The chase can be naturally seen as a graph - chase graph

D = {R(a.b), S(b) | >

Wy (ROGy) A S(y) — 3z R(z.X)) =
vxvy (R(x,y) = S(x)) l><

O=

For LINEAR the chase graph is a forest



Bounded Derivation-depth Property (BDDP)

Definition: An ontology language L enjoys the BDDP if:
for every ontology O € L and CQ Q, there exists k = 0 such that,
for every database D, chase(D,0) E Q = chasek(D,0) F Q

chasek(D,0)

depth k
/h



Bounded Derivation-depth Property (BDDP)

Definition: An ontology language L enjoys the BDDP if:
for every ontology O € L and CQ Q, there exists k = 0 such that,
for every database D, chase(D,0) E Q = chasek(D,0) F Q

For LINEAR, k=|Q| - m

with m = |sch(O)| - (2 - maxarity)maxarity
A

/

predicates occurring in O




The Blocking Algorithm for LINEAR

The blocking algorithm shows that OBQA(LINEAR) is
* in 2EXPTIME in combined complexity

* in PTIME in data complexity

k = |Q| . |SCh(O)| . (2 . maxarity)maxarity



Complexity of OBQA(LINEAR)

...but, we can do better than the blocking algorithm

Theorem: OBQA(LINEAR) is

 PSPACE-complete in combined complexity

* in LOGSPACE in data complexity




Key Observation

at most |Q| atoms

depth i

/! depth k

non-deterministic, level-by-level construction



Combined Complexity of LINEAR

Theorem: OBQA(LINEAR) is in PSPACE

Proof (high-level idea):




Combined Complexity of LINEAR

Theorem: OBQA(LINEAR) is in PSPACE

Proof (high-level idea):




Combined Complexity of LINEAR

Theorem: OBQA(LINEAR) is in PSPACE

Proof (high-level idea):




Combined Complexity of LINEAR

Theorem: OBQA(LINEAR) is in PSPACE

Proof (high-level idea):




Combined Complexity of LINEAR

Theorem: OBQA(LINEAR) is in PSPACE

Proof (high-level idea):




Combined Complexity of LINEAR

Theorem: OBQA(LINEAR) is in PSPACE

Proof (high-level idea):

* At each step we need to maintain
o O(]Q[) atoms

o A counter ctr < |QJ? - |sch(O)| - (2 - maxarity)maxarity

* Thus, we need polynomial space

 The claim follows since NPSPACE = PSPACE



Combined Complexity of LINEAR

We cannot do better than the previous algorithm

Theorem: OBQA(LINEAR) is PSPACE-hard

Proof Idea : By simulating a deterministic polynomial space Turing machine



Complexity of OBQA(LINEAR)

Theorem: OBQA(LINEAR) is
v’ « PSPACE-complete in combined complexity

* in LOGSPACE in data complexity




Query Rewriting

compilation

Qo ---m----e -._ evaluation

~
~

Union of CQs (UCQ) “\

D

VD : DAOEQ <« DEQg



Query Rewriting

Theorem: OBQA(L) is UCQ-rewritable

= OBQA(L) is in LOGSPACE in data complexity

Proof: Fix O € L and CQ Q. We need to show that OBQA[O,Q] is in LOGSPACE:

1. Construct Qg in O(1) time (due to UCQ rewritability)

2. Check whether D E Qg in LOGSPACE (classical result)



Complexity of OBQA(LINEAR)

Theorem: OBQA(LINEAR) is
v’ « PSPACE-complete in combined complexity

? « in LOGSPACE in data complexity

...it suffices to show that OBQA(LINEAR) is UCQ-rewritable



Bounded Derivation-depth Property (BDDP)

Definition: An ontology language L enjoys the BDDP if:
for every ontology O € L and CQ Q, there exists k = 0 such that,
for every database D, chase(D,0) E Q = chasek(D,0) F Q

chasek(D,0)

depth k
/h



Bounded Derivation-depth Property (BDDP)

Proposition: L enjoys the BDDP = OBQA(L) is UCQ-rewritable

e e e

depth k each atom is obtained by

at most 3 atoms

= to entail a CQ Q we need at most |Q| - Bk database atoms



Bounded Derivation-depth Property (BDDP)

Proposition: L enjoys the BDDP = OBQA(L) is UCQ-rewritable

Given an ontology O € L and a CQ Q:
D; 5,4 b€ the set of all possible databases of size at most |Q| - B°

- C ={DecDgs, | chase(D,0)FQ}

« Convert C into a UCQ



Complexity of OBQA(LINEAR)

Theorem: OBQA(LINEAR) is
v’ « PSPACE-complete in combined complexity

v’ + in LOGSPACE in data complexity




Recap

» Ontology-based query answering under existential rules
« Technical challenges and the right technical tool (the chase)

« Tame the infinite chase: linear existential rules - key properties and complexity

...but, is LINEAR the ultimate ontology language?



Research Challenge

We need classes of existential rules such that;

1. Existential quantification and recursive definitions coexist

2. OBQA is decidable, and tractable in the data complexity

Tame the infinite chase:

Deal with infinite structures without explicitly building them



Transitive Closure

Vxvy (ParentOf(x,y) — AncestorOf(x,y))

VxVyvz (ParentOf(x,y) A AncestorOf(y,z) - AncestorOf(x,z))



IDB-Linear Existential Rules

» A predicate that does not occur in the head of a rule is extensional (EDB);

otherwise, is intensional (IDB)

« Aset of existential rules is IDB-linear if every rule is of the form

vxvYy (p(x.y) = 3z ¥(x,2))

/

single occurrence of an IDB predicate

« We denote IDB-LINEAR the obtained ontology language



Transitive Closure

Vxvy (ParentOf(x,y) — AncestorOf(x,y))

VxvyVvz (ParentOf(x,y) A AncestorOf(y,z) —» AncestorOf(x,z))



Complexity of OBQA(IDB-LINEAR)

Theorem: OBQA(IDB-LINEAR) is
 PSPACE-complete in combined complexity

« NLOGSPACE-complete in data complexity




Complexity of IDB-LINEAR

Proof (high-level idea):

non-deterministic

level-by-level construction

B

4
7/
4
/7
4
7/

vxvy (R(x,y) A ¢(x,y) = 3z ¢(x,z))
and then apply the linear rule

vxvy (R(h(x),h(y)) — 3z ¥(h(x),z))



Complexity of OBQA(IDB-LINEAR)

Theorem: OBQA(IDB-LINEAR) is
 PSPACE-complete in combined complexity

« NLOGSPACE-complete in data complexity




But

xvy (¢(Xy) = 3z ¥(x,z))

/

single occurrence of an IDB predicate

* We cannot have joins over null values

* We cannot express “complex” recursive definitions

...we need more sophisticated restrictions at the level of variables



Restrict the Use of Body-variables

Classification of body-variables
« Harmless: one that can be satisfied only by constants
« Harmful: one that is not harmless

« Dangerous: one that is harmful, and also appears in the rule-head

Vxvyvz (P(x,y), S(y,z) — Iw T(y,Xx,w))
vxvyvz (T(x,y,z) — Iw P(w,z))

vxvy (P(x,y) —» 3z Q(x,z))



Restrict the Use of Body-variables

Classification of body-variables
« Harmless: one that can be satisfied only by constants
« Harmful: one that is not harmless

« Dangerous: one that is harmful, and also appears in the rule-head

Vxvyvz (P(x,y), S(y,z) — 3w T(y,x,w)) Existential Positions

XYYz (T(x,y,2) — Tw P(w,z)) T[3], P[1], Q[2]

vxvy (P(x,y) —» 3z Q(x,2))



Restrict the Use of Body-variables

Classification of body-variables
« Harmless: one that can be satisfied only by constants
« Harmful: one that is not harmless

« Dangerous: one that is harmful, and also appears in the rule-head

Vxvyvz (P(x,y), S(y,z) — 3w T(y,x,w)) Existential Positions

XYYz (T(x,y,2) — Tw P(w,z)) T[3], P[1], Q[2]

vxvy (P(x,y) —» dz Q(x,z)) T[2]



Restrict the Use of Body-variables

Classification of body-variables
« Harmless: one that can be satisfied only by constants
« Harmful: one that is not harmless

« Dangerous: one that is harmful, and also appears in the rule-head

Vxvyvz (P(x,y), S(y,z) — 3w T(y,x,w)) Existential Positions

VXVYWZ (T(X,Y,2) — Tw P(w,z)) T[3], P[1], Q[2]

vxvy (P(x,y) —» dz Q(x,z)) T[2], P[2]



Restrict the Use of Body-variables

Classification of body-variables
« Harmless: one that can be satisfied only by constants
« Harmful: one that is not harmless

« Dangerous: one that is harmful, and also appears in the rule-head

Vxvyvz (P(x,y), S(y,z) — 3w T(y,x,w)) Existential Positions

VXVYWZ (T(X,Y,2) — Tw P(w,z)) T[3], P[1], Q[2]

xvy (P(xy) — 3z Q(x.2)) T[2], P[2], Q[1]



Restrict the Use of Body-variables

Classification of body-variables
« Harmless: one that can be satisfied only by constants
« Harmful: one that is not harmless

« Dangerous: one that is harmful, and also appears in the rule-head

Vxvyvz (P(x,y), S(y,z) — Iw T(y,Xx,w)) Existential Positions
Vxvyvz (T(x,y,z) —» 3w P(w,z)) T[3], P[1], Q[2]
vxvy (P(x,y) —» 3z Q(x,z)) T[2], P[2], Q[1]

v



Weakly-Frontier-Guarded (WFG)

* Aset of existential rules is WFG if every rule is of the form

vxvy (p(x.y) = 3z ¥(x,2))

/

there exists a guard atom that contains all the dangerous variables

» We denote WFG the obtained ontology language



Complexity of OBQA(WFG)

Theorem: OBQA(WFG) is
« 2EXPTIME-complete in combined complexity

« EXPTIME-complete in data complexity

Source of complexity: The guard and the rest of the body share harmful variables



Warded

» A set of existential rules is warded if every rule is of the form

vxvy (G(X,y) A o(Xy) = 3z 1(x,2))

/

contains all the dangerous variables, and shares with ¢(x,y) only harmless variables

« We denote WARDED the obtained ontology language



Complexity of OBQA(WARDED)

Theorem: OBQA(WARDED) is
« EXPTIME-complete in combined complexity

 PTIME-complete in data complexity

a “nearly” maximal fragment of WFG
at least one occurrence of a dangerous variable that appears in the guard,

appears outside the guard = EXPTIME-complete in data complexity



Warded + Stratified Negation

RDF Query Language
+ OWL2QL Modeling Language

SPARQL
+ OWL2RL (Fragments of) UML and ER

Warded

Ontology Language
DB Query Language

OWL 2 QL

Datalog[—strat]
OWL 2 RL



	introslideobda
	obda-main

