GAV-sound with conjunctive queries

e Source and global schema as before:

o source Ri(A, B), Ro(B, ()
o Global schema: Ti(A,C), To(B, C)

e GAV mappings become sound:

O Tl 2 {xaya Z|R1<$,y> A R2<y7 Z>}
oly DO Ry

o Let D,.,.+ be the unique database that arises from the exact setting
(with D replaced by =)

e Then every database Dy, that satisfies the sound setting also satisfies

Dexact C Dsound
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GAV-sound with conjunctive queries cont’d

e Conjunctive queries are monotone:
DiC Dy = QD) CQDy)
e Exact solution is a sound solution too, and is contained in every sound

solution.

e Hence certain answers for each conjunctive query
Certam(D Q ﬂ Q Sound) — Q( exact)
Dsound

e The solution for GAV-exact gives us certain answers for GAV-sound, for
conjunctive (and more generally, monotone) queries.
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Query answering using views

e General setting: database relations Ry, ..., R,.

e Several views V1, ..., V. are defined as results of queries over the R;’s.
e We have a query () over Ry, ..., R,.

e Question: Can () be answered in terms of the views?

o In other words, can () be reformulated so it only refers to the data
inVi,..., V.7
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Query answering using views in data integration

o LAV:

o Ry,..., R, are global schema relations; () is the global schema
query
o V;'s are the sources defined over the global schema

o We must answer () based on the sources (virtual integration)
o GAV:

o Ry,..., R, are the sources that are not fully available.

o () is a query in terms of the source (or a query that was reformulated
in terms of the sources)

o Must see if it is answerable from the available views V. ..., V.

e We know the problem is impossible to solve for full relational algebra,
hence we concentrate on conjunctive queries.
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Conjunctive queries: rule-based notation

e \We often write conjunctive queries as logical statements:
{t,y,r | 3d (Movie(t,d,y) ARV(t,r) Ay > 2000)}
e Rule-based:

Q(t,y,r) = Movie(t,d,y),RV(t,r),y > 2000

o Q(t,y,r) is the head of the rule
o Movie(t,d,y), RV(t,r),y > 2000 is its body
o conjunctions are replaced by commas

o variables that occur in the body but not in the head (d) are assumed
to be existentially quantified

o essentially logic programming notation (without functions)
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Query answering using views: example

e Two relations in the database: Cites(A,B) (if A cites B), and
SameTopic(A,B) (if A, B work on the same topic)

e Query Q(x,y) — SameTopic(z,y), Cites(z, y), Cites(y, )
e Two views are given:

o Vi(x,y) = Cites(z,y), Cites(y, z)
o Va(x,y) = SameTopic(z,y), Cites(x, x'), Cites(y, v/')

e Suggested rewriting: Q'(x,y) — Vi(z,y), Va(z,y)
e Why? Unfold using the definitions:
Q' (z,y) = Cites(x,y), Cites(y, z), SameTopic(z, y), Cites(x, z'), Cites(y, y/)

e Equivalent to ()
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Query answering using views

e Need a formal technique (algorithm): cannot rely on the semantics.
e Query Q:

SELECT R1.A

FROM R R1, R R2, S S1, 5 52

WHERE R1.A=R2.A AND S1.A=52.A AND R1.A=51.A
AND R1.B=1 and S2.B=1

e Q(x) - R(z,y), R(x,1),S(x, z),S(x, 1)

e Equivalent to Q(x) :(= R(z,1),5(z,1)

e So if we have a view
oVi(x,y) = R(x,y),S(x,y) (i.,e. V=RNS), then
0 Q =malop=1(V))

o () can be rewritten (as a conjunctive query) in terms of V
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Query rewriting

e Setting:

o Queries V1, ..., V) over the same schema o (assume to be conjunc-
tive; they define the views)

o Each Q); is of arity n;

o A schema w with relations of arities ny,...,n;
e Given:

o a query () over o

o a query (' over w

e () is a rewriting of () if for every o-database D,

QD) = Q(Vi(D),...,Vi(D) )
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Maximal rewriting

e Sometimes exact rewritings cannot be obtained

e ()’ is a maximally-contained rewriting if:

o it is contained in ()

Q' (Vi(D),...,i(D) ) < Q(D)
for all D
o it is maximal such: if
Q"(Vi(D),....,Vi(D) ) < Q(D)
for all D, then
Q" C Q'

Data Integration and Exchange



Side remark: query rewriting and certain answers

e If we have sources R = (Ry, ..., Ry), we can view conditions
Vi(D) = Ry, ..., Vi(D)= Ry
as an incomplete specification of a database D

e To answer () over D, given Ry,..., R;, we want to compute certain
answers:

certain(@, R) ﬂ{Q | Vi(D) =Ry, ..., Vi(D) = Rk}
o If for every such D we have Q(D) = Q' (Vi(D),...,Vi(D)), then
certain(@), R) = @'

e But we may even look at a more general way of query answering by
finding a rewriting )’ so that

certain((Q, R) = Q'(R)
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Query rewriting: a naive algorithm

e Given:

o conjunctive queries V7, ...,V over schema o

o a query () over o
e Algorithm:

o guess a query () over the views
o Unfold () in terms of the views
o Check if the unfolding is contained in ()

e If one unfolding is equivalent to (), then ()" is a rewriting

e Otherwise take the union of all unfoldings contained in ()

— it is a maximally contained rewriting
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Why is it not an algorithm yet?

e Problem 1: we do not yet know how to test containment and equiva-
lence.

o But we shall learn soon
e Problem 2: the guess stage.

o There are infinitely many conjunctive queries.
o We cannot check them all.

o Solution: we only need to check a few.
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Guessing rewritings

e A basic fact:

o If there is a rewriting of () using V7, ..., V}, then there is a rewriting
with no more conjuncts than in ().

oE.g., if Qx) = R(z,y), R(x,1),S5(x, z),S(x,1), we only need to

check conjunctive queries over V' with at most 4 conjuncts.

e Moreover, maximally contained rewriting is obtained as the union of all
conjunctive rewritings of length of () or less.

e Complexity: enumerate all candidates (exponentially many); for each
an NP (or exponential) algorithm. Hence exponential time is required.

e Cannot lower this due to NP-completeness.
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Containment and optimization of conjunctive queries

e Reminder:

conjunctive queries

= SPJ queries

= rule-based queries

= simple SELECT-FROM-WHERE SQL queries
(only AND and equality in the WHERE clause)

e Extremely common, and thus special optimization techniques have been
developed

e Reminder: for two relational algebra expressions ey, ey, €1 = €5 is un-

decidable.

e But for conjunctive queries, even e; C ey is decidable.

e Main goal of optimizing conjunctive queries: reduce the number of
joins.
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Optimization of conjunctive queries: an example

e Given a relation R with two attributes A, B

e Two SQL queries:

Q1 Q2

SELECT R1.B, R1.A SELECT R3.A, R1.A

FROM R R1, R R2 FROM R R1, R R2, R R3

WHERE R2.A=R1.B WHERE R1.B=R2.B AND R2.B=R3.A

e Are they equivalent?
e If they are, we saved one join operation.
e In relational algebra:
Q1 = ma1(09—3(R X R))
Q2 = 75.1(02—4pn4=5(R X R X R))
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Optimization of conjunctive queries cont’d

e Are (); and (), equivalent?

e If they are, we cannot show it by using equivalences for relational algebra
expression.

e Because: they don't decrease the number of X or X operators, but (),
has 1 join, and ()5 has 2.

e But ()1 and (), are equivalent. How can we show this?

e But representing queries as databases. This representation is very close
to rule-based queries.

Qi1(x,y) — R(y,x), R(x,2)
Qa(x,y) - Ry, z), R(w,x), R(x,u)
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Conjunctive queries into tableaux

e Tableau: representing of a conjunctive query as a database

e \We first consider queries over a single relation
® Ql(xay> - R(g,ﬂ?),R([E,Z)

e [ableaux:

X | X < | >

e Variables in the answer line are called distinguished

B
X
z
y

«— answer line

X X |

u

X[ X & < |X>

y <«— answer line

L. Libkin
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Tableau homomorphisms

e A homomorphism of two tableaux f : 77 — 715 is a mapping
f : {variables of T} — {variables of T5} [ {constants}

e For every distinguished z, f(z) =
e For every row x1, ..., 2 in Ty, f(x1),..., f(xy) is a row of Tj

e Query containment: () C Q' if Q(D) C Q'(D) for every database D

e Homomorphism Theorem: Let (), Q)" be two conjunctive queries, and
T, T" their tableaux. Then

QC
if and only if
there exists a homomorphism f : 7" — T
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Applying the Homomorphism Theorem: )| = Q>

A B A B
y /\y X
X ZN X
X u
X
X y
T1 T2
A B A B
y X y X
X Z/N X
X u
X y

X

<

f)=x, f(y)=y
f(u)=z, f(w)=y

Hence Q1 < Q2

f)=x, f(y)=y
f(2)=u

Hence Q2C — Q1

L. Libkin
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Applying the Homomorphism Theorem: Complexity

e Given two conjunctive queries, how hard is it to test if ()1 = Q27

e it is easy to transform them into tableaux, from either SPJ relational
algebra queries, or SQL queries, or rule-based queries

e But testing the existence of a homomorphism between two tableaux is
hard: NP-complete. Thus, a polynomial algorithm is unlikely to exists.

e However, queries are small, and conjunctive query optimization is pos-
sible in practice.
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Minimizing conjunctive queries

e Goal: given a conjunctive query (), find an equivalent conjunctive query
()" with the minimum number of joins.

e Assume () is
Q(T) = Ryi(ty),..., Ry(uy)
e Assume that there is an equivalent conjunctive query ' of the form
Q'(Z) = Si(vh),...,S(0)
with [ < k
e Then () is equivalent to a query of the form

Q/(f) - Rh(ﬁh)v AR Rz(ﬁil)

e In other words, to minimize a conjunctive query, one has to delete some
subqueries on the right of :—
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Minimizing conjunctive queries cont’d

e Given a conjunctive query (), transform it into a tableau T’

o Let () be a minimal conjunctive query equivalent to (). Then its
tableau 7" is a subset of T

e Minimization algorithm:
T =T
repeat until no change
choose a row t in T"
if there is a homomorphism f:T" — T" — {t}
then 7" :=T" — {t}
end

e Note: if there exists a homomorphism 1" — T" — {t}, then the queries

defined by 7" and 7" — {t} are equivalent. Because: there is always a
homomorphism from T" — {t} to T". (Why?)
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Minimizing SPJ/conjunctive queries: example

e 1R with three attributes A, B, C
e SPJ query

Q = map(op=4(R)) X mpo(map(R) X Tac(op=4(R)))
e Equivalently, a SQL query:

SELECT R1.A, R2.B, R3.C

FROM R R1, R R2, R R3

WHERE R1.B=4 AND R2.A=R3.A AND
R3.B=4 AND R2.B=R1.B

e [ranslate into a conjunctive query:
31’1, AR, (R(ZE‘, 4, Zl) A R(l‘l, 4, 22) A R(l‘l, 4, Z) A Yy = 4)

e Rule-based:
Q(xa Y, Z) :—R(I', 47 Zl)v R(xla 47 ZQ)) R(mlv 47 Z)) Yy = 4
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Minimizing SPJ/conjunctive queries cont’d

e [ableau 7"
A B C

r 4 z
I 4 29
r1 4 z
r 4 =z

e Minimization, step 1: is there a homomorphism from 1’ to
A B C

I 4 29
I 4 z
x 4 z

e Answer: No. For any homomorphism f, f(x) = z (why?), thus the
image of the first row is not in the small tableau.
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Minimizing SPJ/conjunctive queries cont’d

A B C
r 4 21
I 4 z
x 4 z

e Step 2: Is T equivalent to

e Answer: Yes. Homomorphism f: f(z3) = z, all other variables stay
the same.

e The new tableau is not equivalent to

A B C A B C
r 4 z or r1 4 z
r 4 z r 4 z

e Because f(x) = z, f(2) = 2, and the image of one of the rows is not
present.
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Minimizing SPJ/conjunctive queries cont’d

A B C
r 4 21
T 4 z
x 4 z

e Minimal tableau:

e Back to conjunctive query:
Q'(x,y,2) = Rz, y,2), R(ar,y,2),y =4
e An SPJ query:
maB(0B=4(R)) X mpc(op-4(R))

e SELECT R1.A, R1.B, R2.C
FROM R R1, R R2
WHERE R1.B=R2.B AND R1.B=4

L. Libkin 26 Data Integration and Exchange



Review of the journey

e \We started with

maB(0B=4(R)) X Tpc(map(R) X Tac(0p=4(R)))
e Translated into a conjunctive query
e Built a tableau and minimized it

e Translated back into conjunctive query and SPJ query

e Applied algebraic equivalences and obtained
map(0p=4(R)) ™ mpc(op-a(R))

e Savings: one join.
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All minimizations are equivalent

e Let () be a conjunctive query, and ()1, ()2 two conjunctive queries
equivalent to ()

e Assume that () and ()9 are both minimal, and let 7 and I5 be their
tableaux.

e Then T} and T are isomorphic; that is, 15 can be obtained from 77 by
renaming of variables.

e That is, all minimizations are equivalent.

e In particular, in the minimization algorithm, the order in which rows are
considered, is irrelevant.
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Equivalence of conjunctive queries: the general case

e So far we assumed that there is only one relation R, but what if there
are many”?

e Construct tableaux as before:

Q([E, y):-B([E, y)v R<y7 Z)? R<y7 ’UJ), R(’U}, y)

e [ableau:
A B
B: A B R: y z
X Y y w
Wy
X y

e Formally, a tableau is just a database where variables can appear in
tuples, plus a set of distinguished variables.
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Tableaux and multiple relations

e Given two tableaux 77 and T, over the same set of relations, and the
same distinguished variables, a homomorphism h : 17 — 15 is a map-

ping
f : {variables of 71} — {variables of 15}
such that
- f(xz) = x for every distinguished variable, and

- for each row £ in Rin T}, f(t)isin R in Tb.

¢ Homomorphism theorem: let (); and ()5 be conjunctive queries,
and 17,15 their tableaux. Then

Q2 C Q1
if and only if

there exists a homomorphism f : T} — 15
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Minimization with multiple relations

e The algorithm is the same as before, but one has to try rows in different
relations. Consider homomorphism f(z) = w, and f is the identity for
other variables. Applying this to the tableau for () yields

A B

B:AB R: y w

Xy Wy
X y

e This cannot be further reduced, as for any homomorphism f, f(x) = «x,
fly) =y.

e Thus () is equivalent to
Q'(z,y) = B(x,y), Ry, w), R(w,y)

e One join is eliminated.
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Query rewriting

e Recall the algorithm, for a given () and view definitions Vi, ..., V}.:

o Look at all rewritings that have as at most as many joins as ()
o check if they are contained in ()

o take the union of those that are
e This is the maximally contained rewriting

e There are algorithms that prune the search space and make looking for
rewritings contained in () more efficient

o the bucket algorithm
o MiniCon
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How hard is it to answer queries using views?

e Setting: we now have an actual content of the views.

e As before, a query is () posed against D, but must be answered using
information in the views.

e Suppose [;, ..., I; are view instances. Two possibilities:

o Exact mappings: I; = V(D)
o Sound mappings: I; C V;(D)

e We need certain answers for given Z = (I, ..., I}):
certaing,..(Q,Z) = ﬂ Q(D)

D: I;=V;(D) for all j
certaing u,(Q,Z) = ﬂ Q(D)

D: I;CV;(D) for all j
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How hard is it to answer queries using views?

o If certain ,,.(Q),Z) or certaing,,,s(Q),Z) are impossible to obtain, we
want maximally contained rewritings:

o Q'(Z) C certain (@, Z), and
o if Q"(Z) C certaingu,+(Q,Z) then Q"(Z) C Q'(I)
o (and likewise for sound)

e How hard is it to compute this from Z7

e In databases, we reason about complexity in two ways:
o The big-O notation (O(nlogn) vs O(n?) vs O(2"))
o Complexity-theoretic notions: PTIME, NP, DLOGSPACE, etc
e Advantage of complexity-theoretic notions: if you have a O(2") algo-

rithm, is it because the problem is inherently hard, or because we are
not smart enough to come up with a better algorithm (or both)?
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Complexity classes: what you always wanted to know
but never dared to ask

e Or a 5/5-introduction: a five minute review that tells you what are
likely to remember 5 years after taking a complexity theory course.

e The big divide: PTIME (computable in polynomial time, i.e. O(n*) for
some fixed k)

e Inside PTIME: tractable queries (although high-degree polynomial are
intractable)

e Outside PTIME: intractable queries (efficient algorithms are unlikely)

e Way outside PTIME: provably intractable queries (efficient algorithms
do not exist)

o EXPTIME: c"-algorithms for a constant c. Could still be ok for not
very large inputs

o Even further — 2-EXPTIME: ¢“". Cannot be ok even for small inputs
(compare 2!% and 22").
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Inside PTIME

AC' ¢ TC” € NC' C DLOG C NLOG C PTIME

o AC": very efficient parallel algorithms (constant time, simple circuits)
— relational calculus
o TC": very efficient parallel algorithms in a more powerful computational
model with counting gates

— basic SQL (relational calculus/grouping/aggregation)

o NC': efficient parallel algorithms
— regular languages

e DLOG: very little — O(logn) — space is required
— SQL + (restricted) transitive closure

e NLOG: O(logn) space is required if nondeterminism is allowed
— SQL + transitive closure (as in the SQL3 standard)
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Beyond PTIME

NP
coNP

PTIME C { } C PSPACE

e PTIME: can solve a problem in polynomial time
e NP: can check a given candidate solution in polynomial time

o another way of looking at it: guess a solution, and then verify if you
guessed it right in polynomial time

e coNP: complement of NP — verify that all “reasonable” candidates are
solutions to a given problem.

o Appears to be harder than NP but the precise relationship isn't
known

e PSPACE: can be solved using memory of polynomial size (but perhaps
an exponential-time algorithm)
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Complete problems

e These are the hardest problems in a class.

e If our problem is as hard as a complete problem, it is very unlikely it
can be done with lower complexity.

e For NP:

o SAT (satisfiability of Boolean formulae)
o many graph problems (e.g. 3-colourability)

o Integer linear programming etc

e For PSPACE:

o Quantified SAT
o Two XML DTDs are equivalent
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Complexity of query answering

e \We want the complexity of finding

certaing,.(Q,Z) or certaingy,i(Q,7)

in terms of the size of 7

e If all view definitions are conjunctive queries and () is a relational algebra
or a SQL query, then the complexity is coNP.

e (blackboard)
e This is too high!

e If all view definitions are conjunctive queries and () is a conjunctive
query, then the complexity is PTIME.

o Because: the maximally contained rewriting computes certain an-
swers!
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Complexity of query answering

query language

view language |CQ CQ” relational calculus
CQ ptime coNP undecidable
CQ” ptime coNP undecidable
relational calculus | undecidable  undecidable undecidable

CQ — conjunctive queries

CQ” - conjunctive queries with inequalities

(for example, Q(z) :— R(x,y),S(y,2),x # 2 )
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Complexity of query answering: coNP-completeness
idea

e Start with a graph G — this is our instance

e D is G together with a colouring, with 3 colours; each node is assigned
one colour.

e () asks if we have an edge (a, b) with a # b and a, b of the same colour.
e If & is not 3-colourable, then every instance DD would satisfy ()

e Otherwise, if G is 3-colourable, we can find extensions that are and
that are not 3-colourable — hence certain answers are empty.

e Thus if we can compute certain answers, we can test non-3-colourability
= coNP-completeness.
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