
Can We Trust SQL 
as a Data Analytics Tool? 



SQL

• The query language for relational databases 

• International Standard since 1987 

• Implemented in all systems (free and commercial) 

• $30B/year business 

• Most common tool used by data scientists



Main Questions

• Do we understand SQL queries, even simple ones? 

• And if we think we do, do query results make sense?



Asking these questions now?
A bit of history: 
before 1969, various 
ad-hoc database 
modes (network, 
hierarchical) 

writing queries: a 
very elaborate task

All changed in 1969: Codd’s relational model; 
now dominates the world. 

Query writing made easy: SQL



Relational Model
ORDER_ID TITLE PRICE

Ord1 “Big Data” 30

Ord2 “SQL” 35
Ord3 “Logic” 50

CUST_ID ORDER

c1 Ord1

c2 Ord2

CUST_ID NAME

c1 John

c2 Mary

Orders Pay Customer
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Ord2 “SQL” 35
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CUST_ID ORDER

c1 Ord1
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CUST_ID NAME

c1 John

c2 Mary

Language: Relational Algebra (RA)

•projection 𝛑 (find book titles) 

•selection 𝛔 (find books that cost at least £40) 

•Cartesian product ×

•union ∪ 
•difference -

Orders Pay Customer



Queries
Find ids of customers who buy all books:
𝛑cust_id (Pay) -  
       𝛑cust_id ((𝛑 cust_id(Pay) ×  𝛑title(Order)) -  
              𝛑cust_id,title (𝛔order_id=order (Order × Pay)))
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Queries
Find ids of customers who buy all books:
𝛑cust_id (Pay) -  
       𝛑cust_id ((𝛑 cust_id(Pay) ×  𝛑title(Order)) -  
              𝛑cust_id,title (𝛔order_id=order (Order × Pay)))
That’s not pretty. But here is a better idea (1971): 

express queries in logic

{c | ∀(o,t,p) ∊ Order  ∃ (o’,t,p’) ∊ Order: (c,o’) ∊ Pay}

This is first-order logic (FO).  
Codd 1971: RA = FO. 



History continued
Of course programmers don’t write logical sentences, they 

need a programming syntax. Enters SQL:

SELECT P.cust_id FROM P 
WHERE NOT EXISTS 
      (SELECT * FROM Order O  
       WHERE NOT EXISTS  
            (SELECT * FROM Order O1  
             WHERE O1.title=O.title AND O1.order_id=P.order))
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Of course programmers don’t write logical sentences, they 

need a programming syntax. Enters SQL:

SELECT P.cust_id FROM P 
WHERE NOT EXISTS 
      (SELECT * FROM Order O  
       WHERE NOT EXISTS  
            (SELECT * FROM Order O1  
             WHERE O1.title=O.title AND O1.order_id=P.order))

 
•  Take FO and turn into into programming syntax:
•   Committee design!
•  Then use RA to implement queries.

∀xF(x) = ¬∃x ¬F(x) 



SQL development
• Standards: SQL-86, SQL-89, SQL-92, SQL:1999, 

SQL:2003, SQL:2008, SQL:2011, SQL:2016 

• The latest standard will make you $1000 poorer  

• The core remains the same. 

• And yet things are not as obvious as they should be. 

• Now a few quiz-type slides….
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Except in MySQL
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Q1(x) :- T(x,y) 
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Now the same in SQL:
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return



Why do we find these 
questions difficult?

• Reason 1: there is no formal semantics of SQL. 

• The Standard is rather vague, not written formally, and 
different vendors interpret it differently.  

• Reason 2: theory works with a simplified model, no nulls, 
no duplicates, no repeated attributes.  

• Under these assumptions several semantics exist 
(1985 - 2017) but they do not model the real language.



It is much harder to deal with the real thing than with 
theoretical abstractions 
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From spherical to real cows

• We do it for the basic fragment of SQL: 

• SELECT-FROM-WHERE without aggregation

• but with pretty much everything else

[G.,L. A Formal Semantics of SQL Queries, its Validation and Applications. PVLDB 2017]



Syntax

Terms t: constants, nulls, or composite names

Names: either simple (R, A) or composite (R.A)

Predicates: anything you want on constants 

⌧ : � := T1 AS N1, . . . , T

k

AS N

k

for ⌧ = (T1, . . . , T
k

), � = (N1, . . . , N
k

), k > 0

↵ : �0 := t1 AS N

0
1, . . . , t

m

AS N

0
k

for ↵ = (t1, . . . , tm), �

0= (N 0
1, . . . , N

0
m

), m > 0

Queries:

Q

:= SELECT [ DISTINCT ] ↵ : �0 FROM ⌧ : � WHERE ✓

| SELECT [ DISTINCT ] ⇤ FROM ⌧ : � WHERE ✓

| Q (UNION | INTERSECT | EXCEPT) [ ALL ] Q

Conditions:

✓

:= TRUE | FALSE | P (t1, . . . , t
k

), P 2 P
| t IS [ NOT ] NULL

| t̄ [ NOT ] IN Q | EXISTS Q

| ✓ AND ✓ | ✓ OR ✓ | NOT ✓

Figure 1: Syntax of basic SQL with user-defined predicates P

straightforward, the way column names are handled in SQL
is of paramount importance for providing the semantics of
queries, which is our goal, and it requires a few clarifications.

• Can column names be repeated? For base tables stored
in the database this is not allowed, but it is fairly easy
to write SQL queries that produce tables with repeated
column names. For example, if R is a base table with
a column named A, the query SELECT A,A FROM R out-
puts a table with two columns, both named A.

• What are column names exactly? If we only look at base
tables or at the output of an SQL query, these are just
attribute names. However, we also need to provide the
semantics of subqueries, and each subquery appearing
in the FROM clause is given a name. For example, in the
query

SELECT R.A, S.A FROM R, (SELECT A FROM R) AS S

the base table R and the subquery in FROMmust produce
a table whose columns are named R.A and S.A, which
are pairs of names.

Thus, in general, column names in a table can repeat, and
they can be either names or pairs of names. Towards cap-
turing this, we assume the following two countable infinite
sets:
• N of names, which will serve as names of tables and their

columns, and
• C of data values that, along with NULL, will populate data-

bases.
We refer to the elements of N as names, and to pairs of ele-
ments of N (i.e., elements of N2) as full names, for which we
will use the SQL-like notation N1.N2 rather than (N1, N2).

We can now define the data model. A record is a tuple of
elements of C[{NULL}, and a table of arity k > 0 is a bag of
records of length k. A schema is a set R ⇢ N of (base) table
names, where each R 2 R is associated with a non-empty
tuple `(R) of distinct attribute names from N. A database
D maps each R to a (base) table R

D of arity |`(R)|. We
write R(A1, . . . , An

) to indicate that `(R) = (A1, . . . , An

).

2.2 Syntax of basic SQL
Our goal is to define the semantics of syntactically correct

SQL queries, which have been successfully type-checked and
compiled. Thus, w.l.o.g. we assume that queries are given in
a form where all attribute names are fully annotated with
the name of the table they come from. As an example,
consider a schema with R(A) and T(A,B), and the query

SELECT A, B AS C
FROM R, (SELECT B FROM T) AS U
WHERE A = B

The fully annotated version of this query will be

SELECT R.A AS A, U.B AS C
FROM R AS R, (SELECT T.B AS B FROM T AS T) AS U
WHERE R.A = U.B

In other words, each base table or subquery in FROM is given
an explicit name, and its attributes are then qualified using
that name; moreover, the names of the attributes that will
appear in the output of the query are explicitly listed in the
SELECT clause. In fact, this closely resembles what happens
when compiling SQL queries: RDBMSs add similar annota-
tions to table and attribute names.
Another observation is that if a query compiled success-

fully, there are no type clashes, and thus we can assume that
all comparisons and operations are applied to arguments of
the right types. This explains why we assumed that there is
just one set of data values that includes values of all types.
As already explained, in this paper we fully analyze the

fragment that we call basic SQL. This fragment includes:
• the usual SELECT-FROM-WHERE queries;
• constants and NULLs in the SELECT list, along with (fully

qualified) attribute names;
• NULLs handled according to SQL’s 3-valued logic;
• arbitrary user-specified conditions on base types;
• correlated subqueries in WHERE connected with EXISTS,
IN and their negations;

• correlated subqueries in FROM;
• set and bag semantics of queries;
• operations of union, intersection, and di↵erence (in both

set and bag flavors); and
• arbitrary Boolean combinations of conditions.

Notations and conventions A term t is either a constant
in C, or NULL, or a full name in N

2. We let t̄ stand for tuples
of terms. We shall adopt the following conventions:

N ranges over names in N.
A ranges over full names (elements of N2).
↵ ranges over tuples of terms.
� ranges over tuples of names.
R ranges over names of base tables in a database.
c ranges over constants (elements of C).

References to tables are denoted by T , which indicates either
a query Q (whose output is indeed a table), or the name of
a base table R. We let ⌧ range over tuples of (references to)
tables.

The syntax of basic SQL is given in Figure 1, where both
queries Q and conditions ✓ are defined by mutual recursion:
queries have conditions in the WHERE clause, and a condition
may involve a query within EXISTS or IN.



Semantics: labels

`(R) = tuple of names provided by the schema

`(⌧) = `(T1) · · · `(T
k

) for ⌧ = (T1, . . . , T
k

)

`

✓

SELECT [ DISTINCT ] ↵ : �0

FROM ⌧ : � WHERE ✓

◆

= �

0

`

�

SELECT [ DISTINCT ] ⇤ FROM ⌧ : � WHERE ✓

�

= `(⌧)

`

�

Q1 (UNION | INTERSECT | EXCEPT) [ ALL ] Q2

�

= `(Q1)

Figure 2: Output attributes of basic SQL queries.

Observe that � and �

0 in queries provide explicit names for
the tables in FROM and for the terms in SELECT, respectively.

The fragment we consider is parameterized by a collection
P of predicates on base types. We assume that equality (=)
of values is always available, for all types. Other operations
can be type-specific, such as comparisons < and  for inte-
gers, or the lexicographic ordering and LIKE predicates for
strings. All we assume is that there is a well-defined seman-
tics of such predicates for non-null values of base types.

3. BASIC SQL: FORMAL SEMANTICS
Our goal now is to provide a formal semantics of queries

from the SQL fragment defined in the previous section. Fol-
lowing the standard convention, we denote the semantics of
a query Q by JQK. This is a function that takes a database
D as input and produces the output JQK

D

, which is the table
obtained by executing Q on D. The tuple of names assigned
to the columns of JQK

D

is denoted by `(Q), which is defined
inductively on the structure of Q as shown in Figure 2 (con-
catenation of tuples is denoted by juxtaposition). For exam-
ple, for Q = SELECT * FROM R,S on a schema with R(A,B)
and S(A,C), we have `(Q) = `(R) `(S) = (A,B,A,C).

As for JQK, in general it is not enough to assume that the
only input is the database D, since we also need to provide
the semantics of subqueries, which may take parameters. In
conditions of the form t̄ IN Q, for example, the query Q can
refer to full names in t̄, whose values come from elsewhere.
The standard way to account for this in programming se-
mantics [17, 26] is to define an environment ⌘ that provides
values for such parameters. In our case, the parameters are
full names, so ⌘ is a partial map from N

2 to values, that pro-
vides the binding for each pair of table name and attribute
name (e.g., S.B) on which it is defined.

This suggests that the function we need to define is JQK
D,⌘

that takes a databaseD and the bindings of the environment
⌘ and produces the output of Q. Then, for a query without
parameters, we are looking at JQK

D

= JQK
D,?.

This is almost true, but there is one more Boolean input
that needs to be added. The problem with the definitions
of the SQL Standard is that the semantics of queries is not
compositional: that is, semantically a query can behave dif-
ferently depending on the context in which it occurs. This is
true of queries of the form SELECT *. Normally * means that
all attributes have to be returned, but if such a query occurs
under EXISTS, then * is equivalent to having any constant c
in its place. This could lead to di↵erent behaviors. For ex-
ample, given a base table R with attribute A, the query Q =
SELECT * FROM (SELECT R.A, R.A FROM R) AS T will fail

due to the ambiguity of the reference to R.A,1 but the query
SELECT * FROM R WHERE EXISTS (Q) will work and output
R whenever it is nonempty. Thus, the same query Q has
di↵erent semantics depending on the context.
To take into account the two meanings of * in the SELECT

clause of queries, we introduce an additional Boolean input
to JQK. If Q is the outermost query nested inside an EXISTS
condition, this switch is set to 1, otherwise to 0. Then, when
Q is of the form SELECT * . . . , value 1 indicates that * is to
be replaced with an arbitrary constant, and 0 that it must
be expanded into a list of full names (provided by the FROM
clause, as we shall see shortly). Thus, our semantic function
becomes JQK

D,⌘,x

where x is the value of the Boolean switch;
for the top-level query Q, we then take JQK

D

= JQK
D,?,0.

Before providing the formal semantics of SQL queries, we
need to introduce a few notions related to names and their
bindings, and define operations on relations.

Scopes and bindings Each full name M.N mentioned in
the SELECT or WHERE clause of queries is a reference to some
attribute N in some table M . How are references resolved?
Each SELECT-FROM-WHERE block defines a scope, and scopes
are nested according to the structure of the query. Then, for
each reference M.N , we first look for a match (i.e., a table
M with an attribute N) in the FROM clause of the local scope
where the reference occurs; if a match is not found (which
is the case of parameters), we look at the FROM clause of the
innermost scope in which the current one is nested, and so
on until a match is found (or the query does not compile).
To model the notion of scope, we first define the operation

N.(N1, . . . , Nn

) that prefixes each nameN
i

withN , yielding
the tuple of full names (N.N1, . . . , N.N

m

). For ⌧ = (T1, . . . ,

T

k

) and � = (N1, . . . , N
k

), we then let

`(⌧ : �) = N1.`(T1) · · ·N
k

.`(T
k

)

where again juxtaposition means concatenation of tuples.
We now formalize how the full names in a scope are bound

to the values of a record in order to provide an environment.
Given a tuple of full names Ā = (A1, . . . , Am

) and a record
r̄ = (a1, . . . , am

) of the same length, we define the environ-
ment ⌘

Ā,r̄

that maps each non-repeated element A
i

of Ā to
the corresponding value a

i

of r̄; if A
i

occurs more than once
in Ā, then ⌘

Ā,r̄

is not defined on it (a reference to a repeated
full name is ambiguous).
The following definitions formalize how an environment is

updated w.r.t. a scope and revised with new bindings. Given
an environment ⌘ and a tuple of full names Ā, we denote
by ⌘ * Ā the environment obtained by removing from ⌘ the
bindings for all elements of Ā. That is, ⌘ * Ā is undefined
on every A 2 Ā, and it is otherwise identical to ⌘. Given
two environments ⌘ and ⌘

0, by ⌘; ⌘0 we mean ⌘ overridden
by ⌘

0. That is, ⌘; ⌘0(A) = ⌘(A) if ⌘ is defined on A and ⌘

0

is not; otherwise ⌘; ⌘0(A) = ⌘

0(A). Finally, we can put all of
the above together and define

⌘

r̄

� Ā =
�

⌘ * Ā

�

; ⌘
Ā,r̄

which updates ⌘ by first unbinding the full names in Ā and
then overridding the result by ⌘

Ā,r̄

.

Operations on tables To describe the semantics of SQL
queries, we will use some of the standard operations on bags

1This is the behavior prescribed by the Standard; not all
RDBMSs follow it, see Section 4.



Semantics
⟦Q⟧D,𝜂,x

Q: query  

D: database 
𝜂: environment (values for composite names) 

x: Boolean switch to account for non-compositional nature of     

SELECT *  (to show where we are in the query) 



Semantics of terms

JtK
⌘

=

8

>

<

>

:

⌘(A) if t = A

c if t = c 2 C

NULL if t = NULL

J(t1, . . . , tn)K⌘ =
�

Jt1K⌘, . . . , JtnK
⌘

�

Figure 3: Semantics of SQL terms and truth values.

[3, 15, 22]. We denote by #(r̄, T ) the number of occurrences
(mutiplicity) of a record r̄ in table T ; if r̄ does not occur in
T , then #(r̄, T ) = 0. We also write r̄ 2

k

T for #(r̄, T ) = k.
In addition, we use r̄ 2 T to indicate that r̄ 2

k

T for some
k > 0, and r̄ 62 T for r̄ 20 T .

The bag operations [, \ and � are defined as follows:

#(t̄, T1 [ T2) = #(t̄, T1) + #(t̄, T2)

#(t̄, T1 \ T2) = min
�#(t̄, T1) ,#(t̄, T2)

�

#(t̄, T1 � T2) = max
�#(t̄, T1)� #(t̄, T2) , 0

�

Cartesian product ⇥ multiplies the number of occurences of
tuples: that is, #�(t̄1, t̄2), T1 ⇥ T2

�

= #(t̄1, T1) · #(t̄2, T2).
Finally, the duplicate elimination operation " turns a bag
into a set by only keeping one occurrence of each tuple;
formally #(t̄, "(T )) = min

�#(t̄, T ) , 1
�

.

Explanation of the semantics
We now explain the key elements of the semantics, presented
in Figures 3–6. The semantic function J·K takes di↵erent in-
puts depending on the syntactic construct under considera-
tion: for queries Q the inputs are a database D, an environ-
ment ⌘ and a Boolean variable x whose value is either 0 or
1; for conditions ✓, the inputs are just the database and the
environment; for terms t, the only input is the environment.

Terms (see Figure 3) The semantics of a term is given by the
environment ⌘: if a term t is a constant or null, it denotes
itself; if it is a full name A, then it denotes ⌘(A). The
semantics of a tuple t̄ of terms is simply the tuple of values
obtained by interpreting each term in t̄.

Queries (see Figure 4) A base table R obviously denotes its
interpretation in the database, i.e., RD. The evaluation of a
SELECT-FROM-WHERE block starts by computing the Cartesian
product of the tables produced by the elements of ⌧ , each
of which is either a base tables or the output of a subquery.
When the WHERE ✓ clause is added, the tuples satisfying ✓

are selected from the product. Observe that in this case the
environment changes: when the condition ✓ is evaluated for
a record in the Cartesian product, the environment must be
revised with the bindings for that record, because the scope
of the local FROM clause has precedence over the outer scopes.
For each record in the product that satisfies ✓, the revised
environment is then applied to the SELECT list ↵, which may
also contain parameters, to produce the final output.
As discussed before, if the SELECT list is “*”, the behavior

depends on the context in which the query block occurs; this
is determined by the value of the Boolean switch x, which
is set to 1 only for queries nested in an EXISTS condition.

Conditions (see Figure 5) As already mentioned, SQL op-
erates with three truth values: true t, false f , and unknown
u. The semantics of a condition is one of these truth values.

The expressions TRUE and FALSE denote t and f respectively.
For a k-ary predicate P , defined on non-null values, the se-
mantics is u if one of the arguments is NULL. For equality,
which is always assumed to be among the available predi-
cates, we have that Jt1 = t2KD,⌘

is u if one of Jt1K⌘ or Jt2K⌘
is NULL; if both are elements c1, c2 2 C, then the semantics
is simply the result of the comparison c1 = c2.
The condition t̄ IN Q is the disjunction of all the equalities

t̄ = s̄ for every s̄ in the output of Q, while EXISTS Q tests for
non-emptiness. Note that, among conditions, only the basic
predicates P 2 P and t̄ IN Q can produce the truth value u;
this is then propagated through the connectives ^, _ and ¬
following the truth tables of SQL’s 3VL, which corresponds
to what is known as the Kleene logic (see [5]).

Operations (see Figure 6) UNION ALL, INTERSECT ALL, and
EXCEPT ALL are the bag operations [, \, and � we described
before. Without the keyword ALL, their set-theoretic version
is used (for di↵erence, duplicate elimination is applied first).

Examples It is easy to follow the rules of the semantics
to see that queries Q1–Q3 from the introduction produce
exactly the same results as they should, namely ?, {1, NULL}
and {1} on a database with R = {1, NULL} and S = {NULL}.
As for the queries in the third example in the introduction,

the first of them will be rejected since it will force a SELECT
list containing an ambiguous reference (i.e., a full name that
is repeated in the FROM clause of the scope against which it
resolves). The second one, as it occurs under EXISTS, will be
allowed, because * will be replaced by an arbitrary constant
and no such ambiguity will occur.
These observations confirm the correctness of the seman-

tics on the small number of examples from the introduction;
in the next section we shall use many more examples of
queries for validating the semantics.

4. EXPERIMENTAL VALIDATION OF SQL
SEMANTICS

Now that we have given a formal semantics of basic SQL
queries, how can we be sure that it is correct? The Standard
is written in natural language; this was the motivation to
provide a proper formal specification for the language in the
first place. But what does it even mean that the semantics is
correct? Intuitively, the correctness of the semantics should
entail that it produces the same results as real RDBMSs do.
Of course, proving such a statement formally is infeasible,
which leaves open one route: experimental validation.
Thus, our plan is to experimentally confirm, with a su�-

ciently high degree of confidence, that the formal semantics
from Section 2 is the right one, i.e., agrees with a very large
number of randomly generated SQL queries, on random rela-
tional databases. There is one obstacle though, already dis-
cussed in the introduction. We formalized the description of
the Standard, but all RDBMSs deviate from the Standard,
typically in small but nonetheless significant ways [4, 21].
These necessitate adjusting the semantics we presented to
account for the small di↵erences real systems have with the
Standard.
To give some concrete example, PostgreSQL has chosen to

use compositional semantics of queries: that is, SELECT * be-
haves in the same way regardless of the context in which the
query is used. This means that the extra Boolean switch is
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Figure 4: Semantics of basic SQL: Queries.
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Other systems slightly change the syntax; for example Or-
acle uses MINUS instead of EXCEPT, while MySQL does not
have it altogether. Such syntactic modifications are easy to
account for.

Thus, to experimentally validate the semantics, we need to
provide minor adjustments so that it would capture precisely
what a concrete system implements. Under this understand-
ing, we need to describe the following three components:

1. the correctness criterion;
2. the query generator for experiments;
3. implementation of the formal semantics; and
4. results of the experiments.

Correctness criterion Once we implement the semantics,
we shall validate it w.r.t. a large number of randomly gener-
ated SQL queries, on random relational databases. By vali-
dating we mean that the semantics coincides with the result
of executing the same query on an RDBMS. By “coincide”
we mean that the table obtained from our implementation
of the semantics and the table obtained as output from the
DBMS have precisely the same number of columns, with the
same names and in the same order, and that they have pre-
cisely the same rows (with the same multiplicities) although
their order is arbitrary.

Query generator There are well-defined database bench-
marks, like TPC-H [31], but they are designed for analyzing
database performance. Benchmarks use commonly occur-
ring queries (e.g., business support queries in TPC-H), but
they have relatively few of them (22 for TPC-H). In order to
validate the semantics, we need to compare it with the out-
put of DBMSs on a significantly larger number of queries.
While this precludes the use of standard benchmarks, we
can still look at them to analyze the structure and features
of their queries, and use those to generate a large number of
queries that look somewhat like those found in benchmarks.

Towards that goal, we look at characteristics of the TPC-
H benchmark. There are a total of eight base tables, but on
average each benchmark query uses only 3.2 and all queries
but one use 6 or fewer. Each query uses relatively few WHERE
conditions per block, in fact only three queries use more than
8 conditions, and no query exceeds three levels of nesting.

We implemented a random query generator, which takes
as input a schema, a set of names that can be used as aliases
for attributes and tables, and the following parameters:

• tables = max number of tables (counting repetitions)
mentioned in a well-defined SELECT-FROM-WHERE block,
including nested subqueries;

• nest = max level of nested queries in FROM and WHERE;
• attr = max number of attributes in a SELECT clause;
• cond = max number of atomic conditions in WHERE.

Based on the above observations from TPC-H, we chose the
values table = 6, nest = 3, attr = 3, cond = 8.

Implementation of the semantics We implemented the
semantics of Figures 3–6 in Python. Note that we only need
this implementation to verify correctness against RDBMSs,
and not for its performance. In fact, we have two slightly dif-
ferent implementations: one that accounts for PostgreSQL’s
compositional semantics, and one for Oracle’s syntax.

Experimental results We used a fixed schema with base
tables R1, . . . , R8, where each R

i

consists of i+1 attributes.
Since the data type of values is immaterial to our semantics,
to avoid type checking and therefore simplify query gener-
ation, all attributes in the schema are of type int. Using
the query generator described earlier, we generated 100,000
random queries over this schema, and for each of them we
generated a corresponding database instance using the ran-
dom data generator Datafiller [11]. As we are not assessing
performance here, the size of database instances is of sec-
ondary importance; hence, to speed up our implementation
of the semantics (which computes Cartesian products) we
capped the size of each generated base table to 50 rows.
For each query and associated database, we compared the

output of PostgreSQL and Oracle with the output produced
by our implementation of each variant of the semantics. The
results were always the same. In particular, for some queries
involving SELECT * Oracle raised an error due to presence of
ambiguous references; in each of these cases, our implemen-
tation (the variant adjusted for Oracle) also raised an error,
due to the environment being undefined on such ambiguous
references, as expected. Of course, these situations did not
arise for PostgreSQL.
This gives us good evidence to state that the semantics of

Figures 3–6 is correct.

To sum up, our experiments validate the semantics of Sec-
tion 2, and allow us to proceed to use this semantics in two
applications that formally prove results about real-life SQL.

5. APPLICATION: EQUIVALENCE OF
SQL AND ALGEBRA

It is a fundamental result of relational database theory
that the expressiveness of the basic declarative query lan-
guage, relational calculus, is the same as that of the basic

Bag interpretation of operations;  ∊ is duplicate elimination 



Looks simple, no?
• It does not. Such basic things as variable binding 

changed several times till we got them right. 

• The meaning of the new environment:                                                                                        

• in  𝜼, unbind every name that occurs among labels 
of the FROM clause  

• then bind non-repeated names among those to 
values taken from record r 

!
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How do we know we this is 
correct?

• Since the Standard is rather vague, there is only 
one way — experiments. 

• But what kind of benchmark can we use? 

• For performance studies there are standard 
benchmarks like TPC-H. But they won’t work for us: 
not enough queries. 



Experimental Validation
• Benchmarks have rather few queries (22 in TPC-H). Validating on 

22 queries is not a good evidence.  

• But we can look at benchmarks, and then generate lots of queries 
that look the same. 

• In TPC-H:  

• 8 tables,  

• maximum nesting depth = 3,  

• average number of tables per query = 3.2,  

• at most 8 conditions in WHERE (except two queries)



Validation: results
• Small adjustments of the Standard semantics (for 

Postgres and Oracle) 

• Random query generator 

• Naive implementation of the semantics 

• Finally: experiments on 100,000 random queries



Validation: results
• Small adjustments of the Standard semantics (for 

Postgres and Oracle) 

• Random query generator 

• Naive implementation of the semantics 

• Finally: experiments on 100,000 random queries

• Yes, it is correct!



What can we do with this?

• Equivalence of basic SQL and Relational Algebra: 
formally proved for the first time 

• Previous attempts (Ceri and Gottlob, Van den Bussche and 
Vansummeren restricted the language severely: no nulls, for 
example). 

• 3-valued logic of SQL vs the usual Boolean logic:   
3-valued logic does not add expressiveness.  

• Although it does not mean we should get rid of it now…



Does it matter which DBMS we use?

• We already saw it does. In fact in our experiments we 
adjusted things a bit for Postgres and Oracle.  

• But how much of a difference does it make? 

• We have a random query generator, so let’s experiment:  

• generate lots of queries (over 150K) 

• send to standard DBMSs (Oracle, MySQL, MS SQL 
Server, PostgreSQL, IBM DB2) 

• and see what happens…



Discrepancies between RDBMSs

• About 2% of queries do not behave the same way on different 
DBMSs 

• and they come from the most basic fragment  

• Lots of issues are minor and syntactic 

• different syntax for set operations (eg EXCEPT vs MINUS) 
or functions (eg % vs MOD, or substring vs substr) 

• But some are serious - and surprise even people with good SQL 
knowledge. Four of the most surprising examples to follow…



Is empty string equal to itself?
SELECT *  
FROM     R  
WHERE  ‘’=‘’



Is empty string equal to itself?
SELECT *  
FROM     R  
WHERE  ‘’=‘’

• Usually it is, but not in Oracle: the above query always returns 
the empty table. 

• Because Oracle implements NULL as ‘’ 

• Madness? Yes. With a string operation that produces ‘’ you 
deal with 3-valued logic before you realize it! 



Can you divide by zero?
SELECT  R.A/S.B  
FROM      R, S  

R={1},     S={0}



Can you divide by zero?

• Usually not except in MySQL 5.6 

• It returns NULL 

• OK, they realized it in MySQL 5.7 and now by default it’s a 
warning. But one can go back to the 5.6 mode if one wishes…  

SELECT  R.A/S.B  
FROM      R, S  

R={1},     S={0}



Is equality transitive?
x=y  and  y=z  imply  x=z,  right?



Is equality transitive?
x=y  and  y=z  imply  x=z,  right?

• Usually yes, but not in MySQL 

• x=’1a’, y=1, z=‘1b’ 

• Why is this a problem? SQL books teach 
programmers to overspecify join conditions:                    
to R.A=S.A  AND  S.A=T.A  add explicitly  R.A=T.A 

• But now it can turn a true condition into false!



Can you compare tuples in IN subqueries?

SELECT   *  
FROM      R 
WHERE   (R.A, R.B)  IN  SELECT  (S.A, S.B  FROM  S)



Can you compare tuples in IN subqueries?

SELECT   *  
FROM      R 
WHERE   (R.A, R.B)  IN  SELECT  (S.A, S.B  FROM  S)

• Usually yes, except in MS SQL Server. 
• Why? No clue… 

• Also SQL Server has UNION but no UNION ALL. 
• Please explain this. 



A simple tool

• We actually have a tool that lets you: 

• specify parameters of a query workload 

• generate lots of random queries, and 

• run against DBMSs you want to compare 

• Have fun with results… at least you know what to 
expect. 


