Can We Trust SQL
as a Data Analytics Tool?

SQL

- The query language for relational databases

- International Standard since 1987

- Implemented in all systems (free and commercial)
- $30B/year business

+ Most common tool used by data scientists

Main Questions

- Do we understand SQL queries, even simple ones”?

- And if we think we do, do query results make sense?

Asking these gquestions now"

A Dbit of history:
before 1969, various
ad-hoc database
modes (network,
hierarchical)

writing queries: a
very elaborate task

All changed in 1969: Codd’s relational model;
now dominates the world.

Query writing made easy: SQL

Relational Moaqgel

Orders
ORDER _ID TITLE PRICE
Ord| “Big Data” | 30
Ord2 “SQL”’ 35
Ord3 “Logic” 50

CUST_ID ORDER

cl

Pay

Ord|

c2

Ord2

Customer

CUST_ID NAME

cl John

c2 Mary

Re\ancma\ Vlioqel

Orders Customer
ORDER_ID TITLE PRICE CUST ID ORDER CUST ID NAME
Ord| “Big Data” | 30
cl Ord| cl John
Or‘dZ “SQL” 35 2 O d2 2 M
Ord3 “Logic” 50 - : - !

Language: Relational Algebra (RA)

eprojection m (find book titles)
eselection o (find books that cost at least £40)
eCartesian product x

e NiON U

*difference -

Queries

Find ids of customers who buy all books:
Tlcust id (PaY) =
Tlcust id ((T[Cust_id(PaY) X T[title(order)) -

Tcust_id. title (Gorder_id:order (Order x PaY)))

Queries

Find ids of customers who buy all books:
Tteust_id (Pay) -
Tlcust_id ((‘lT cust_id(Pay) x ﬂtitle(order)) B
Toust_id,itle (Gorder id=order (Order x Pay)))

That's not pretty. But here is a better idea (1971):
express queries in logic

Queries

Find ids of customers who buy all books:
Tlcust id (PaY) =
Tlcust id ((T[Cust_id(PaY) X T[title(Ol’der)) -

Tcust_id. title (Gorder_id:order (Order x PaY)))

That's not pretty. But here is a better idea (1971):
express queries in logic

{c | V(o,t,p) e Order 3 (0't,p’) « Order: (c,0’) « Pay}

Queries

Find ids of customers who buy all books:
Tlcust id (PaY) =
Tlcust id ((T[Cust_id(PaY) X T[title(Ol’der)) -

Tcust_id. title (Gorder_id:order (Order x PaY)))

That's not pretty. But here is a better idea (1971):
express queries in logic

{c | V(o,t,p) e Order 3 (0't,p’) « Order: (c,0’) « Pay}

This is first-order logic (FO).
Codd 1971: RA = FO.

History continued

Of course programmers don’t write logical sentences, they
need a programming syntax. Enters SQL.:

SELECT P.cust_id FROM P
WHERE NOT EXISTS
(SELECT * FROM Order O
WHERE NOT EXISTS
(SELECT * FROM Order O1
WHERE O1.title=0.title AND O1.order_id=P.order))

History continued

Of course programmers don’t write logical sentences, they
need a programming syntax. Enters SQL.:

SELECT P.cust id FROM P
WHERE NOT EXISTS _
(SELECT * FROM Order O VxF(x) = =dx =F(x)
WHERE NOT EXISTS
(SELECT * FROM Order O1
WHERE O1.title=0.title AND O1.order_id=P.order))

History continued

Of course programmers don’t write logical sentences, they
need a programming syntax. Enters SQL.:

SELECT P.cust_id FROM P

WHERE NOT EXISTS _
(SELECT * FROM Order O VxF(x) = =dx =F(x)

WHERE NOT EXISTS
(SELECT * FROM Order O1
WHERE 0O1.1itle=0.title AND O1.order_id=P.order))

- Take FO and turn into into programming syntax:
» Committee design!
» Then use RA to implement queries.

SQL development

- Standards: SQL-86, SQL-89, SQL-92, SQL:1999,

SQL:2003, SQL:2008, SQL:2011, SQL:2016

- The latest standard will make you $1000 poorer

- The core remains the same.

- And yet things are not as obvious as they should be.

- Now a few quiz-type slides....

TASK: Relations R(A), S(A)
Compute R - S.

TASK: Relations R(A), S(A)
Compute R - S.

Every student will write:

select R.A from R where R.A not in (select S.A from S)

TASK: Relations R(A), S(A)
Compute R - S.

Every student will write:

select R.A from R where R.A not in (select S.A from S)

And they are taught it is equivalent to :

select R.A from R
where not exists (select S.A from S where S.A=R.A)

TASK: Relations R(A), S(A)
Compute R - S.

Every student will write:

select R.A from R where R.A not in (select S.A from S)

And they are taught it is equivalent to :

select R.A from R
where not exists (select S.A from S where S.A=R.A)

and that they can do it directly in SQL.:

select * from r except select * from s

S
TASK: Relations R(A), S(A)
1

Compute R - S.

null

null

Every student will write:

select R.A from R where R.A not in (select S.A from S)

And they are taught it is equivalent to :

select R.A from R
where not exists (select S.A from S where S.A=R.A)

and that they can do it directly in SQL.:

select * from r except select * from s

S Outputs:
TASK: Relations R(A), S(A) utputs:
1

Compute R - S.

null

null

Every student will write:

select R.A from R where R.A not in (select S.A from S)

And they are taught it is equivalent to :

select R.A from R
where not exists (select S.A from S where S.A=R.A)

and that they can do it directly in SQL.:

select * from r except select * from s

S Qutputs:

TASK: Relations R(A), S(A)
Compute R - S. 1

null

null

Every student will write:

=

select R.A from R where R.A not in (select S.A from S)

And they are taught it is equivalent to :

select R.A from R
where not exists (select S.A from S where S.A=R.A)

and that they can do it directly in SQL.:

select * from r except select * from s

S Qutputs:

TASK: Relations R(A), S(A)
Compute R - S. 1

null

null

Every student will write:

=

select R.A from R where R.A not in (select S.A from S)

And they are taught it is equivalent to :

1

null

select R.A from R
where not exists (select S.A from S where S.A=R.A)

and that they can do it directly in SQL.:

select * from r except select * from s

S Qutputs:

TASK: Relations R(A), S(A)
Compute R - S. 1

null

null

Every student will write:

=

select R.A from R where R.A not in (select S.A from S)

And they are taught it is equivalent to :

1

null

select R.A from R
where not exists (select S.A from S where S.A=R.A)

and that they can do it directly in SQL.:

select * from r except select * from s

Q

.

&

R
A
ECT R.A, R.A FROM R on gives m 1

SELECT * should be simple, no?

Q=S

&

SELECT * should be simple, no?

L]

R
A
ACT R.A, RRA FROM R on gives m

Let's use It as a subquery:

Q =8

R

90T * FROM (Q) AS T

Q=S

&

SELECT * should be simple, no?

L]

R
A
ACT R.A, RRA FROM R on gives m

Let's use It as a subquery:

Q = 8S.

N

ICT * FROM (Q) AS T

Output:
e Postgres: as above
e Oracle, MS SQL Server: compile-time error

Q=S

&

SELECT * should be simple, no?

L]

R
A
ACT R.A, RRA FROM R on gives m

Let's use It as a subquery:

Q =8

SELECT R.A FROM R WH.

R

90T * FROM (Q) AS T

Output:
e Postgres: as above
e Oracle, MS SQL Server: compile-time error

&

R

&

EXISTS (@)

Q=S

&

SELECT * should be simple, no?

L]

R
A
ACT R.A, RRA FROM R on gives m

Let's use It as a subquery:

Q =8

SELECT R.A FROM R WH.

R

90T * FROM (Q) AS T

Output:
e Postgres: as above
e Oracle, MS SQL Server: compile-time error

&

R

&

EXISTS (@)

Answer:;

Q=S

&

SELECT * should be simple, no?

L]

R
A
ACT R.A, RRA FROM R on gives m

Let's use It as a subquery:

Q =8

SELECT R.A FROM R WH.

R

90T * FROM (Q) AS T

Output:
e Postgres: as above
e Oracle, MS SQL Server: compile-time error

&

R

&

EXISTS (@)

Answer: Except in MySQL

Another example: Query equivalences

Another example: Query equivalences

Q1(x) :- T(x,y)

Q2(x) :-T

(

X,y), T(u,v)

In theory:
equivalent; on

SN P

1
3

return

1
3

Another example: Query equivalences

Q1(x) :- T(x,y)
Q2(x) :- T(x,y), T(u,v)

Now the same in SQL.:

In theory:
equivalent; on

SN P

1
3

return

1
3

Another example: Query equivalences

Q1(x) :- T(x,y)
Q2(x) :- T(x,y), T(u,v)

In theory:

Now the same in SQL.:

Q1 =85:

&

ECT R.A FROM R,

equivalent; on

SN P

1
3

returns

return

1
3

Another example: Query equivalences

._ - A B
Q1(x) :- T(X,y) In theory: eturn

SN P

Q2(x) :- T(x,y), T(u,v) equivalent; on ;

Now the same in SQL.:

ECT R.A FROM R returns

=]
-

Q1 =85:

ECT R1.A FROM R Rl, R R&

=
-

Q2 = S:

returns

1

Why do we find these
questions difficult™

- Reason 1: there is no

- The Standard is rather vague, not written formally, and
different vendors interpret it differently.

- Reason 2: theory works with a . no nulls,

no duplicates, no repeated attributes.

- Under these assumptions several semantics exist
(1985 - 2017) but they do not model the real language.

It is much harder to deal with the real thing than with
theoretical abstractions

It is much harder to deal with the real thing than with
theoretical abstractions

Assume a spherical cow of uniform density.

From spherical to real cows

We do it for the basic fragment of SQL.:

- SELECT-FROM-WHERE without aggregation

but with pretty much everything else

[G.,L. A Formal Semantics of SQL Queries, its Validation and Applications. PVLDB 2017]

Syntax

7:8 = TiAas N1, ..., T, aAs Ny, for 7= (T1,..., Tx), 8 = (N1, ..., Ny), k>0
a:B = tias Ny, ..., tm AS N for a = (t1,...,tm), B'= (N1,...,N,,), m >0
(QUERIES: CONDITIONS:
(Q = SELECT [DISTINCT]| o : 3 FROM T : 3 WHERE 0 6 = TRUE | FALSE | P(t1,..., tr),
| SELECT [DISTINCT| * FROM 7 : 3 WHERE 0 | ¢ IS [NOT| NULL
| Q (UNION | INTERSECT | EXCEPT) [ALL] Q) | ¢ [NOT] IN @ | EXISTS)

| 6 aND 6 | 6 OR 0 | NOT 6

Names: either simple (R, A) or composite (R.A)
Terms t: constants, nulls, or composite names

Predicates: anything you want on constants

Semantics: labels

tuple of names provided by the schema
((r) =4L4(Ty)---4(Ty,) for = (T1,...,Tk)

E(SELECT [DISTINCT| o : f3) _g

FROM T : 3 WHERE 0
{(SELECT [DISTINCT |+ FROM T : 3 WHERE 6) = {(7)

¢(Q1 (UNION | INTERSECT | EXCEPT) [ALL| Q2) = 4(Q1)

Semantics

[Q]b,n,x

Q: query

D: database

n. environment (values for composite hames)
X. Boolean switch to account for non-compositional nature of

SELECT * (to show where we are in the query)

Semantics of terms

emantics: queries

|

D
[[R]]Dm,w =R
[[7-:5]]D>77,$ — [[Tl]]Dﬂ)aO X X [[Tk]]D77770 for T = (T]-""7Tk)
(
FROM 7T : _ I r
[[WHERE 0 ’ =q 7o | TR [7:BlDimo, [Olpm =t, 0 =n@l(r:p)
1p - H/_/
" \ k times
SELECT «:f | _ FROM 7 : 0
FROM T :[3 =< [a]y,--s[a]y | ' =ndLlr:B), T ey |[WHERE 8- ﬂ
0 (G - J/ D n,x
WHERE U4 Dnx \ k times oY
[SELECT = [seLECT 4(7:8):4(7)

FROM 7:0 = FROM T :

WHERE 0 Do WHERE 0 Dm0
[SELECT [SELECT cas N

FROM 7:0 — FROM 7:0 for arbitrary c € C and N € N

WHERE 0 I b | WHERE 0 Dot
SELECT DISTINCT «: [’ | * _ . SELECT «: 3’ | *
FROM T : 3 WHERE 0 an_ FROM 7T : 3 WHERE 0 Doz

Semantics: conditions

t

[P(t1,...,te)]pn= <« f
u

t

[t s NULL] D, = {f

[t IS NOT NULL||p , = —[t

H(tlp . tn) == (tll, “en 7t;’b)]]D,7] =
t
[[t_ IN Q]]D,n — f
u
[t NoT IN Q]p., = [t

t
f

[EXISTS Q]D 5

{

[TRUE]p ., =t
[FALSE]p,, =f

TRUTH TABLES:

/\ [[ti — t;]]Dm
i=1

if P([t1]n, .-
if P([t1]n,--
if [¢;], = NULL for some i € {1,...

., [tx]5) holds and [t:], # NuLL for all ¢ € {1,...,k}
., [tk]n) does not hold and [¢;], # NULL for all ¢ € {1,...,k}

k)
if [t], = NULL
if [[t],, # NULL

IS NULL|p,,

[t tn) # (Ehs e)] D = \/ [t: # tilp.

if 37 € [Q]p,n,0 s.t. [t =7F]pn, =1

ifVr € [Q]pm,ost. [t=7F]pn,=Ff

if 37 € [Q]p,n0 s.t. [t = Flp,y =t and 37 € [Q]pn0 st. [t =7]p,y # £
IN Q] b,y

if [[Q]]Dm,l # &
if [Q]p.n1 =2

[01 28D 02]p .y, = [01] D,y A [02] Dy [NoT O] b, = —[0] D,y

[01 OR O2] D,y = [01]D,n V [02] Dy
t

Al t £ u V f u =
t |t f u t |t t ¢t t | f
f | f £ f f |t f u f |t
ulu f u ul/lt u u u| u

Semantics: operations

[Q1 UNION ALL Q2]|D,n, = [Q1] Dm0 U [Q2] D50

[@1 INTERSECT ALL Q2| Do = [Q1]D,n,0 N [@2]D,n,0

[@1 EXCEPT ALL Q2] D,n,» = [@1]D,n,0 — [@2] Dm0
[Q1 UNION Q2] D,y = €([Q1 UNION ALL Q2]p,n,)

[Q1 INTERSECT Q2] D,y = €([Q1 INTERSECT ALL Q2]p,y,2)

[Q1 EXCEPT Q2]p,n= = £([Q1]D.n.0) — [Q2]D.7.0

Bag interpretation of operations; € is duplicate elimination

| ooks simple, no”

- |t does not. Such basic things as variable binding
changed several times till we got them right.

- The meaning of the new environment:

FROM 7. _ _ _ p 7
|lWHERE ! Bﬂan: { r,..., T T €k [[Tiﬁ]]p’n’o, [[QHD,n’ = t, N :n@ﬁ(Tﬁ) }

- In 71, unbind every name that occurs among labels
of the FROM clause

- then bind non-repeated names among those to
values taken from record r

How do we know we this Is
correct?

- Since the Standard is rather vague, there is only
one way — experiments.

- But what kind of benchmark can we use?

- For performance studies there are standard

benchmarks like . But they won't work for us:
not enough queries.

Experimental Validation

- Benchmarks have rather few queries (22 in TPC-H). Validating on
22 queries is not a good evidence.

- But we can look at benchmarks, and then generate lots of queries
that look the same.

- In TPC-H:

- 8 tables,
- maximum nesting depth = 3,
»+ average number of tables per query = 3.2,

- at most 8 conditions in WHERE (except two queries)

Validation: results

- Small adjustments of the Standard semantics (for
Postgres and Oracle)

- Random query generator

- Naive implementation of the semantics

- Finally: experiments on 100,000 random queries

Validation: results

- Small adjustments of the Standard semantics (for
Postgres and Oracle)

- Random query generator
- Naive implementation of the semantics

- Finally: experiments on 100,000 random queries

* Yes, It is correct!

What can we do with this”?

- Equivalence of basic SQL and Relational Algebra:
formally proved for the first time

Previous attempts (Ceri and Gottlob, Van den Bussche and
Vansummeren restricted the language severely: no nulls, for
example).

- 3-valued logic of SQL vs the usual Boolean logic:
3-valued logic

Although it does not mean we should get rid of it now...

Does it matter which DBMS we use?

- We already saw it does. In fact in our experiments we
adjusted things a bit for Postgres and Oracle.

- But how much of a difference does it make?
- We have a random query generator, so let's experiment:
+ generate lots of queries (over 150K)

- send to standard DBMSs (Oracle, MySQL, MS SQL
Server, PostgreSQL, IBM DB2)

- and see what happens...

Discrepancies between RDBMSs

- About 2% of queries do not behave the same way on different

DBMSs

- and they come from the most basic fragment

- Lots of issues are minor and syntactic

- different syntax for set operations (eg -

6 XC]

1PT vs MINUS)

or functions (eg % vs MOD, or substring vs substr)

- But some are serious - and surprise even people with good SQL
knowledge. Four of the most surprising examples to follow...

|s empty string equal to itself?

SELECT *
FROM R
WHERE =%

|s empty string equal to itself?

SELECT *
FROM R
WHERE =%

-=J

» Usually it is, but not in Oracle: the above query always returns
the empty table.

* Because Oracle implements NULL as “

* Madness? Yes. With a string operation that produces “ you
deal with 3-valued logic before you realize it!

Can you divide by zero?

SELECT R.A/S.B
FROM R, S

R={1}, 5={0}

Can you divide by zero?

SELECT R.A/S.B
FROM R, S

R={1}, 5={0}

» Usually not except in MySQL 5.6

|t returns NULL

* OK, they realized it in MySQL 5.7 and now by default it's a
warning. But one can go back to the 5.6 mode if one wishes...

Is equality transitive?

xX=y and y=z imply x=z, right?

Is equality transitive?

xX=y and y=z imply x=z, right?

» Usually yes, but not in MySQL
x="1a’, y=1, z="1b’

* Why is this a problem? SQL books teach
programmers to overspecify join conditions:
to R.A=S.A AND S.A=T.A add explicitly R.A=T.A

 But now it can turn a true condition into false!

Can you compare tuples in IN subqueries?

SELECT *
FROM R

WHER.

T (R.A, R..

3) IN S

&

ECT (S.A, S.

3 FROM S)

Can you compare tuples in IN subqueries?

SELECT *
FROM R

WHER.

T (R.A, R..

3) IN S

&

ECT (S.A, S.

» Usually yes, except in MS SQL Server.
* Why? No clue...

3 FROM S)

e Also SQL Server has UNION but no UNION ALL.
* Please explain this.

A simple tool

- We actually have a that lets you:

- specify parameters of a query workload
- generate lots of random queries, and

run against DBMSs you want to compare

Have fun with results... at least you know what to
expect.

