GAV-sound with conjunctive queries

- Source and global schema as before:
 - \circ source $R_1(A,B), R_2(B,C)$
 - \circ Global schema: $T_1(A,C)$, $T_2(B,C)$
- GAV mappings become sound:

$$\circ T_1 \supseteq \{x, y, z | R_1(x, y) \land R_2(y, z)\}$$

$$\circ T_2 \supseteq R_2$$

- Let D_{exact} be the unique database that arises from the *exact* setting (with \supseteq replaced by =)
- Then every database D_{sound} that satisfies the sound setting also satisfies

$$D_{exact} \subseteq D_{sound}$$

GAV-sound with conjunctive queries cont'd

• Conjunctive queries are monotone:

$$D_1 \subseteq D_2 \quad \Rightarrow \quad Q(D_1) \subseteq Q(D_2)$$

- Exact solution is a sound solution too, and is contained in every sound solution.
- Hence certain answers for each conjunctive query

$$\operatorname{certain}(D,Q) \ = \ \bigcap_{D_{sound}} Q(D_{sound}) \ = \ Q(D_{exact})$$

• The solution for GAV-exact gives us certain answers for GAV-sound, for conjunctive (and more generally, monotone) queries.

Query answering using views

- General setting: database relations R_1, \ldots, R_n .
- ullet Several views V_1,\ldots,V_k are defined as results of queries over the R_i 's.
- We have a query Q over R_1, \ldots, R_n .
- Question: Can Q be answered in terms of the views?
 - \circ In other words, can Q be reformulated so it only refers to the data in V_1, \ldots, V_k ?

Query answering using views in data integration

• LAV:

- $\circ R_1, \ldots, R_n$ are global schema relations; Q is the global schema query
- $\circ V_i$'s are the sources defined over the global schema
- \circ We must answer Q based on the sources (virtual integration)

• GAV:

- $\circ R_1, \ldots, R_n$ are the sources that are not fully available.
- $\circ Q$ is a query in terms of the source (or a query that was reformulated in terms of the sources)
- \circ Must see if it is answerable from the available views V_1, \ldots, V_k .
- We know the problem is impossible to solve for full relational algebra, hence we concentrate on conjunctive queries.

Conjunctive queries: rule-based notation

• We often write conjunctive queries as logical statements:

$$\{t, y, r \mid \exists d \; (\mathsf{Movie}(t, d, y) \land \mathsf{RV}(t, r) \land y > 2000)\}$$

Rule-based:

$$Q(t, y, r) :- \mathsf{Movie}(t, d, y), \mathsf{RV}(t, r), y > 2000$$

- $\circ Q(t, y, r)$ is the head of the rule
- $\circ \ \mathsf{Movie}(t,d,y), \mathsf{RV}(t,r), y > 2000 \ \mathsf{is its body}$
- conjunctions are replaced by commas
- \circ variables that occur in the body but not in the head (d) are assumed to be existentially quantified
- essentially logic programming notation (without functions)

Query answering using views: example

- Two relations in the database: Cites(A,B) (if A cites B), and SameTopic(A,B) (if A, B work on the same topic)
- Query Q(x,y) :- SameTopic(x,y), Cites(x,y), Cites(y,x)
- Two views are given:
 - $\circ V_1(x,y) := \mathsf{Cites}(x,y), \mathsf{Cites}(y,x)$
 - $\circ V_2(x,y) := \mathsf{SameTopic}(x,y), \mathsf{Cites}(x,x'), \mathsf{Cites}(y,y')$
- Suggested rewriting: $Q'(x,y) := V_1(x,y), V_2(x,y)$
- Why? Unfold using the definitions:

$$Q'(x,y) := \mathsf{Cites}(x,y), \mathsf{Cites}(y,x), \mathsf{SameTopic}(x,y), \mathsf{Cites}(x,x'), \mathsf{Cites}(y,y')$$

• Equivalent to Q

Query answering using views

- Need a formal technique (algorithm): cannot rely on the semantics.
- Query *Q*:

```
SELECT R1.A

FROM R R1, R R2, S S1, S S2

WHERE R1.A=R2.A AND S1.A=S2.A AND R1.A=S1.A

AND R1.B=1 and S2.B=1
```

- Q(x) := R(x,y), R(x,1), S(x,z), S(x,1)
- Equivalent to Q(x) := R(x,1), S(x,1)
- So if we have a view

$$\circ V(x,y) := R(x,y), S(x,y)$$
 (i.e. $V = R \cap S$), then

$$\circ Q = \pi_A(\sigma_{B=1}(V))$$

 $\circ Q$ can be rewritten (as a conjunctive query) in terms of V

Query rewriting

• Setting:

- \circ Queries V_1, \ldots, V_k over the same schema σ (assume to be conjunctive; they define the views)
- \circ Each Q_i is of arity n_i
- \circ A schema ω with relations of arities n_1, \ldots, n_k
- Given:
 - \circ a query Q over σ
 - \circ a query Q' over ω
- ullet Q' is a rewriting of Q if for every σ -database D,

$$Q(D) = Q'(V_1(D), \ldots, V_k(D))$$

Maximal rewriting

- Sometimes exact rewritings cannot be obtained
- \bullet Q' is a maximally-contained rewriting if:
 - \circ it is contained in Q:

$$Q'(V_1(D),\ldots,V_k(D)) \subseteq Q(D)$$

for all D

o it is maximal such: if

$$Q''(V_1(D),\ldots,V_k(D)) \subseteq Q(D)$$

for all D, then

$$Q'' \subseteq Q'$$

Side remark: query rewriting and certain answers

• If we have sources $\mathbf{R} = (R_1, \dots, R_k)$, we can view conditions

$$V_1(D) = R_1, \ldots, V_k(D) = R_k$$

as an incomplete specification of a database D

• To answer Q over D, given R_1, \ldots, R_k , we want to compute certain answers:

$$certain(Q, \mathbf{R}) = \bigcap \{Q(D) \mid V_1(D) = R_1, \dots, V_k(D) = R_k\}$$

- If for every such D we have $Q(D)=Q'(V_1(D),\ldots,V_k(D))$, then $\operatorname{certain}(Q,\mathbf{R})=Q'.$
- ullet But we may even look at a more general way of query answering by finding a rewriting Q' so that

$$certain(Q, \mathbf{R}) = Q'(\mathbf{R})$$

Query rewriting: a naive algorithm

- Given:
 - \circ conjunctive queries V_1, \ldots, V_k over schema σ
 - \circ a query Q over σ
- Algorithm:
 - \circ guess a query Q' over the views
 - \circ Unfold Q' in terms of the views
 - \circ Check if the unfolding is contained in Q
- ullet If one unfolding is equivalent to Q, then Q' is a rewriting
- ullet Otherwise take the union of all unfoldings contained in Q
 - it is a maximally contained rewriting

Why is it not an algorithm yet?

- Problem 1: we do not yet know how to test containment and equivalence.
 - But we shall learn soon
- Problem 2: the guess stage.
 - There are infinitely many conjunctive queries.
 - We cannot check them all.
 - Solution: we only need to check a few.

Guessing rewritings

A basic fact:

- o If there is a rewriting of Q using V_1, \ldots, V_k , then there is a rewriting with no more conjuncts than in Q.
- \circ E.g., if Q(x):=R(x,y),R(x,1),S(x,z),S(x,1), we only need to check conjunctive queries over V with at most 4 conjuncts.
- Moreover, maximally contained rewriting is obtained as the union of all conjunctive rewritings of length of Q or less.
- Complexity: enumerate all candidates (exponentially many); for each an NP (or exponential) algorithm. Hence exponential time is required.
- Cannot lower this due to NP-completeness.

Containment and optimization of conjunctive queries

• Reminder:

- conjunctive queries
- = SPJ queries
- = rule-based queries
- simple SELECT-FROM-WHERE SQL queries (only AND and equality in the WHERE clause)
- Extremely common, and thus special optimization techniques have been developed
- Reminder: for two relational algebra expressions $e_1, e_2, e_1 = e_2$ is undecidable.
- But for conjunctive queries, even $e_1 \subseteq e_2$ is decidable.
- Main goal of optimizing conjunctive queries: reduce the number of joins.

Optimization of conjunctive queries: an example

- ullet Given a relation R with two attributes A,B
- Two SQL queries:

Q2

SELECT R1.B, R1.A FROM R R1, R R2 WHERE R2.A=R1.B

SELECT R3.A, R1.A FROM R R1, R R2, R R3

WHERE R1.B=R2.B AND R2.B=R3.A

- Are they equivalent?
- If they are, we saved one join operation.
- In relational algebra:

$$Q_{1} = \pi_{2,1}(\sigma_{2=3}(R \times R))$$

$$Q_{2} = \pi_{5,1}(\sigma_{2=4 \land 4=5}(R \times R \times R))$$

Optimization of conjunctive queries cont'd

- Are Q_1 and Q_2 equivalent?
- If they are, we cannot show it by using equivalences for relational algebra expression.
- Because: they don't decrease the number of \bowtie or \times operators, but Q_1 has 1 join, and Q_2 has 2.
- But Q_1 and Q_2 are equivalent. How can we show this?
- But representing queries as databases. This representation is very close to rule-based queries.

$$Q_1(x,y) := R(y,x), R(x,z)$$

 $Q_2(x,y) := R(y,x), R(w,x), R(x,u)$

Conjunctive queries into tableaux

- Tableau: representing of a conjunctive query as a database
- We first consider queries over a single relation

•
$$Q_1(x,y) := R(y,x), R(x,z)$$

- $\bullet Q_2(x,y) := R(y,x), R(w,x), R(x,u)$
- Tableaux:

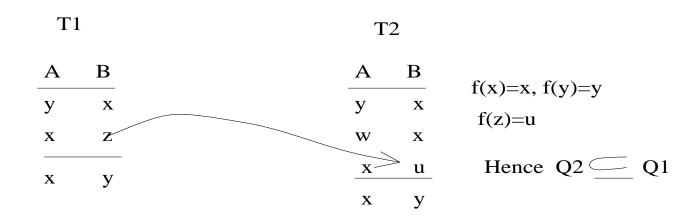
Variables in the answer line are called distinguished

Tableau homomorphisms

- ullet A homomorphism of two tableaux $f:T_1 o T_2$ is a mapping
 - $f: \{ \text{variables of } T_1 \} \rightarrow \{ \text{variables of } T_2 \} \cup \{ \text{constants} \}$
- For every distinguished x, f(x) = x
- ullet For every row x_1,\ldots,x_k in T_1 , $f(x_1),\ldots,f(x_k)$ is a row of T_2
- \bullet Query containment: $Q\subseteq Q'$ if $Q(D)\subseteq Q'(D)$ for every database D
- ullet Homomorphism Theorem: Let Q,Q' be two conjunctive queries, and T,T' their tableaux. Then

$$Q\subseteq Q'$$
 if and only if there exists a homomorphism $f:T'\to T$

Applying the Homomorphism Theorem: $Q_1 = Q_2$



Applying the Homomorphism Theorem: Complexity

- Given two conjunctive queries, how hard is it to test if $Q_1 = Q_2$?
- it is easy to transform them into tableaux, from either SPJ relational algebra queries, or SQL queries, or rule-based queries
- But testing the existence of a homomorphism between two tableaux is hard: NP-complete. Thus, a polynomial algorithm is unlikely to exists.
- However, queries are small, and conjunctive query optimization is possible in practice.

Minimizing conjunctive queries

- Goal: given a conjunctive query Q, find an equivalent conjunctive query Q' with the minimum number of joins.
- ullet Assume Q is

$$Q(\vec{x}) := R_1(\vec{u}_1), \ldots, R_k(\vec{u}_k)$$

ullet Assume that there is an equivalent conjunctive query Q' of the form

$$Q'(\vec{x}) :- S_1(\vec{v}_1), \dots, S_l(\vec{v}_l)$$

with l < k

• Then Q is equivalent to a query of the form

$$Q'(\vec{x}) := R_{i_1}(\vec{u}_{i_1}), \dots, R_l(\vec{u}_{i_l})$$

• In other words, to minimize a conjunctive query, one has to delete some subqueries on the right of :-

Minimizing conjunctive queries cont'd

- ullet Given a conjunctive query Q, transform it into a tableau T
- Let Q' be a minimal conjunctive query equivalent to Q. Then its tableau T' is a subset of T.
- Minimization algorithm:

```
T':=T repeat until no change choose a row t in T' if there is a homomorphism f:T'\to T'-\{t\} then T':=T'-\{t\} end
```

• Note: if there exists a homomorphism $T' \to T' - \{t\}$, then the queries defined by T' and $T' - \{t\}$ are equivalent. Because: there is always a homomorphism from $T' - \{t\}$ to T'. (Why?)

Minimizing SPJ/conjunctive queries: example

- R with three attributes A, B, C
- SPJ query

$$Q = \pi_{AB}(\sigma_{B=4}(R)) \bowtie \pi_{BC}(\pi_{AB}(R) \bowtie \pi_{AC}(\sigma_{B=4}(R)))$$

Equivalently, a SQL query:

```
SELECT R1.A, R2.B, R3.C

FROM R R1, R R2, R R3

WHERE R1.B=4 AND R2.A=R3.A AND

R3.B=4 AND R2.B=R1.B
```

• Translate into a conjunctive query:

$$\exists x_1, z_1, z_2 (R(x, 4, z_1) \land R(x_1, 4, z_2) \land R(x_1, 4, z) \land y = 4)$$

Rule-based:

$$Q(x, y, z) := R(x, 4, z_1), R(x_1, 4, z_2), R(x_1, 4, z), y = 4$$

Minimizing SPJ/conjunctive queries cont'd

• Tableau T:

$$\begin{array}{c|ccccc} A & B & C \\ \hline x & 4 & z_1 \\ x_1 & 4 & z_2 \\ \hline x_1 & 4 & z \\ \hline x & 4 & z \\ \hline \end{array}$$

ullet Minimization, step 1: is there a homomorphism from T to

$$\begin{array}{c|ccccc}
A & B & C \\
\hline
x_1 & 4 & z_2 \\
x_1 & 4 & z \\
\hline
x & 4 & z
\end{array}$$

• Answer: No. For any homomorphism f, f(x) = x (why?), thus the image of the first row is not in the small tableau.

Minimizing SPJ/conjunctive queries cont'd

• Step 2: Is
$$T$$
 equivalent to
$$\begin{array}{c|cccc} A & B & C \\ \hline x & 4 & z_1 \\ \hline x_1 & 4 & z \\ \hline x & 4 & z \\ \hline \end{array}$$

- ullet Answer: Yes. Homomorphism $f\colon f(z_2)=z$, all other variables stay the same.
- The new tableau is not equivalent to

ullet Because f(x)=x, f(z)=z, and the image of one of the rows is not present.

Minimizing SPJ/conjunctive queries cont'd

$$\bullet \text{ Minimal tableau:} \begin{array}{c|cccc} A & B & C \\ \hline x & 4 & z_1 \\ \hline x_1 & 4 & z \\ \hline x & 4 & z \\ \hline \end{array}$$

• Back to conjunctive query:

$$Q'(x, y, z) := R(x, y, z_1), R(x_1, y, z), y = 4$$

• An SPJ query:

$$\pi_{AB}(\sigma_{B=4}(R)) \bowtie \pi_{BC}(\sigma_{B=4}(R))$$

• SELECT R1.A, R1.B, R2.C FROM R R1, R R2 WHERE R1.B=R2.B AND R1.B=4

Review of the journey

We started with

$$\pi_{AB}(\sigma_{B=4}(R)) \bowtie \pi_{BC}(\pi_{AB}(R) \bowtie \pi_{AC}(\sigma_{B=4}(R)))$$

- Translated into a conjunctive query
- Built a tableau and minimized it
- Translated back into conjunctive query and SPJ query
- Applied algebraic equivalences and obtained

$$\pi_{AB}(\sigma_{B=4}(R)) \bowtie \pi_{BC}(\sigma_{B=4}(R))$$

• Savings: one join.

All minimizations are equivalent

- ullet Let Q be a conjunctive query, and Q_1 , Q_2 two conjunctive queries equivalent to Q
- Assume that Q_1 and Q_2 are both minimal, and let T_1 and T_2 be their tableaux.
- Then T_1 and T_2 are isomorphic; that is, T_2 can be obtained from T_1 by renaming of variables.
- That is, all minimizations are equivalent.
- In particular, in the minimization algorithm, the order in which rows are considered, is irrelevant.

Equivalence of conjunctive queries: the general case

- ullet So far we assumed that there is only one relation R, but what if there are many?
- Construct tableaux as before:

$$Q(x,y)$$
:- $B(x,y), R(y,z), R(y,w), R(w,y)$

• Tableau:

• Formally, a tableau is just a database where variables can appear in tuples, plus a set of distinguished variables.

Tableaux and multiple relations

• Given two tableaux T_1 and T_2 over the same set of relations, and the same distinguished variables, a homomorphism $h:T_1\to T_2$ is a mapping

$$f: \{ \text{variables of } T_1 \} \rightarrow \{ \text{variables of } T_2 \}$$

such that

- f(x) = x for every distinguished variable, and
- for each row \vec{t} in R in T_1 , $f(\vec{t})$ is in R in T_2 .
- Homomorphism theorem: let Q_1 and Q_2 be conjunctive queries, and T_1, T_2 their tableaux. Then

$$Q_2 \subseteq Q_1$$
 if and only if there exists a homomorphism $f: T_1 \to T_2$

Minimization with multiple relations

ullet The algorithm is the same as before, but one has to try rows in different relations. Consider homomorphism f(z)=w, and f is the identity for other variables. Applying this to the tableau for Q yields

$$B: \begin{array}{c|cccc} A & B \\ \hline x & y \end{array} \qquad \qquad R: \begin{array}{c|cccc} A & B \\ \hline y & w \\ \hline w & y \end{array}$$

- This cannot be further reduced, as for any homomorphism f, f(x) = x, f(y) = y.
- Thus Q is equivalent to

$$Q'(x,y) := B(x,y), R(y,w), R(w,y)$$

• One join is eliminated.

Query rewriting

- ullet Recall the algorithm, for a given Q and view definitions V_1,\ldots,V_k :
 - \circ Look at all rewritings that have as at most as many joins as Q
 - \circ check if they are contained in Q
 - o take the union of those that are
- This is the maximally contained rewriting
- There are algorithms that prune the search space and make looking for rewritings contained in Q more efficient
 - the bucket algorithm
 - MiniCon

How hard is it to answer queries using views?

- Setting: we now have an actual content of the views.
- ullet As before, a query is Q posed against D, but must be answered using information in the views.
- Suppose I_1, \ldots, I_k are view instances. Two possibilities:
 - \circ Exact mappings: $I_j = V_j(D)$
 - \circ Sound mappings: $I_j \subseteq V_j(D)$
- We need certain answers for given $\mathcal{I} = (I_1, \dots, I_k)$:

$$\operatorname{certain}_{exact}(Q,\mathcal{I}) \ = \bigcap_{D: \ I_j = V_j(D) \ \text{for all } j} Q(D)$$

$$\operatorname{certain}_{sound}(Q,\mathcal{I}) \ = \bigcap_{D: \ I_j \subseteq V_j(D) \ \text{for all } j} Q(D)$$

How hard is it to answer queries using views?

• If $certain_{exact}(Q, \mathcal{I})$ or $certain_{sound}(Q, \mathcal{I})$ are impossible to obtain, we want maximally contained rewritings:

```
\circ Q'(\mathcal{I}) \subseteq \operatorname{certain}_{exact}(Q, \mathcal{I}), and \circ \operatorname{if} Q''(\mathcal{I}) \subseteq \operatorname{certain}_{exact}(Q, \mathcal{I}) then Q''(\mathcal{I}) \subseteq Q'(\mathcal{I}) \circ (and likewise for sound)
```

- How hard is it to compute this from \mathcal{I} ?
- In databases, we reason about complexity in two ways:
 - \circ The big-O notation $(O(n \log n) \text{ vs } O(n^2) \text{ vs } O(2^n))$
 - Complexity-theoretic notions: PTIME, NP, DLOGSPACE, etc.
- Advantage of complexity-theoretic notions: if you have a $O(2^n)$ algorithm, is it because the problem is inherently hard, or because we are not smart enough to come up with a better algorithm (or both)?

Complexity classes: what you always wanted to know but never dared to ask

- \bullet Or a 5/5-introduction: a five minute review that tells you what are likely to remember 5 years after taking a complexity theory course.
- The big divide: PTIME (computable in polynomial time, i.e. $O(n^k)$ for some fixed k)
- Inside PTIME: tractable queries (although high-degree polynomial are intractable)
- Outside PTIME: intractable queries (efficient algorithms are unlikely)
- Way outside PTIME: provably intractable queries (efficient algorithms do not exist)
 - \circ EXPTIME: c^n -algorithms for a constant c. Could still be ok for not very large inputs
 - Even further 2-EXPTIME: c^{c^n} . Cannot be ok even for small inputs (compare 2^{10} and $2^{2^{10}}$).

Inside PTIME

$$\mathsf{AC}^0 \subsetneq \mathsf{TC}^0 \subseteq \mathsf{NC}^1 \subseteq \mathsf{DLOG} \subseteq \mathsf{NLOG} \subseteq \mathsf{PTIME}$$

- AC⁰: very efficient parallel algorithms (constant time, simple circuits)
 - relational calculus
- TC⁰: very efficient parallel algorithms in a more powerful computational model with counting gates
 - basic SQL (relational calculus/grouping/aggregation)
- NC¹: efficient parallel algorithms
 - regular languages
- DLOG: very little $O(\log n)$ space is required
 - SQL + (restricted) transitive closure
- NLOG: $O(\log n)$ space is required if nondeterminism is allowed
 - SQL + transitive closure (as in the SQL3 standard)

Beyond PTIME

$$\mathsf{PTIME} \subseteq \left\{ \begin{array}{l} \mathsf{NP} \\ \mathsf{coNP} \end{array} \right\} \subseteq \mathsf{PSPACE}$$

- PTIME: can solve a problem in polynomial time
- NP: can check a given candidate solution in polynomial time
 - o another way of looking at it: guess a solution, and then verify if you guessed it right in polynomial time
- coNP: complement of NP verify that all "reasonable" candidates are solutions to a given problem.
 - Appears to be harder than NP but the precise relationship isn't known
- PSPACE: can be solved using memory of polynomial size (but perhaps an exponential-time algorithm)

Complete problems

- These are the hardest problems in a class.
- If our problem is as hard as a complete problem, it is very unlikely it can be done with lower complexity.
- For NP:
 - SAT (satisfiability of Boolean formulae)
 - many graph problems (e.g. 3-colourability)
 - Integer linear programming etc
- For PSPACE:
 - \circ Quantified SAT
 - Two XML DTDs are equivalent

Complexity of query answering

We want the complexity of finding

$$\mathsf{certain}_{exact}(Q, \mathcal{I})$$
 or $\mathsf{certain}_{sound}(Q, \mathcal{I})$

in terms of the size of ${\mathcal I}$

- ullet If all view definitions are conjunctive queries and Q is a relational algebra or a SQL query, then the complexity is coNP.
- (blackboard)
- This is too high!
- ullet If all view definitions are conjunctive queries and Q is a conjunctive query, then the complexity is PTIME.
 - Because: the maximally contained rewriting computes certain answers!

Complexity of query answering

query language

view language	CQ	CQ^{\neq}	relational calculus
CQ	ptime	coNP	undecidable
CQ^{\neq}	ptime	coNP	undecidable
relational calculus	undecidable	undecidable	undecidable

CQ – conjunctive queries

 CQ^{\neq} – conjunctive queries with inequalities (for example, $\,Q(x) \coloneq R(x,y), S(y,z), x \neq z$)

Complexity of query answering: coNP-completeness idea

- ullet Start with a graph G this is our instance
- *D* is *G* together with a colouring, with 3 colours; each node is assigned one colour.
- ullet Q asks if we have an edge (a,b) with $a \neq b$ and a,b of the same colour.
- ullet If G is not 3-colourable, then every instance D would satisfy Q
- ullet Otherwise, if G is 3-colourable, we can find extensions that are and that are not 3-colourable hence certain answers are empty.
- Thus if we can compute certain answers, we can test non-3-colourability \Rightarrow coNP-completeness.