Reasoning with Data

- Names: Ontology Based Query Answering
- Sometimes OBDA (Ontology Based Data Access)

- Scenario:
 - data is incomplete
 - but is supplemented with additional knowledge
 - typically in the form of an ontology
 - query answering takes into account both

Ontology-based Data Access: Architecture

- Ontology: provides a unified conceptual "global view" of the data
- Data Sources: external and independent (possibly multiple and heterogeneous)
- Mapping: semantically link data at the sources with the ontology

Query Answering in OBDA

• The sources and the mapping define a virtual data layer M(D)

Query Answering in OBDA

- The sources and the mapping define a virtual data layer M(D)
- Queries are answered against the knowledge base $\langle M(D),\,O\rangle$

Query Answering in OBDA

Ontology-based Query Answering (OBQA)

(formal definitions later - once we fix the languages)

Issues in Ontology-based Query Answering

What is the right ontology language?

- A wide spectrum of languages that differ in expressive power and computational complexity (e.g., description logics, existential rules)
- Data tractability is a key property to be useful in practice

What is the right query language?

• Well-known database query languages (e.g., conjunctive queries)

Few Words on Description Logics (DLs)

- DLs are well-behaved fragments of first-order logic
- Several DL-based languages exist (from lightweight to very expressive logics)
- Strongly influenced the W3C standard Web Ontology Language OWL
- Syntax: We start from a vocabulary with
 - Concept names: atomic classes or unary predicates Parent, Person
 - Role names: atomic relations or binary predicates HasParent

and we build axioms

- \circ Person \sqsubseteq \exists HasParent.Parent each person has a parent
- \circ Parent \sqsubseteq Person each parent is a person
- **Semantics:** Standard first-order semantics

DL-Lite Family

DL-Lite: Popular family of DLs - at the basis of the OWL 2 QL profile of OWL 2

DL-Lite Axioms	First-order Representation
$A \sqsubseteq B$	$\forall x \ (A(x) \rightarrow B(x))$
A ⊑ ∃R	$\forall x \ (A(x) \rightarrow \exists y \ R(x,y))$
∃R ⊑ A	$\forall x \forall y \ (R(x,y) \rightarrow A(x))$
∃R ⊑ ∃P	$\forall x \forall y \ (R(x,y) \rightarrow \exists z \ P(x,z))$
A ⊑ ∃R.B	$\forall x \; (A(x) \rightarrow \exists y \; (R(x,y) \land B(y)))$
$R \sqsubseteq P$	$\forall x \forall y \ (R(x,y) \rightarrow P(x,y))$
A⊑¬B	$\forall x (A(x) \land B(x) \rightarrow \bot)$

The Description Logic EL

EL: Popular DL for biological applications - at the basis of the OWL 2 EL profile

EL Axioms	First-order Representation
$A\sqsubseteqB$	$\forall x \ (A(x) \rightarrow B(x))$
$A\sqcapB\sqsubseteqC$	$\forall x \; (A(x) \land B(x) \rightarrow C(x))$
A ⊑ ∃R.B	$\forall x \; (A(x) \rightarrow \exists y \; (R(x,y) \land B(y)))$
∃R.B ⊑ A	$\forall x \forall y \ (R(x,y) \land B(y) \rightarrow A(x))$

...several other, more expressive, description logics exist

A Simple Example

 $\forall x (\text{Researcher}(x) \rightarrow \exists y (\text{WorksFor}(x,y) \land \text{Project}(y)))$

 $\forall x (Project(x) \rightarrow \exists y (WorksFor(y,x) \land Researcher(y)))$

 $\forall x \forall y (WorksFor(x,y) \rightarrow Researcher(x) \land Project(y))$

 $\forall x (Project(x) \rightarrow \exists y (ProjectName(x,y)))$

Some Terminology

- Our basic vocabulary:
 - A countable set **C** of constants domain of a database
 - A countable set **N** of (labeled) nulls globally ∃-quantified variables
 - A countable set **V** of (regular) variables used in rules and queries
- A term is a constant, null or variable
- An atom has the form $P(t_1,...,t_n)$ P is an n-ary predicate and t's are terms
- An instance is a (possibly infinite) set of atoms with constants and nulls
- A database is a finite instance with only constants

Syntax of Existential Rules

An existential rule is a first-order sentence

- x,y and z are tuples of variables of V
- $\varphi(\mathbf{x},\mathbf{y})$ and $\psi(\mathbf{x},\mathbf{z})$ are conjunctions of atoms (possibly with constants)

 \dots a.k.a. tuple-generating dependencies and Datalog[±] rules

Homomorphism

- Semantics of existential rules via the key notion of homomorphism
- A substitution from a set of symbols S to a set of symbols T is a function
 h : S → T h is a set of mappings of the form s ↦ t, where s ∈ S and t ∈ T
- A homomorphism from a set of atoms A to a set of atoms B is a substitution
 h : C ∪ N ∪ V → C ∪ N ∪ V such that:

$$\begin{array}{lll} (i) & t \in \textbf{C} & \Rightarrow & h(t) = t \\ (ii) & \mathsf{P}(t_1, \dots, t_n) \in \textbf{A} & \Rightarrow & h(\mathsf{P}(t_1, \dots, t_n)) = & \mathsf{P}(h(t_1), \dots, h(t_n)) \in \textbf{B} \end{array}$$

• Can be naturally extended to conjunctions of atoms

Semantics of Existential Rules

• An instance J is a model of the existential rule

$$\rho = \forall \mathbf{x} \forall \mathbf{y} (\varphi(\mathbf{x}, \mathbf{y}) \rightarrow \exists \mathbf{z} \psi(\mathbf{x}, \mathbf{z}))$$

written as $J \models \rho$, if the following holds:

whenever there exists a homomorphism h such that $h(\varphi(\mathbf{x},\mathbf{y})) \subseteq J$,

```
then there exists g \supseteq h_{|\mathbf{X}} such that g(\psi(\mathbf{x}, \mathbf{z})) \subseteq J
\{t \mapsto h(t) \mid t \in \mathbf{x}\}\ -\ \text{the restriction of } h \text{ to } \mathbf{x}\}
```

Given a set O of existential rules, J is a model of O, written as J ⊨ O, if the following holds: for each ρ ∈ O, J ⊨ ρ

Ontology-Based Query Answering (OBQA)

existential / Datalog[±] rules

 $\forall \mathbf{x} \forall \mathbf{y} \ (\varphi(\mathbf{x}, \mathbf{y}) \rightarrow \exists \mathbf{z} \ \psi(\mathbf{x}, \mathbf{z}))$

Query Languages

- The four most important query languages
 - Conjunctive Queries (CQ)
 - Unions of Conjunctive Queries (UCQ)
 - First-order Queries (FO)
 - \circ Datalog

Syntax of Conjunctive Queries

A conjunctive query (CQ) is an expression

 $\exists \mathbf{y} (\varphi(\mathbf{x}, \mathbf{y})) \text{ or } Ans(\mathbf{x}) \leftarrow \varphi(\mathbf{x}, \mathbf{y})$

- x and y are tuples of variables of V
- $\varphi(\mathbf{x}, \mathbf{y})$ is a conjunction of atoms (possibly with constants)

The most important query language used in practice

Forms the SELECT-FROM-WHERE fragment of SQL

Semantics of Conjunctive Queries

 A match of a CQ ∃y (φ(x,y)) in an instance J is a homomorphism h such that h(φ(x,y)) ⊆ J - all the atoms of the query are satisfied

• The answer to $Q(\mathbf{x}) = \exists \mathbf{y} (\varphi(\mathbf{x}, \mathbf{y}))$ over J is the set of tuples

 $Q(J) = \{h(\mathbf{x}) \in \mathbf{C} \mid h \text{ is a match of } Q \text{ in } J\}$

• The answer consists of the witnesses for the free variables of the query

Conjunctive Queries: Example

Find the researchers who work for the "VADA" project

Researcher(id), Project(id), WorksFor(rid, pid), ProjectName(pid, name)

 $\exists y (Researcher(x) \land WorksFor(x,y) \land Project(y) \land ProjectName(y, "VADA"))$

SELECT R.id FROM Researcher R, WorksFor W, Project P, ProjectName N WHERE R.id = W.rid AND W.pid = P.id AND P.id = N.pid AND N.name = "VADA"

Ontology-based Query Answering (OBQA)

Ontology-based Query Answering (OBQA)

OBQA: Formal Definition

active domain - constants occurring in D

OBQA: Complexity Metrics

- Combined complexity everything is part of the input
- Data complexity only D and t are part of the input

OBQA[O,Q]

Input: database D, tuple $\mathbf{t} \in adom(D)^{|\mathbf{x}|}$

Question: $\mathbf{t} \in \text{Certain-Answers}(\mathbf{Q}, \langle \mathsf{D}, \mathsf{O} \rangle)$?

OBQA(L) is C-complete in data complexity if:

- 1. For every $O \in L$ and CQ Q, OBQA[O,Q] is in C
- 2. There exists $O \in L$ and CQ Q such that OBQA[O,Q] is C-hard

OBQA: The Boolean Case

OBQA(L)

Input: database D, ontology $O \in L$, $CQ Q(x) = \exists y (\varphi(x,y))$, tuple $t \in adom(D)^{|x|}$

Question: $\mathbf{t} \in \text{Certain-Answers}(\mathbf{Q}, \langle D, \mathbf{O} \rangle) = \bigcap_{M \in \text{models}(D \land \mathbf{O})} \mathbf{Q}(M)$?

t ∈ Certain-Answers(Q, (D O))
 ⇔
$$\forall$$
M ∈ models(D ∧ O), M ⊨ ∃**y** (φ (**t**,**y**))
 ⇔ D ∧ O ⊨ ∃**y** (φ (**t**,**y**))
 ►
Boolean CQ - no free variables

OBQA: The Boolean Case

OBQA(L)

Input: database D, ontology $O \in L$, $CQ Q(\mathbf{x}) = \exists \mathbf{y} (\varphi(\mathbf{x}, \mathbf{y}))$, tuple $\mathbf{t} \in adom(D)^{|\mathbf{x}|}$

Question: $\mathbf{t} \in \text{Certain-Answers}(\mathbf{Q}, \langle D, \mathbf{O} \rangle) = \bigcap_{M \in \text{models}(D \land \mathbf{O})} \mathbf{Q}(M)$?

For understanding the complexity of OBQA(L), it suffices to focus on Boolean CQs

OBQA(L) Input: database D, ontology $O \in L$, Boolean CQ Q Question: D $\land O \models Q$? Why is OBQA technically challenging?

What is the right tool for tackling this problem?

The Two Dimensions of Infinity

Consider the database D, and the ontology O

 $\mathsf{D}\wedge\mathsf{O}$ admits infinitely many models, of possibly infinite size

The Two Dimensions of Infinity

 $\mathsf{D} \ = \ \{\mathsf{P}(c)\} \qquad \qquad \mathsf{O} \ = \ \{\forall x \ (\mathsf{P}(x) \to \exists y \ (\mathsf{R}(x,y) \land \mathsf{P}(y)))\}$

Taming the First Dimension of Infinity

 $\mathsf{D} = \{\mathsf{P}(c)\} \qquad \mathsf{O} = \{\forall x \ (\mathsf{P}(x) \to \exists y \ (\mathsf{R}(x,y) \land \mathsf{P}(y)))\}$

Universal Models (a.k.a. Canonical Models)

An instance U is a universal model of $D \land O$ if the following holds:

1. U is a model of $D \land O$

2. $\forall J \in \text{models}(D \land O)$, there exists a homomorphism h_J such that $h_J(U) \subseteq J$
Query Answering via Universal Models

Theorem: D \land O \models Q iff U \models Q, where U is a universal model of D \land O

Proof: (\Rightarrow) Trivial since, for every J \in models(D \land O), J \models Q

 (\Leftarrow) By exploiting the universality of U

 $\forall J \in \mathsf{models}(\mathsf{D} \land \mathsf{O}), \exists h_J \text{ such that } h_J(g(\mathsf{Q})) \subseteq J \implies \forall J \in \mathsf{models}(\mathsf{D} \land \mathsf{O}), J \vDash \mathsf{Q}$

 $\Rightarrow \mathsf{D} \land \mathsf{O} \vDash \mathsf{Q}$

- Fundamental algorithmic tool used in databases
- It has been applied to a wide range of problems:
 - Checking containment of queries under constraints
 - Computing data exchange solutions
 - Computing certain answers in data integration settings
 - o ...

... what's the reason for the ubiquity of the chase in databases?

it constructs universal models

 $\forall x (Person(x) \rightarrow \exists y (HasParent(x,y) \land Person(y)))$

 $chase(D,O) = D \cup$

0

0

 $\forall x (Person(x) \rightarrow \exists y (HasParent(x,y) \land Person(y)))$

chase(D,O) = D \cup {HasParent(John, z_1), Person(z_1),

HasParent(z_1 , z_2), Person(z_2),

HasParent(z_2 , z_3), Person(z_3), ...

infinite instance

The Chase Procedure: Formal Definition

- Chase rule the building block of the chase procedure
- A rule $\rho = \forall \mathbf{x} \forall \mathbf{y} (\varphi(\mathbf{x}, \mathbf{y}) \rightarrow \exists \mathbf{z} \psi(\mathbf{x}, \mathbf{z}))$ is applicable to instance J if:
 - 1. There exists a homomorphism h such that $h(\varphi(\mathbf{x},\mathbf{y})) \subseteq J$
 - 2. There is no g \supseteq h_{|x} such that g($\psi(\mathbf{x},\mathbf{z})$) \subseteq J

The Chase Procedure: Formal Definition

- Chase rule the building block of the chase procedure
- A rule $\rho = \forall \mathbf{x} \forall \mathbf{y} (\varphi(\mathbf{x}, \mathbf{y}) \rightarrow \exists \mathbf{z} \psi(\mathbf{x}, \mathbf{z}))$ is applicable to instance J if:
 - 1. There exists a homomorphism h such that $h(\varphi(\mathbf{x},\mathbf{y})) \subseteq J$
 - 2. There is no $g \supseteq h_{|\mathbf{x}|}$ such that $g(\psi(\mathbf{x},\mathbf{z})) \subseteq J$

- Let $J_+ = J \cup \{g(\psi(\mathbf{x}, \mathbf{z}))\}$, where $g \supseteq h_{|\mathbf{x}|}$ and $g(\mathbf{z})$ are "fresh" nulls not in J
- The result of applying ρ to J is J₊, denoted J $\langle \rho, h \rangle$ J₊ single chase step

The Chase Procedure: Formal Definition

• A finite chase of D w.r.t. O is a finite sequence

```
\mathsf{D} \langle \rho_1, h_1 \rangle \mathsf{J}_1 \langle \rho_2, h_2 \rangle \mathsf{J}_2 \langle \rho_3, h_3 \rangle \mathsf{J}_3 \ \dots \ \langle \rho_n, h_n \rangle \mathsf{J}_n
```

and chase(D,O) is defined as the instance J_n

 $\mathsf{D} \langle \rho_1, h_1 \rangle \mathsf{J}_1 \langle \rho_2, h_2 \rangle \mathsf{J}_2 \langle \rho_3, h_3 \rangle \mathsf{J}_3 \ \dots \ \langle \rho_n, h_n \rangle \mathsf{J}_n \ \dots$

all applicable rules will eventually be applied

and chase(D,O) is defined as the instance $\bigcup_{k \ge 0} J_k$ (with $J_0 = D$)

least fixpoint of a monotonic operator - the chase step

Chase: A Universal Model

Theorem: chase(D,O) is a universal model of $D \land O$

Proof (sketch):

- By construction, chase(D,O) \in models(D \land O)
- It remains to show that chase(D,O) can be homomorphically embedded into every other model of D \wedge O
- Fix an arbitrary instance J ∈ models(D ∧ O). We need to show that there exists h such that h(chase(D,O)) ⊆ J
- By induction on the number of applications of the chase step, we show that for every $k \ge 0$, there exists h_k such that h_k (chase^[k](D,O)) \subseteq J, and h_k is compatible with h_{k-1}
- Clearly, $\cup_{k \ge 0} h_k$ is a well-defined homomorphism that maps chase(D,O) to J
- The claim follows with $h = \bigcup_{k \ge 0} h_k$

the result of the chase after k applications of the chase step

Chase: Uniqueness Property

• The result of the chase is not unique - depends on the order of rule application

D = {P(a)}	$\rho_1 = \forall x \ (P(x) \to \exists y \ R(y))$	$\rho_2 = \forall x \ (P(x) \to R(x))$	
	$\text{Result}_1 = \{P(a), R(z), R(a)\}$	ρ_1 then ρ_2	
	$\text{Result}_2 = \{P(a), R(a)\}$	ρ_2 then ρ_1	

• But, it is unique up to homomorphic equivalence

 \Rightarrow it is unique for query answering purposes

Query Answering via the Chase

Theorem: D \land O \models Q iff U \models Q, where U is a universal model of D \land O

&

Theorem: chase(D,O) is a universal model of $D \land O$

 \bigcup **Corollary:** $D \land O \models Q$ iff chase(D,O) $\models Q$

We can tame the first dimension of infinity by exploiting the chase procedure

Can we tame the second dimension of infinity?

Undecidability of OBQA

Proof Idea : By simulating a deterministic Turing machine with an empty tape.

Gaining Decidability

By restricting the database

- {Start(c)} $\land O \vDash Q$ iff the Turing Machine T accepts
- The problem is undecidable already for singleton databases

By restricting the query language

- $D \land O \vDash \exists x \operatorname{Accept}(x)$ iff the Turing Machine T accepts
- The problem is undecidable already for atomic queries

By restricting the ontology language

- Achieve a good trade-off between expressive power and complexity
- Field of intense research (Calabria, Dresden, Edinburgh, Montpellier, Oxford, Vienna)

Datalog[±] Nomenclature

- Extend Datalog by allowing in the head:
 - Existential quantification (\exists)
 - Equality atoms (=)
 - Constant false (\perp)

 $Datalog[\exists,=,\perp]$

a highly expressive ontology language

Datalog[±] Nomenclature

- Extend Datalog by allowing in the head:
 - Existential quantification (\exists)
 - Equality atoms (=)
 - Constant false (\perp)

Datalog[∃,=,⊥]

- But, already Datalog[] is undecidable
- Datalog[∃,=,⊥] is syntactically restricted → Datalog[±]

Gaining Decidability

By restricting the database

- {Start(c)} $\land O \vDash Q$ iff the DTM M accepts
- The problem is undecidable already for singleton databases

By restricting the query language

- $D \land O \vDash \exists x Accept(x)$ iff the DTM M accepts
- The problem is undecidable already for atomic queries

By restricting the ontology language

- Achieve a good trade-off between expressive power and complexity
- Field of intense research (Calabria, Dresden, Edinburgh, Montpellier, Oxford, Vienna)

What is the Source of Non-termination?

 $\forall x (Person(x) \rightarrow \exists y (HasParent(x,y) \land Person(y)))$

chase(D,O) = D \cup {HasParent(John, z_1), Person(z_1),

HasParent(z_1 , z_2), Person(z_2),

HasParent(z_2 , z_3), Person(z_3), ...

- 1. Existential quantification
- 2. Recursive definitions

0

Termination of the Chase

- Drop existential quantification
 - We obtain the class of **full** existential rules
 - Very close to Datalog

- Drop recursive definitions
 - We obtain the class of **acyclic** existential rules
 - o A.k.a. non-recursive existential rules

Recall our Example

0

 $\forall x (Person(x) \rightarrow \exists y (HasParent(x,y) \land Person(y)))$

chase(D,O) = D \cup {HasParent(John, z_1), Person(z_1),

HasParent(z_1 , z_2), Person(z_2),

HasParent(z_2 , z_3), Person(z_3), ...

The above rule can be written as the DL-Lite axiom

Person \sqsubseteq \exists HasParent.Person

Recall our Example

0

 $\forall x (Person(x) \rightarrow \exists y (HasParent(x,y) \land Person(y)))$

chase(D,O) = D \cup {HasParent(John, z_1), Person(z_1),

HasParent(z_1 , z_2), Person(z_2),

HasParent(z_2 , z_3), Person(z_3), ...

Existential quantification & recursive definitions are key features for modelling ontologies

Research Challenge

We need classes of existential rules such that:

- 1. Existential quantification and recursive definitions coexist
- 2. OBQA is decidable, and tractable in the data complexity

 \Downarrow

Tame the infinite chase:

Deal with infinite instances without explicitly building them

Linear Existential Rules

• A linear existential rule is an existential rule of the form

- We denote **LINEAR** the ontology language based on linear existential rules
- A local property we can inspect one rule at a time

 \Rightarrow given O, we can decide in linear time whether O \in LINEAR

 \Rightarrow closed under union

• But, is this a reasonable ontology language?

LINEAR vs. DL-Lite

DL-Lite: Popular family of DLs - at the basis of the OWL 2 QL profile of OWL 2

DL-Lite Axioms	First-order Representation	
$A\sqsubseteqB$	$\forall x \ (A(x) \rightarrow B(x))$	
A ⊑ ∃R	$\forall x \ (A(x) \rightarrow \exists y \ R(x,y))$	
∃R ⊑ A	$\forall x \forall y \ (R(x,y) \rightarrow A(x))$	
∃R ⊑ ∃P	$\forall x \forall y \ (R(x,y) \rightarrow \exists z \ P(x,z))$	
A ⊑ ∃R.B	$\forall x \; (A(x) \rightarrow \exists y \; (R(x,y) \land B(y)))$	
$R \sqsubseteq P$	$\forall x \forall y \ (R(x,y) \rightarrow P(x,y))$	
$A\sqsubseteq\negB$	$\forall x (A(x) \land B(x) \rightarrow \bot)$	

Linear Existential Rules

• A linear existential rule is an existential rule of the form

- We denote **LINEAR** the ontology language based on linear existential rules
- A local property we can inspect one rule at a time

 \Rightarrow given O, we can decide in linear time whether O \in LINEAR

 \Rightarrow closed under union

• But, is this a reasonable ontology language? **OWL 2 QL**

Chase Graph

The chase can be naturally seen as a graph - chase graph

R(a,b) S(b) $D = \{R(a,b), S(b)\}$ S(a) $R(z_1,a)$ $O = \begin{cases} \forall x \forall y \ (R(x,y) \land S(y) \rightarrow \exists z \ R(z,x)) \\ \forall x \forall y \ (R(x,y) \rightarrow S(x)) \end{cases}$ $S(z_1)$ $R(z_2, z_1)$ $S(z_2)$

For **LINEAR** the chase graph is a forest

 $R(z_3, z_2)$

Bounded Derivation-depth Property (BDDP)

Definition: An ontology language **L** enjoys the BDDP if:

for every ontology $O \in L$ and CQ Q, there exists $k \ge 0$ such that,

for every database D, chase(D,O) \vDash Q \Rightarrow chase^k(D,O) \vDash Q

Bounded Derivation-depth Property (BDDP)

Definition: An ontology language **L** enjoys the BDDP if:

for every ontology $O \in L$ and CQ Q, there exists $k \ge 0$ such that,

for every database D, chase(D,O) \vDash Q \Rightarrow chase^k(D,O) \vDash Q

The Blocking Algorithm for LINEAR

The blocking algorithm shows that OBQA(LINEAR) is

- in 2EXPTIME in combined complexity
- in PTIME in data complexity

Complexity of OBQA(LINEAR)

...but, we can do better than the blocking algorithm

Theorem: OBQA(LINEAR) is

- PSPACE-complete in combined complexity
- in LOGSPACE in data complexity

Key Observation

non-deterministic, level-by-level construction

Combined Complexity of LINEAR

Theorem: OBQA(LINEAR) is in PSPACE

Proof (high-level idea):

Combined Complexity of LINEAR

Theorem: OBQA(LINEAR) is in PSPACE

Proof (high-level idea):

Combined Complexity of LINEAR

Theorem: OBQA(LINEAR) is in PSPACE

Proof (high-level idea):

Theorem: OBQA(LINEAR) is in PSPACE

Proof (high-level idea):

Theorem: OBQA(LINEAR) is in PSPACE

Proof (high-level idea):

Theorem: OBQA(LINEAR) is in PSPACE

Proof (high-level idea):

• At each step we need to maintain

 $\circ \mathcal{O}(|\mathbf{Q}|)$ atoms

○ A counter ctr $\leq |Q|^2 \cdot |sch(O)| \cdot (2 \cdot maxarity)^{maxarity}$

- Thus, we need polynomial space
- The claim follows since NPSPACE = PSPACE

We cannot do better than the previous algorithm

Theorem: OBQA(**LINEAR**) is PSPACE-hard

Proof Idea : By simulating a deterministic polynomial space Turing machine

Complexity of OBQA(LINEAR)

Theorem: OBQA(LINEAR) is

- \checkmark PSPACE-complete in combined complexity
 - in LOGSPACE in data complexity

Query Rewriting

 $\forall D : D \land O \vDash Q \Leftrightarrow D \vDash Q_0$

Query Rewriting

Theorem: OBQA(L) is UCQ-rewritable

 \Rightarrow OBQA(L) is in LOGSPACE in data complexity

Proof: Fix $O \in L$ and CQ Q. We need to show that OBQA[O,Q] is in LOGSPACE:

- 1. Construct Q_0 in $\mathcal{O}(1)$ time (due to UCQ rewritability)
- 2. Check whether $D \models Q_0$ in LOGSPACE (classical result)

Complexity of OBQA(LINEAR)

Theorem: OBQA(LINEAR) is

- ✓ PSPACE-complete in combined complexity
- ? in LOGSPACE in data complexity

... it suffices to show that OBQA(LINEAR) is UCQ-rewritable

Bounded Derivation-depth Property (BDDP)

Definition: An ontology language **L** enjoys the BDDP if:

for every ontology $O \in L$ and CQ Q, there exists $k \ge 0$ such that,

for every database D, chase(D,O) \vDash Q \Rightarrow chase^k(D,O) \vDash Q

Bounded Derivation-depth Property (BDDP)

Proposition: L enjoys the BDDP \Rightarrow OBQA(L) is UCQ-rewritable

 \Rightarrow to entail a CQ Q we need at most $|Q| \cdot \beta^k$ database atoms

Bounded Derivation-depth Property (BDDP)

Proposition: L enjoys the BDDP \Rightarrow OBQA(L) is UCQ-rewritable

Given an ontology $O \in L$ and a CQ Q:

- $D_{\beta,\delta,q}$ be the set of all possible databases of size at most $|Q| \cdot \beta^{\delta}$
- $C = \{ D \in D_{\beta,\delta,q} \mid chase(D,O) \vDash Q \}$
- Convert **C** into a UCQ

Complexity of OBQA(LINEAR)

Theorem: OBQA(LINEAR) is

- ✓ PSPACE-complete in combined complexity
- \checkmark in LOGSPACE in data complexity

- Ontology-based query answering under existential rules
- Technical challenges and the right technical tool (the chase)
- Tame the infinite chase: linear existential rules key properties and complexity

...but, is **LINEAR** the ultimate ontology language?

Research Challenge

We need classes of existential rules such that:

1. Existential quantification and recursive definitions coexist

2. OBQA is decidable, and tractable in the data complexity

\Downarrow

Tame the infinite chase:

Deal with infinite structures without explicitly building them

Transitive Closure

 $\forall x \forall y (ParentOf(x,y) \rightarrow AncestorOf(x,y))$

 $\forall x \forall y \forall z \ (ParentOf(x,y) \land AncestorOf(y,z) \rightarrow AncestorOf(x,z))$

IDB-Linear Existential Rules

 A predicate that does not occur in the head of a rule is extensional (EDB); otherwise, is intensional (IDB)

• A set of existential rules is IDB-linear if every rule is of the form

• We denote **IDB-LINEAR** the obtained ontology language

Transitive Closure

 $\forall x \forall y (ParentOf(x,y) \rightarrow AncestorOf(x,y))$

 $\forall x \forall y \forall z (ParentOf(x,y) \land AncestorOf(y,z) \rightarrow AncestorOf(x,z))$

Complexity of OBQA(IDB-LINEAR)

Theorem: OBQA(IDB-LINEAR) is

- PSPACE-complete in combined complexity
- NLOGSPACE-complete in data complexity

Complexity of IDB-LINEAR

Proof (high-level idea):

and then apply the linear rule

 $\forall \mathbf{x} \forall \mathbf{y} \; (\mathsf{R}(\mathsf{h}(\mathbf{x}),\mathsf{h}(\mathbf{y})) \rightarrow \exists \mathbf{z} \; \psi(\mathsf{h}(\mathbf{x}),\mathbf{z}))$

non-deterministic level-by-level construction

Complexity of OBQA(IDB-LINEAR)

Theorem: OBQA(IDB-LINEAR) is

- PSPACE-complete in combined complexity
- NLOGSPACE-complete in data complexity

 $\forall \mathbf{x} \forall \mathbf{y} \ (\varphi(\mathbf{x}, \mathbf{y}) \rightarrow \exists \mathbf{z} \ \psi(\mathbf{x}, \mathbf{z}))$ single occurrence of an IDB predicate

- We cannot have joins over null values
- We cannot express "complex" recursive definitions

...we need more sophisticated restrictions at the level of variables

Classification of body-variables

- Harmless: one that can be satisfied only by constants
- Harmful: one that is not harmless
- Dangerous: one that is harmful, and also appears in the rule-head

 $\begin{array}{l} \forall x \forall y \forall z \; (\mathsf{P}(x,y), \; \mathsf{S}(y,z) \; \rightarrow \; \exists w \; \mathsf{T}(y,x,w)) \\ \\ \forall x \forall y \forall z \; (\mathsf{T}(x,y,z) \; \rightarrow \; \exists w \; \mathsf{P}(w,z)) \\ \\ \\ \forall x \forall y \; (\mathsf{P}(x,y) \; \rightarrow \; \exists z \; \mathsf{Q}(x,z)) \end{array}$

Classification of body-variables

- Harmless: one that can be satisfied only by constants
- Harmful: one that is not harmless
- Dangerous: one that is harmful, and also appears in the rule-head

 $\begin{array}{ll} \forall x \forall y \forall z \ (\mathsf{P}(x,y), \ \mathsf{S}(y,z) \ \rightarrow \ \exists w \ \mathsf{T}(y,x,\underline{w})) & \text{Existential Positions} \\ \\ \forall x \forall y \forall z \ (\mathsf{T}(x,y,z) \ \rightarrow \ \exists w \ \mathsf{P}(\underline{w},z)) & \mathsf{T}[3], \ \mathsf{P}[1], \ \mathsf{Q}[2] \\ \\ \\ \forall x \forall y \ (\mathsf{P}(x,y) \ \rightarrow \ \exists z \ \mathsf{Q}(x,\underline{z})) & \end{array}$

Classification of body-variables

- Harmless: one that can be satisfied only by constants
- Harmful: one that is not harmless
- Dangerous: one that is harmful, and also appears in the rule-head

$$\begin{array}{ll} \forall x \forall y \forall z \; (\mathsf{P}(\underline{x},y), \; \mathsf{S}(y,z) \; \rightarrow \; \exists w \; \mathsf{T}(y,\underline{x},\underline{w})) & \quad \mathsf{Existential Positions} \\ \\ \forall x \forall y \forall z \; (\mathsf{T}(x,y,z) \; \rightarrow \; \exists w \; \mathsf{P}(\underline{w},z)) & \quad \mathsf{T}[3], \; \mathsf{P}[1], \; \mathsf{Q}[2] \\ \\ \\ \forall x \forall y \; (\mathsf{P}(x,y) \; \rightarrow \; \exists z \; \mathsf{Q}(x,\underline{z})) & \quad \mathsf{T}[2] \end{array}$$

Classification of body-variables

- Harmless: one that can be satisfied only by constants
- Harmful: one that is not harmless
- Dangerous: one that is harmful, and also appears in the rule-head

$$\begin{array}{ll} \forall x \forall y \forall z \; (\mathsf{P}(\underline{x},y), \; \mathsf{S}(y,z) \; \rightarrow \; \exists w \; \mathsf{T}(y,\underline{x},\underline{w})) & \quad \mathsf{Existential Positions} \\ \\ \forall x \forall y \forall z \; (\mathsf{T}(x,y,\underline{z}) \; \rightarrow \; \exists w \; \mathsf{P}(\underline{w},\underline{z})) & \quad \mathsf{T}[3], \; \mathsf{P}[1], \; \mathsf{Q}[2] \\ \\ \\ \forall x \forall y \; (\mathsf{P}(x,y) \; \rightarrow \; \exists z \; \mathsf{Q}(x,\underline{z})) & \quad \mathsf{T}[2], \; \mathsf{P}[2] \end{array}$$

Classification of body-variables

- Harmless: one that can be satisfied only by constants
- Harmful: one that is not harmless
- Dangerous: one that is harmful, and also appears in the rule-head

 $\begin{array}{ll} \forall x \forall y \forall z \; (\mathsf{P}(\underline{x},y), \; \mathsf{S}(y,z) \; \rightarrow \; \exists w \; \mathsf{T}(y,\underline{x},\underline{w})) & \text{Existential Positions} \\ \\ \forall x \forall y \forall z \; (\mathsf{T}(x,y,\underline{z}) \; \rightarrow \; \exists w \; \mathsf{P}(\underline{w},\underline{z})) & \mathsf{T}[3], \; \mathsf{P}[1], \; \mathsf{Q}[2] \\ \\ \\ \forall x \forall y \; (\mathsf{P}(\underline{x},y) \; \rightarrow \; \exists z \; \mathsf{Q}(\underline{x},\underline{z})) & \mathsf{T}[2], \; \mathsf{P}[2], \; \mathsf{Q}[1] \end{array}$

Classification of body-variables

- Harmless: one that can be satisfied only by constants
- Harmful: one that is not harmless
- Dangerous: one that is harmful, and also appears in the rule-head

$$\begin{array}{ll} \forall x \forall y \forall z \ (\mathsf{P}(x,y), \ \mathsf{S}(y,z) \ \rightarrow \ \exists w \ \mathsf{T}(y,x,w)) & \mathsf{Existential \ Positions} \\ \\ \forall x \forall y \forall z \ (\mathsf{T}(x,y,z) \ \rightarrow \ \exists w \ \mathsf{P}(w,z)) & \mathsf{T}[3], \ \mathsf{P}[1], \ \mathsf{Q}[2] \\ \\ \\ \forall x \forall y \ (\mathsf{P}(x,y) \ \rightarrow \ \exists z \ \mathsf{Q}(x,z)) & \mathsf{T}[2], \ \mathsf{P}[2], \ \mathsf{Q}[1] \\ \\ \checkmark \end{array}$$

Weakly-Frontier-Guarded (WFG)

• A set of existential rules is WFG if every rule is of the form

there exists a guard atom that contains all the dangerous variables

 $\forall \mathbf{x} \forall \mathbf{y} \ (\varphi(\mathbf{x}, \mathbf{y}) \to \exists \mathbf{z} \ \psi(\mathbf{x}, \mathbf{z}))$

We denote WFG the obtained ontology language

Complexity of OBQA(WFG)

Theorem: OBQA(WFG) is

- 2EXPTIME-complete in combined complexity
- EXPTIME-complete in data complexity

Source of complexity: The guard and the rest of the body share harmful variables

Warded

• A set of existential rules is warded if every rule is of the form

contains all the dangerous variables, and shares with $\varphi(\mathbf{x}, \mathbf{y})$ only harmless variables

 $\forall \mathbf{x} \forall \mathbf{y} \left(\mathsf{G}(\mathbf{x}, \mathbf{y}) \land \varphi(\mathbf{x}, \mathbf{y}) \rightarrow \exists \mathbf{z} \ \psi(\mathbf{x}, \mathbf{z}) \right)$

We denote **WARDED** the obtained ontology language

Complexity of OBQA(WARDED)

Theorem: OBQA(WARDED) is

- EXPTIME-complete in combined complexity
- PTIME-complete in data complexity

a "nearly" maximal fragment of WFG

at least one occurrence of a dangerous variable that appears in the guard, appears outside the guard \Rightarrow EXPTIME-complete in data complexity

Warded + Stratified Negation

