
Lecture 2

ATFD Volume: scalability, approximations 1/87



Big data challenges

Big data is big. But not only. One speaks of 4Vs:

◮ Volume – size does matter

◮ Variety – many data formats

◮ Veracity – data is often incomplete/inconsistent

◮ Velocity – data often arrives at fast speed, updates are frequent

ATFD Volume: scalability, approximations 2/87



Volume challenges

◮ If data is big, many standard algorithms for data processing don’t
scale

◮ If data is VERY BIG, we may not even have what can realistically be
called an algorithm

◮ Classical assumption: data must be at least scanned
◮ Hence the best case is O(n) — linear time
◮ But take a linear scan on the best available device (around 6GB/s)
◮ 1PB is scanned in about 2 days
◮ 1EB is scanned in over 5 years
◮ We have PB data sets, and EB data sets are not far away

ATFD Volume: scalability, approximations 3/87



Approaches

◮ Scale independence: find queries that can be answered regardless of
scale

◮ Approximation

◮ Parallelization

ATFD Volume: scalability, approximations 4/87



Scale Independence

ATFD Volume: scalability, approximations 5/87



Scale independence: desiderata

◮ We need sublinear algorithms: those that run faster than scanning
the input

◮ How can one achieve this? Two ways.

◮ First way: probabilistic guarantees.
◮ e.g., the average number of friends in a social network graph can be

found in time O(
√

n), up to a factor arbitrarily close to 2. More
precisely, we can estimate it up to a factor of 2 + ε using a
randomized algorithm running in time O(

√
n/ε).

◮ But typical database queries are different, e.g. ‘Find friends of John
who live in London and like the same restaurants’

◮ Second way: use auxiliary information about data. Should not be
too surprising: indexing! But what can it be?

ATFD Volume: scalability, approximations 6/87



2/25

Query answering on big data

Queries can be slow on big data due the size of the data:

Q. .

ATFD Volume: scalability, approximations 7/87



2/25

Query answering on big data

Queries can be slow on big data due the size of the data:

Q. .

ATFD Volume: scalability, approximations 8/87



2/25

Query answering on big data

Queries can be slow on big data due the size of the data:

Q. .

ATFD Volume: scalability, approximations 9/87



2/25

Query answering on big data

Queries can be slow on big data due the size of the data:

Q. .

ATFD Volume: scalability, approximations 10/87



2/25

Query answering on big data

Queries can be slow on big data due the size of the data:

Q. .
Current database technology tells us how to quickly answer queries on
“normal” sized data.

ATFD Volume: scalability, approximations 11/87



2/25

Query answering on big data

Queries can be slow on big data due the size of the data:

Q. .DQ. .

Current database technology tells us how to quickly answer queries on
“normal” sized data.

Wouldn’t it be great if we can answer Q on a big database using a
small database inside it?

ATFD Volume: scalability, approximations 12/87



3/25

Can this be done?

ATFD Volume: scalability, approximations 13/87



3/25

Can this be done? Yes!

Armbrust et al. considered the notion of scale independence:

“The evaluation of queries using a number of “operations”

that is independent of the size of data.”

◮ M. Armbrust, A. Fox, D. A. Patterson, N. Lanham, B. Trushkowsky, J. Trutna, and H. Oh. Scads:
Scale-independent storage for social computing applications. In CIDR, 2009.

◮ M. Armbrust, K. Curtis, T. Kraska, A. Fox, M. J. Franklin, and D. A. Patterson. PIQL: Success-tolerant query
processing in the cloud. In VLDB, 2011.

◮ M. Armbrust, E. Liang, T. Kraska, A. Fox, M. J. Franklin, and D. Patterson. Generalized scale independence
through incremental precomputation. In SIGMOD, 2013.

ATFD Volume: scalability, approximations 14/87



4/25

Scale independence: Example

Relation person(id, name, city)

◮ key constraint: id is a key of person relation.

Relation friend(id1, id2) (Facebook graph)

◮ cardinality constraint: each user id1 has at most 5 000 friends in
friend relation (aka Facebook constraint).

Query:

Q.p;name/ D 9id.friend.p; id/ ^ person.id;name;NYC//.

ATFD Volume: scalability, approximations 15/87



4/25

Scale independence: Example

Relation person(id, name, city)

◮ key constraint: id is a key of person relation.

Relation friend(id1, id2) (Facebook graph)

◮ cardinality constraint: each user id1 has at most 5 000 friends in
friend relation (aka Facebook constraint).

Query:

Q.p;name/ D 9id.friend.p; id/ ^ person.id;name;NYC//.

For a given person p0

ATFD Volume: scalability, approximations 16/87



4/25

Scale independence: Example

Relation person(id, name, city)

◮ key constraint: id is a key of person relation.

Relation friend(id1, id2) (Facebook graph)

◮ cardinality constraint: each user id1 has at most 5 000 friends in
friend relation (aka Facebook constraint).

Query:

Q.p;name/ D 9id.friend.p; id/ ^ person.id;name;NYC//.

For a given person p0 there at most 5000 friends

at most 5 000 tuples needed from friends

ATFD Volume: scalability, approximations 17/87



4/25

Scale independence: Example

Relation person(id, name, city)

◮ key constraint: id is a key of person relation.

Relation friend(id1, id2) (Facebook graph)

◮ cardinality constraint: each user id1 has at most 5 000 friends in
friend relation (aka Facebook constraint).

Query:

Q.p;name/ D 9id.friend.p; id/ ^ person.id;name;NYC//.

For a given person p0 there at most 5000 friends

at most 5 000 tuples needed from friends

For each such friend f

ATFD Volume: scalability, approximations 18/87



4/25

Scale independence: Example

Relation person(id, name, city)

◮ key constraint: id is a key of person relation.

Relation friend(id1, id2) (Facebook graph)

◮ cardinality constraint: each user id1 has at most 5 000 friends in
friend relation (aka Facebook constraint).

Query:

Q.p;name/ D 9id.friend.p; id/ ^ person.id;name;NYC//.

For a given person p0 there at most 5000 friends

at most 5 000 tuples needed from friends

For each such friend f we have a unique name.

C at most 1 tuple from person =

ATFD Volume: scalability, approximations 19/87



4/25

Scale independence: Example

Relation person(id, name, city)

◮ key constraint: id is a key of person relation.

Relation friend(id1, id2) (Facebook graph)

◮ cardinality constraint: each user id1 has at most 5 000 friends in
friend relation (aka Facebook constraint).

Query:

Q.p;name/ D 9id.friend.p; id/ ^ person.id;name;NYC//.

For a given person p0 there at most 5000 friends

at most 5 000 tuples needed from friends

For each such friend f we have a unique name.

C at most 1 tuple from person =

10; 000 tuples in total are needed.

ATFD Volume: scalability, approximations 20/87



4/25

Scale independence: Example

Relation person(id, name, city)

◮ key constraint: id is a key of person relation.

Relation friend(id1, id2) (Facebook graph)

◮ cardinality constraint: each user id1 has at most 5 000 friends in
friend relation (aka Facebook constraint).

Query:

Q.p;name/ D 9id.friend.p; id/ ^ person.id;name;NYC//.

For a given person p0 there at most 5000 friends

at most 5 000 tuples needed from friends

For each such friend f we have a unique name.

C at most 1 tuple from person =

10; 000 tuples in total are needed.

For a given person, this query can be answered with a bounded
number of tuples, independent of the size of the Facebook graph.

ATFD Volume: scalability, approximations 21/87



5/25

Scale independent queries: Definition

A query Q is scale independent in a database D if

◮ Q(D) = Q(DQ) for some part DQ ⊆ D; and

◮ the size |DQ | of DQ is independent of the size |D| of D.

A query Q is scale independent if it is scale independent in all
databases.

ATFD Volume: scalability, approximations 22/87



6/25

Checking scale independence

Let’s start with some bad news first:

◮ For first-order queries: undecidable.
◮ This is even true for Boolean FO queries.
◮ The class of scale independent FO queries is not even recursively

enumerable.

◮ For CQ/UCQ queries: are never scale independent, except when
they are trivial.

◮ This is due to monotonicity.
◮ Example of trivial query: return a constant tuple on all database

instances.

ATFD Volume: scalability, approximations 23/87



7/25

Checking scale independence on given database

Intractable or high complexity, except for some special cases.

L Data selecting Boolean

combined data combined data

CQ, UCQ Σp
3-c NP-c O(1)-time O(1)-time

FO PSPACE-c NP-c PSPACE-c NP-c

Special case: when M is a constant

combined data combined data

CQ, UCQ Πp
2-c PTIME O(1)-time O(1)-time

FO PSPACE-c NP-c PSPACE-c PTIME

data complexity: schema and query are fixed, database and M may vary.

combined complexity: nothing is fixed.

ATFD Volume: scalability, approximations 24/87



8/25

Is scale independent a lost cause?

Let us reconsider the Facebook example.

ATFD Volume: scalability, approximations 25/87



9/25

Facebook example revisited

Relation person(id, name, city)

◮ key constraint: id is a key of person relation.

Relation friend(id1, id2)

◮ cardinality constraint: each user id1 has at most 5 000 friends in
friend relation.

Query: Q(p, name) = ∃id
(
friend(p, id) ∧ person(id, name,NYC)

)
.

Scale independence was a result of the interaction between

◮ the query and

◮ information about accessing the data (constraints).

ATFD Volume: scalability, approximations 26/87



9/25

Facebook example revisited

Relation person(id, name, city)

◮ key constraint: id is a key of person relation.

Relation friend(id1, id2)

◮ cardinality constraint: each user id1 has at most 5 000 friends in
friend relation.

Query: Q(p, name) = ∃id
(
friend(p, id) ∧ person(id, name,NYC)

)
.

Scale independence was a result of the interaction between

◮ the query and

◮ information about accessing the data (constraints).

How to specify information about access to the data? How to marry
this with scale independence?

ATFD Volume: scalability, approximations 27/87



10/25

Access Schemas: Definition

For a relational schema R = (R1, . . . ,Rn), an access schema A over R
is a set of tuples (R ,X ,N,T ) where

◮ R is a relation name in R,

◮ X is a set of attributes of R , and

◮ N,T ∈ N.

A database D conforms to the access schema A if for each
(R ,X ,N,T ) ∈ A:

◮ Size bound: for each tuple of values ā of attributes of X , the set
σX=ā(D) has at most N tuples; and

◮ Time bound: σX=ā(D) can be retrieved in time at most T .

ATFD Volume: scalability, approximations 28/87



11/25

Access Schemas: Example

Relation person(id, name, city)

◮ key constraint: id is a key of person relation (size bound).

◮ suppose it takes time T1 to retrieve a tuple based on its key value
(time bound).

Relation friend(id1, id2)

◮ cardinality constraint: each user id1 has at most 5 000 friends in
friend relation (size bound).

◮ suppose it takes time T2 to retrieve those 5 000 tuples (time
bound).

Access schema: A = {(person, id, 1,T1), (friend, id1, 5000,T2)}.

ATFD Volume: scalability, approximations 29/87



12/25

Facebook Example revisited (once more)

Access schema A = {(person, id, 1,T1), (friend, id1, 5000,T2)}.

Query: Q(p, name) = ∃id
(
friend(p, id) ∧ person(id, name,NYC)

)
.

For a given person, this query is scale independent based on the size
bounds in the access schema.

◮ Only 10 000 tuples were needed from the database.

Furthermore, based on the time bounds (T1 and T2) in the access
schema, we know that it takes O(T1 · T2) time to answer the query.

ATFD Volume: scalability, approximations 30/87



12/25

Facebook Example revisited (once more)

Access schema A = {(person, id, 1,T1), (friend, id1, 5000,T2)}.

Query: Q(p, name) = ∃id
(
friend(p, id) ∧ person(id, name,NYC)

)
.

For a given person, this query is scale independent based on the size
bounds in the access schema.

◮ Only 10 000 tuples were needed from the database.

Furthermore, based on the time bounds (T1 and T2) in the access
schema, we know that it takes O(T1 · T2) time to answer the query.

By only looking at the access schema we can tell whether we can
efficiently answer this query.

ATFD Volume: scalability, approximations 31/87



13/25

Scale-independence under access schemas

This motivates the following definition:

When Q(x̄ , ȳ) is fixed but the access schema A may vary, we say that

Q(x̄ , ȳ) is efficiently x̄-scale-independent under A

if the time to answer Q(ā,D) is polynomial in A, on all databases that
conform to A and all instantiations ā of x̄ .

ATFD Volume: scalability, approximations 32/87



13/25

Scale-independence under access schemas

This motivates the following definition:

When Q(x̄ , ȳ) is fixed but the access schema A may vary, we say that

Q(x̄ , ȳ) is efficiently x̄-scale-independent under A

if the time to answer Q(ā,D) is polynomial in A, on all databases that
conform to A and all instantiations ā of x̄ .

In other words, the time to evaluate Q(ā,D) is independent of D!

The Facebook example query is efficiently person-scale-independent
under A = {(person, id, 1,T1), (friend, id1, 5000,T2)}.

It also suggests that building on index on x̄-attributes may be a good
thing!

ATFD Volume: scalability, approximations 33/87



14/25

Can we characterise such queries?

ATFD Volume: scalability, approximations 34/87



14/25

Can we characterise such queries? No

This class of queries is not recursively enumerable.

Instead we provide a syntactic class of queries that

◮ is sufficiently rich to cover interesting queries; and

◮ guarantees that the queries are efficiently scale independent.

ATFD Volume: scalability, approximations 35/87



14/25

Can we characterise such queries? No

This class of queries is not recursively enumerable.

Instead we provide a syntactic class of queries that

◮ is sufficiently rich to cover interesting queries; and

◮ guarantees that the queries are efficiently scale independent.

Syntactic class: x̄-controllable queries.

x̄-controllability =⇒ efficiently x̄-scale independence =⇒ efficient query
answering on big data.

ATFD Volume: scalability, approximations 36/87



15/25

Example

Query: “Find all restaurants in NYC that are rated A and were visited
in a given year yy0 by a given person p0 friends who lived in NYC”

Q(rn, p0, yy0) = ∃id, rid, pn,mm, dd
(
friend(p0, id)

∧ visit(id, rid, yy0,mm, dd) ∧ person(id, pn,NYC)

∧ dates(yy0,mm, dd) ∧ restr(rid, rn,NYC,A)
)
.

Access schema A:

◮ (person, id, 1,T1) and (friend, p, 5000,T2);

◮ (visit, {id, yy, dd,mm}, 1,T3): person visits only one restaurant a
day;

◮ (dates, yy, 366,T4): a year consists of at most 366 years.

◮ (restr, rid, 1,T5): rid is a key.

One can check whether Q is {p, yy}-controlled based on the structure
of the query and by applying some x̄-controllability rules.

ATFD Volume: scalability, approximations 37/87



15/25

Example

Query: “Find all restaurants in NYC that are rated A and were visited
in a given year yy0 by a given person p0 friends who lived in NYC”

Q(rn, p0, yy0) = ∃id, rid, pn,mm, dd
(
friend(p0, id)

∧ visit(id, rid, yy0,mm, dd) ∧ person(id, pn,NYC)

∧ dates(yy0,mm, dd) ∧ restr(rid, rn,NYC,A)
)
.

Access schema A:

◮ (person, id, 1,T1) and (friend, p, 5000,T2);

◮ (visit, {id, yy, dd,mm}, 1,T3): person visits only one restaurant a
day;

◮ (dates, yy, 366,T4): a year consists of at most 366 years.

◮ (restr, rid, 1,T5): rid is a key.

One can check whether Q is {p, yy}-controlled based on the structure
of the query and by applying some x̄-controllability rules.

ATFD Volume: scalability, approximations 38/87



16/25

x̄-controllability: Atom Rule

If (R ,X ,N,T ) is in A, then R(ȳ) is x̄-controlled under A, where x̄ is
the subtuple of ȳ corresponding to attributes in X .

For example

Atom Access schema controlling variables
friend(p, id) (friend, p, 5000,T2) {p}

visit(id, rid, yy,mm, dd) (visit, {id, yy, dd,mm}, 1,T3) {id, yy, dd,mm}
person(id, pn,NYC) (person, id, 1,T1) {id}
dates(yy,mm, dd) (dates, yy, 366,T4) {yy}

restr(rid, rn,NYC,A) (restr, rid, 1,T5) {rid}

We write this as

friend(p, id), visit(id, rid, yy,mm, dd), person(id, pn,NYC),
dates(yy,mm, dd) and restr(rid, rn,NYC,A)

ATFD Volume: scalability, approximations 39/87



16/25

x̄-controllability: Atom Rule

If (R ,X ,N,T ) is in A, then R(ȳ) is x̄-controlled under A, where x̄ is
the subtuple of ȳ corresponding to attributes in X .

For example

Atom Access schema controlling variables
friend(p, id) (friend, p, 5000,T2) {p}

visit(id, rid, yy,mm, dd) (visit, {id, yy, dd,mm}, 1,T3) {id, yy, dd,mm}
person(id, pn,NYC) (person, id, 1,T1) {id}
dates(yy,mm, dd) (dates, yy, 366,T4) {yy}

restr(rid, rn,NYC,A) (restr, rid, 1,T5) {rid}

We write this as

friend(p, id), visit(id, rid, yy,mm, dd), person(id, pn,NYC),
dates(yy,mm, dd) and restr(rid, rn,NYC,A)

ATFD Volume: scalability, approximations 40/87



17/25

x̄-controllability: Conjunction rule

If Qi (x̄i , ȳi ) is x̄i -controlled under A for i = 1, 2, then Q1 ∧ Q2 is
controlled under A by both x̄1 ∪ (x̄2 − ȳ1) and x̄2 ∪ (x̄1 − ȳ2).

visit(id, rid, yy,mm, dd) ∧ dates(yy,mm, dd)
︸ ︷︷ ︸

e1

Controlling variables: {yy} ∪ ({id, yy,mm, dd} \ {mm, dd}) = {id, yy}
(or {id, yy,mm, dd} ∪ ({yy} \ {rid}) = {id, yy,mm, dd}.)

e1(id, rid, yy,mm, dd) ∧ person(id, pn,NYC)
︸ ︷︷ ︸

e2

Controlling variables: {id, yy}

ATFD Volume: scalability, approximations 41/87



17/25

x̄-controllability: Conjunction rule

If Qi (x̄i , ȳi ) is x̄i -controlled under A for i = 1, 2, then Q1 ∧ Q2 is
controlled under A by both x̄1 ∪ (x̄2 − ȳ1) and x̄2 ∪ (x̄1 − ȳ2).

visit(id, rid, yy,mm, dd) ∧ dates(yy,mm, dd)
︸ ︷︷ ︸

e1

Controlling variables: {yy} ∪ ({id, yy,mm, dd} \ {mm, dd}) = {id, yy}
(or {id, yy,mm, dd} ∪ ({yy} \ {rid}) = {id, yy,mm, dd}.)

e1(id, rid, yy,mm, dd) ∧ person(id, pn,NYC)
︸ ︷︷ ︸

e2

Controlling variables: {id, yy}

ATFD Volume: scalability, approximations 42/87



18/25

e1(id, rid, yy,mm, dd) ∧ person(id, pn,NYC)
︸ ︷︷ ︸

e2

Controlling variables: {id, yy}

e2(id, rid, yy,mm, dd, pn,NYC) ∧ friend(p, id)
︸ ︷︷ ︸

e3

Controlling variables: {id, yy, p} or {p, yy}

e3(id, rid, yy,mm, dd, pn,NYC, p) ∧ restr(rid, rn,NYC,A)
︸ ︷︷ ︸

e4

Controlling variables: {p, yy} and {p, yy, rid}.

Note that
Q(rn, p, yy) = ∃id, rid, pn,mm, dd e4(id, rid, yy,mm, dd, pn,NYC, p, rn,A)

ATFD Volume: scalability, approximations 43/87



19/25

x̄-controllability: Existential quantification rule

If Q(ȳ) is x̄-controlled under A and z̄ is a subtuple of ȳ − x̄ , then ∃z̄ Q

is x̄-controlled under A.

Q(rn, p, yy) = ∃id, rid, pn,mm, dd e4(id, rid, yy,mm, dd, pn,NYC, p, rn,A)

Observe that id, rid, pn,mm and dd do not occur in the controlling
variables {p, yy} of e4. Hence, Q’s controlling variables are {p, yy}.

ATFD Volume: scalability, approximations 44/87



19/25

x̄-controllability: Existential quantification rule

If Q(ȳ) is x̄-controlled under A and z̄ is a subtuple of ȳ − x̄ , then ∃z̄ Q

is x̄-controlled under A.

Q(rn, p, yy) = ∃id, rid, pn,mm, dd e4(id, rid, yy,mm, dd, pn,NYC, p, rn,A)

Observe that id, rid, pn,mm and dd do not occur in the controlling
variables {p, yy} of e4. Hence, Q’s controlling variables are {p, yy}.

ATFD Volume: scalability, approximations 45/87



Other rules

◮ Similar rules can be found for other operations:
◮ disjunction
◮ (safe) negation (i.e., Q1 ∧ ¬Q2)
◮ universal quantification ∀
◮ change of free variables (viewing Q(x̄) as Q(x̄ , ȳ)

◮ In isolation, these rules are optimal

ATFD Volume: scalability, approximations 46/87



21/25

Main result on x̄-controllability

It is a sufficient condition for scale independence:

If an FO query Q is x̄-controlled under an access schema A, then it is
efficiently x̄-scale-independent under A.

That is, by filling the variables x̄ in Q by constants ā, Q(ā, ȳ) can be
answered on any database D that is consistent with A in time
polynomial in A.

Furthermore, an effective plan for identifying DQ such that
Q (̄,DQ) = Q(ā,D) can be obtained.

ATFD Volume: scalability, approximations 47/87



22/25

Example

Recall: Q is {p, yy}-controllable. We can get an effective plan to
evaluate Q as follows:

Q.rn;p; yy/

9id; rid; pn; mm; dd

restr.rid; rn; NYC; A/

friend.p; id/

person.id; pn; NYC/

dates.yy; mm; dd/visit.id; rid; yy; mm; dd/

^

^

^

^

The time it takes to answer Q entirely depends on A.

ATFD Volume: scalability, approximations 48/87



22/25

Example

Recall: Q is {p, yy}-controllable. We can get an effective plan to
evaluate Q as follows:

Q.rn;p; yy/

9id; rid; pn; mm; dd

restr.rid; rn; NYC; A/

friend.p; id/

person.id; pn; NYC/

dates.yy; mm; dd/visit.id; rid; yy; mm; dd/

^

^

^

^

The time it takes to answer Q entirely depends on A.

ATFD Volume: scalability, approximations 49/87



22/25

Example

Recall: Q is {p, yy}-controllable. We can get an effective plan to
evaluate Q as follows:

Q.rn;p; yy/

9id; rid; pn; mm; dd

restr.rid; rn; NYC; A/

friend.p; id/

person.id; pn; NYC/

dates.yy; mm; dd/visit.id; rid; yy; mm; dd/

^

^

^

^

The time it takes to answer Q entirely depends on A.

ATFD Volume: scalability, approximations 50/87



22/25

Example

Recall: Q is {p, yy}-controllable. We can get an effective plan to
evaluate Q as follows:

Q.rn;p; yy/

9id; rid; pn; mm; dd

restr.rid; rn; NYC; A/

friend.p; id/

person.id; pn; NYC/

dates.yy; mm; dd/visit.id; rid; yy; mm; dd/

^

^

^

^

The time it takes to answer Q entirely depends on A.

ATFD Volume: scalability, approximations 51/87



22/25

Example

Recall: Q is {p, yy}-controllable. We can get an effective plan to
evaluate Q as follows:

Q.rn;p; yy/

9id; rid; pn; mm; dd

restr.rid; rn; NYC; A/

friend.p; id/

person.id; pn; NYC/

dates.yy; mm; dd/visit.id; rid; yy; mm; dd/

^

^

^

^

The time it takes to answer Q entirely depends on A.

ATFD Volume: scalability, approximations 52/87



22/25

Example

Recall: Q is {p, yy}-controllable. We can get an effective plan to
evaluate Q as follows:

Q.rn;p; yy/

9id; rid; pn; mm; dd

restr.rid; rn; NYC; A/

friend.p; id/

person.id; pn; NYC/

dates.yy; mm; dd/visit.id; rid; yy; mm; dd/

^

^

^

^

The time it takes to answer Q entirely depends on A.

ATFD Volume: scalability, approximations 53/87



Approximations

We look at conjunctive queries.

Why?

◮ because they are important: joins

◮ and because for them we know when queries can be evaluated fast.

We use this topic to discuss not only approximations but also give an
overview of good classes of conjunctive queries

ATFD Volume: scalability, approximations 54/87



CQ evaluation

◮ Conjunctive queries (CQs) – probably the best studied class of
database queries

◮ capture select-project-join queries

◮ Complexity of evaluation:
◮ data: very low (in AC0)
◮ combined: NP-complete
◮ algorithmically: |database|O(|query|)

◮ Prohibitively expensive for very large databases
◮ new applications: scientific databases, social networks, etc may store

up to several terabytes of information.

◮ What do we do when we cannot find an exact solution?

◮ APPROXIMATE!

ATFD Volume: scalability, approximations 55/87



Approximation idea

◮ Idea: Given
◮ a database D
◮ a query Q

◮ find an approximation Q ′ of Q so that:
◮ Q ′ approximates Q well;
◮ Q ′ is much faster to run (e.g., tractable)

◮ and then run Q ′ instead of Q

ATFD Volume: scalability, approximations 56/87



Approximation techniques

The idea is, of course, quite old.

Standard approaches include:

◮ Statistical methods, e.g. histograms, combined with data mining
techniques

◮ uses both data and query

◮ Semantic relaxations based on traditional data management
techniques

◮ uses only the query (static analysis)

ATFD Volume: scalability, approximations 57/87



Approximation techniques

The idea is, of course, quite old.

Standard approaches include:

◮ Statistical methods, e.g. histograms, combined with data mining
techniques

◮ uses both data and query

◮ Semantic relaxations based on traditional data management
techniques

◮ uses only the query (static analysis)

Our choice: static analysis.

Once a query is approximated, it can be run and re-run when
updates are applied.

ATFD Volume: scalability, approximations 57/87



Approximation idea, by picture

SLOW QUERY Q

ATFD Volume: scalability, approximations 58/87



Approximation idea, by picture

SLOW QUERY Q

FAST QUERY Q ′

ATFD Volume: scalability, approximations 58/87



Approximation idea, by picture

SLOW QUERY Q

FAST QUERY Q ′

DATABASE D

ATFD Volume: scalability, approximations 58/87



Approximation idea, by picture

SLOW QUERY Q

FAST QUERY Q ′

DATABASE D

ATFD Volume: scalability, approximations 58/87



Approximation idea, by picture

SLOW QUERY Q

FAST QUERY Q ′

DATABASE D

NO!

ATFD Volume: scalability, approximations 58/87



Approximation idea, by picture

SLOW QUERY Q

FAST QUERY Q ′

DATABASE D

NO!

ATFD Volume: scalability, approximations 58/87



Approximation idea, by picture

SLOW QUERY Q

FAST QUERY Q ′

DATABASE D

NO!

YES

ATFD Volume: scalability, approximations 58/87



Approximation idea, by picture

RESULT

SLOW QUERY Q

FAST QUERY Q ′

DATABASE D

NO!

YES

ATFD Volume: scalability, approximations 58/87



Desiderata for approximations

◮ They must be fast

◮ They must be close to the queries they approximate

Next: formulate these two requirements for conjunctive queries.

ATFD Volume: scalability, approximations 59/87



Conjunctive queries (CQs)

Q(x̄) :– S1(ū1), . . . Sn(ūn)
head body

◮ atoms Si(ūi ): each Si is a relation symbol, each ūi a list of variables.

◮ variables ȳ in the body but not in the head are existentially
quantified:
Q(x̄) = ∃y

(

S1(ū1) ∧ · · · ∧ Sn(ūn)
)

.

ATFD Volume: scalability, approximations 60/87



Conjunctive queries (CQs)

Q(x̄) :– S1(ū1), . . . Sn(ūn)
head body

◮ atoms Si(ūi ): each Si is a relation symbol, each ūi a list of variables.

◮ variables ȳ in the body but not in the head are existentially
quantified:
Q(x̄) = ∃y

(

S1(ū1) ∧ · · · ∧ Sn(ūn)
)

.

◮ Why CQs?
◮ a very important and common class of queries
◮ equivalent to select-project-join queries
◮ we know a lot about their evaluation.

ATFD Volume: scalability, approximations 60/87



Tableaux, evaluation, containment

Q(x̄) :– S1(ū1), . . . Sn(ūn)

Its tableaux is the body of Q viewed as a database:

TQ = ({S1(ū1), . . . ,Sn(ūn)}, x̄)

Evaluation and static analysis via tableaux and homomorphisms:

◮ ā ∈ Q(D) ⇔ there is a homomorphism TQ → (D, ā)

◮ Q ⊆ Q ′ ⇔ there is a homomorphism TQ′ → TQ

ATFD Volume: scalability, approximations 61/87



CQ evaluation, graphically

Goal: Find a homomorphism from TQ into D.

DATABASE

QUERY

ATFD Volume: scalability, approximations 62/87



CQ evaluation, graphically

Goal: Find a homomorphism from TQ into D.

DATABASE

QUERY

ATFD Volume: scalability, approximations 62/87



Good classes of CQs

Two kinds: graph-based and hypergraph-based

Q :– R(x , y , z),R(z , u, v),R(v ,w , x)

graph of the query, G (Q) hypergraph of the query, H(Q)

y

x

z

v

w

u

x

y z

u v

w

ATFD Volume: scalability, approximations 63/87



Good classes of CQs – acyclicity and relatives

A general idea of tractable restrictions for CQs: acyclicity
(Yannakakis 1981 – linear-time evaluation)

Extensions:

◮ for graph-based notions: bounded treewidth

◮ for hypergraph-based notions: bounded hypertree width

◮ Yannakakis’ notion of acyclicity is actually hypertree width 1.

◮ For queries on graphs, treewidth 1 = acyclicity.

Revised goal: approximate within tractable classes of CQs

ATFD Volume: scalability, approximations 64/87



Approximating CQs, graphically

Given Q and D

DATABASE

QUERY

ATFD Volume: scalability, approximations 65/87



Approximating CQs, graphically

Given Q and D, find a tractable approximation

DATABASE

QUERY

APPROXIMATION

ATFD Volume: scalability, approximations 65/87



Approximating CQs, graphically

Given Q and D, find a tractable approximation and evaluate on D

DATABASE

QUERY

APPROXIMATION

ATFD Volume: scalability, approximations 65/87



Approximations: complexity analysis

◮ Evaluate Q on D: |D|O(|Q|)

◮ Evaluate approximation Q ′ on D:

O(time to compute Q ′ + |D|c · p(|Q ′|)
◮ c is constant; p is polynomial

◮ Desiderata:
◮ Q ′ at most polynomial in Q
◮ time to compute Q ′ at most single-exponential in Q
◮ hard to hope for more given the complexity of static analysis for CQs

◮ For example, using acyclic approximations we have complexity
2O(|Q|·log |Q|) + |D| · |Q|k

◮ Much faster than |D|O(|Q|) on large databases.

ATFD Volume: scalability, approximations 66/87



Approaches to approximations

◮ Qualitative (or look for best ones): Q ′ approximates Q if no other
query Q ′′ does it better than Q ′.

◮ Better = disagrees with Q less often than Q ′ does.

◮ Quantitative (or look for good ones): define a measure µ(Q,Q ′) of
disagreement; search for Q ′ with µ(Q,Q ′) ≤ threshold.

◮ Nobody’s perfect:
◮ best may not be good;
◮ good need not be best.

◮ We look at qualitative approach.

ATFD Volume: scalability, approximations 67/87



CQ approximations: Definition

We want to approximate within a class C of good queries.

We also want to approximate without producing false results:

if Q ′ approximates Q then Q ′ ⊆ Q.

Definition A query Q ′ ∈ C is a C-approximation of Q if:
◮ Q ′ ⊆ Q; and

◮ there is no Q ′′ ∈ C such that Q ′ ⊂ Q ′′ ⊆ Q.

ATFD Volume: scalability, approximations 68/87



CQ approximations, graphically

Q

C
Q1

Q2 Q3

C
TQ1 TQ2

TQ3

TQ

a query view a tableau view

ATFD Volume: scalability, approximations 69/87



Why are these orderings important?

◮ The homomorphism (pre)ordering between graphs (and structures)
has been actively studied in graph theory.

◮ P. Hell and J. Nešeťril. Graphs and Homomorphisms. Oxford
University Press, 2004.

◮ The key object: lattice of graph cores and homomorphism ordering.

◮ Our job essentially boils down to finding upper bounds in subsets of
that lattice.

◮ For those of you who love math, very nontrivial proof techniques
involving mix of algebra and graph theory.

ATFD Volume: scalability, approximations 70/87



Hypergraph-based classes: acyclicity

A CQ Q is acyclic if its hypergraph H(Q) is acyclic.

◮ hyperedges can be arranged in a tree in such a way that the part
containing each variable is connected

Example: Decomposition for the query
Q :– R(x , y , z),R(z , u, y),R(y , v , x):

{y, v, x}

{x, y, z}

{z, u, y}

ATFD Volume: scalability, approximations 71/87



Acyclicity and hypertreewidth

Theorem (Yannakakis 1981)

If Q is an acyclic conjunctive query, then checking whether
ā ∈ Q(D) can be done in time O(|D| · |Q|).

Generalization: hypertree width (Gottlob, Leone, Scarcello, 2000).

◮ Extends the notion of treewidth.

◮ Acyclicity = hypertree width 1.

◮ Guaranteed tractable evaluation of CQs:
◮ Hypertree width determines the exponent.
◮ O(|D|c · p(|Q|)).

ATFD Volume: scalability, approximations 72/87



Treewidth

◮ Measures how close a graph is to a tree

◮ A tree decomposition of a graph G with vertices V and edges E is a
tree T and a map f from T to sets of vertices (i.e., f (n) ⊆ V ) such
that

1. each edge is contained in one of f (n)
2. for each v ∈ V , the set {n ∈ T | v ∈ f (v)} is connected

◮ Width of a tree decomposition: max |f (n)| where n is a node in T

◮ Treewidth: minimal width of a tree decomposition, minus 1

◮ Why “minus 1”? So that tree width of a tree is 1.

ATFD Volume: scalability, approximations 73/87



Treewidth and tractable CQs

◮ If G (Q) has treewidth k, then Q can be evaluated in polynomial
time on a database D: the complexity is not |D|O(|Q|) but rather
O(|D|k) + time to find a tree decomposition. This time is linear in
|Q| if k is fixed (although dependence on k is exponential).

◮ A class of CQs C is of bounded treewidth if there is a number k
such that the treewidth of G (Q) is ≤ k for each Q in C.

◮ A very powerful Theorem (Grohe-Schwentick-Segoufin): Let C be a
graph-based class of CQs

◮ i.e., C is a class of graphs, and the condition is G(Q) ∈ C
If evaluation of CQs in C is in PTIME, then C has bounded
treewidth.

ATFD Volume: scalability, approximations 74/87



Treewidth and tractable CQs

Lessons – CQ evaluation is polynomial for:

◮ Bounded-treewidth CQs for graph-based classes

◮ Acyclic CQs (and more general bounded hypertree width) for
hypergraph-based classes

◮ Real aim: acyclicity, due to linear time.

◮ If a linear scan is affordable, we are ok!

ATFD Volume: scalability, approximations 75/87



Existence of approximations: graph-based case

A class C of queries is closed under substructures if:

Q ∈ C and TQ′ ⊆ TQ =⇒ Q ′ ∈ C

Example: classes of queries of bounded treewidth.

ATFD Volume: scalability, approximations 76/87



Existence theorem

Let C be closed under substructures.

Theorem

◮ Every conjunctive query Q has a C-approximation.

◮ Each approximation is (equivalent to) a query whose size does
not exceed the size of Q.

◮ An approximation can be found in single-exponential time
◮ 2O(n log n) to be precise

◮ There are at most exponentially many non-equivalent
approximations.

ATFD Volume: scalability, approximations 77/87



Example

◮ Take
Q :– R(x , y , z), R(y , x , u), R(u, z , x)

◮ Its treewidth is 3 – maximum possible for a query with 4 variables;
its graph is K4.

◮ Has approximations of the smallest possible treewidth, i.e., 1:

Q ′ :– R(x , y , y), R(y , x , y), R(y , y , x).

◮ Good to reduce treewidth as it determines the exponent in query
evaluation.

ATFD Volume: scalability, approximations 78/87



Queries on graphs

Q :– R(x y z), R(y x u), R(u z x)

ATFD Volume: scalability, approximations 79/87



Queries on graphs

Q :– R( y z), R(y u), R(u z )

Remove x

We get a graph query with G (Q) = K3

This query has only a trivial treewidth 1/acyclic approximation:
Q :– R(x , x).

A Boolean query Q over graphs has a nontrivial acyclic

approximation iff G (Q) is 2-colorable.

ATFD Volume: scalability, approximations 79/87



Existence of approximation: closure conditions

Problem: previous existence conditions don’t work – even acyclic
hypergraphs are not closed under taking sub-hypergraphs.

Instead, we use two new closure conditions:

1. Closure under induced sub-hypergraphs;

2. Closure under edge extensions:

x

z

y

v

x

z

y

v u w

3. Holds for acyclic hypergraphs

ATFD Volume: scalability, approximations 80/87



Existence of approximations for hypergraph-based classes

C – a class of CQs whose hypergraphs are closed under induced
subhypergraphs and edge extensions:

◮ for example, queries of hypertree width ≤ k, or

◮ acyclic queries.

Theorem

◮ Every conjunctive query Q has a C-approximation.

◮ Each approximation is (equivalent to) a query whose size is at
most polynomial in the size of Q.

◮ An approximation can be found in single-exponential time
◮ 2O(n log n) to be precise

◮ There are at most exponentially many non-equivalent
approximations.

ATFD Volume: scalability, approximations 81/87



Example of acyclic approximations

A cyclic query:

Q :– R(x , y , z), R(z , u, v), R(v ,w , x)

It has several acyclic approximations:

Q1 :– R(x , y , z), R(z , u, y), R(y , v , x)

Q2 :– R(x , y , z), R(z , u, v), R(v ,w , x), R(x , z , v)

Q3 :– R(x , y , x)

ATFD Volume: scalability, approximations 82/87



Acyclic approximations: how to choose

Quantitative analysis is needed.

Much work on estimating the size of CQs/joins, but no final answers yet.

ATFD Volume: scalability, approximations 83/87



Comments on papers

◮ Michael Armbrust, Kristal Curtis, Tim Kraska, Armando Fox, Michael J.
Franklin, David A. Patterson: PIQL: Success-Tolerant Query Processing in the
Cloud. PVLDB 5(3):181-192 (2011)

◮ Michael Armbrust, Armando Fox, David A. Patterson, Nick Lanham, Beth
Trushkowsky, Jesse Trutna, Haruki Oh: SCADS: Scale-Independent Storage for
Social Computing Applications. CIDR 2009

Two early systems paper on scalability; what we saw in class was a formalization
of their approach

◮ Michael Armbrust, Eric Liang, Tim Kraska, Armando Fox, Michael J. Franklin,
David A. Patterson: Generalized scale independence through incremental
precomputation. SIGMOD 2013:625-636

Scalability under updates to the underlying data

◮ Wenfei Fan, Floris Geerts, Frank Neven: Making Queries Tractable on Big Data
with Preprocessing. PVLDB 6(9): 685-696 (2013)

New notions of complexity for handling large volumes of data

◮ Wenfei Fan, Floris Geerts, Leonid Libkin: On scale independence for querying big
data. PODS 2014:51-62

We saw the notion of controllability here. Eligible topics for an esseay are
incremental computation and using views

ATFD Volume: scalability, approximations 84/87



Comments on papers

◮ Yang Cao, Wenfei Fan, Tianyu Wo, Wenyuan Yu: Bounded Conjunctive Queries.
PVLDB 7(12): 1231-1242 (2014)

Specialized algorithms for handling select-project-join queries over big data

◮ Foto N. Afrati, Jeffrey D. Ullman: Transitive closure and recursive Datalog
implemented on clusters. EDBT 2012: 132-143

◮ Foto N. Afrati, Jeffrey D. Ullman: Optimizing Multiway Joins in a Map-Reduce
Environment. IEEE Trans. Knowl. Data Eng. 23(9): 1282-1298 (2011)

Two papers on parallelizing different types of queries (recursive and
non-recursive)

◮ Mahmoud Abo Khamis, Hung Q. Ngo, Christopher Ré, Atri Rudra: Joins via
Geometric Resolutions: Worst-case and Beyond. PODS 2015: 213-228

◮ Hung Q. Ngo, Christopher Ré, Atri Rudra: Skew strikes back: new developments
in the theory of join algorithms. SIGMOD Record 42(4): 5-16 (2013)

◮ Hung Q. Ngo, Ely Porat, Christopher Ré, Atri Rudra: Worst-case optimal join
algorithms. PODS 2012: 37-48

◮ Albert Atserias, Martin Grohe, Daniel Marx: Size Bounds and Query Plans for
Relational Joins. SIAM J. Comput. 42(4): 1737-1767 (2013)

A series of papers on worst-case performance of join algorithms

ATFD Volume: scalability, approximations 85/87



Comments on papers

◮ Yannis E. Ioannidis: Approximations in Database Systems. ICDT 2003: 16-30

◮ Minos N. Garofalakis, Phillip B. Gibbons: Approximate Query Processing:
Taming the TeraBytes. VLDB 2001

Approximation techniques that take into account both data and queries

◮ Pablo Barcelo, Leonid Libkin, Miguel Romero: Efficient Approximations of
Conjunctive Queries. SIAM J. Comput. 43(3): 1085-1130 (2014)

Eligible topics include static analysis of approximations

◮ Markus Frick, Martin Grohe: Deciding first-order properties of locally
tree-decomposable structures. Journal of the ACM 48(6): 1184-1206 (2001)

How to improve performance of relational queries on databases with special
properties

◮ Joerg Flum, Martin Grohe: Fixed-Parameter Tractability, Definability, and
Model-Checking. SIAM J. Comput. 31(1): 113-145 (2001)

A different way of measuring complexity, and its full analysis

◮ Joerg Flum, Markus Frick, Martin Grohe: Query evaluation via
tree-decompositions. Journal of the ACM 49(6): 716-752 (2002)

Using tree decompositions to get faster query evaluation

ATFD Volume: scalability, approximations 86/87



Comments on papers

◮ Paul Beame, Paraschos Koutris, Dan Suciu: Communication steps for parallel
query processing. PODS 2013: 273-284

Models for correct parallel evaluation of queries

◮ Tom J. Ameloot, Gaetano Geck, Bas Ketsman, Frank Neven, Thomas
Schwentick: Parallel-Correctness and Transferability for Conjunctive Queries.
PODS 2015: 47-58

A detailed study of correct parallel evaluation of conjunctive queries

ATFD Volume: scalability, approximations 87/87


