Schema mappings

e Rules used in data exchange specify mappings between schemas.

e To understand the evolution of data one needs to study operations on
schema mappings.

e Most commonly we need to deal with two operations:

o composition

O Inverse

L. Libkin 1 Data Integration and Exchange

Composition and inverse

S1

S2

L. Libkin

Data Integration and Exchange

Composition and inverse

S1

Yo A

\

S2

L. Libkin

Data Integration and Exchange

Composition and inverse

Yo A

\

A
S1 52 = S3
I’
Y
S1
L. Libkin 4 Data Integration and Exchange

Composition and inverse

Yo A

\

S1 - 52 = S3
I’
Y
[1o(XoA
. (ZoA)
L. Libkin 5 Data Integration and Exchange

Mappings

e Schema mappings are typically given by rules
¢('f7 2) - Ju 90('@7 Y, ﬂ)
where
o 1) is a conjunction of atoms over the target:

T (Z1,Z20) A .. Ny (T, Zm)

o (is a conjunction of atoms over the source:

S1(Z, g1, W) Ao A Sk(E, Ur, Tk

e Example: Served(x1, w9, 21, 2) :— Juq, us Route(xy, uy, ug) A\BG(x1, x2)

L. Libkin § Data Integration and Exchange

The closure problem

e Are mappings closed under

o composition?

o inverse?
e If not, what needs to be added?

e It turns out that mappings are not closed under inverses and composi-
tion.

e \We next see what might need to be added to them.

L. Libkin 7 Data Integration and Exchange

Skolem functions

e Source: EP(empl_name,dept,project);
Target: EDPH(empl_id,dept,phone), DP(dept,project)

e A natural mapping is:
EDPH(Zl, X9, Zg) A\ DP([EQ, ZCg) e EP([El, X9, ZCg)
e This is problematic: if we have tuples

(John, CS, Pl) (John, CS, P2)

in EP, the canonical solution would have

1, [CsTL]
1, CS| 12

EDPH

corresponding to two projects P and P.

e So empl_id is hardly an id!

L. Libkin 8 Data Integration and Exchange

Skolem functions cont’d

e Solution: make empl_id a function of empl_name.

e Such “invented” functions are called Skolem functions (see Logic 001
for a proper definition)

e Source: EP(empl_name,dept,project);
Target: EDPH(empl_id,dept,phone), DP(dept,project)

e A new mapping is:

EDPH(f(ZEl), X9, 23) A DP(ZE’Q, £E3) - EP(ZE‘l, X9, £E3)

e f assigns a unique id to every name.

L. Libkin 9 Data Integration and Exchange

Other possible additions

e One can look at more general queries used in mappings.

e Most generally, relational algebra queries, but to be more modest, one
can start with just adding inequalities.

e One may also disjunctions: for example, if we want to invert

T(x) — Si(x)
T(x) — Sy(x)

it seems natural to introduce a rule

Si(x) V Sy(x) = T(x)

L. Libkin 10 Data Integration and Exchange

Composition: definition

e Recall the definition of composition of binary relations R and R':
(r,2) ERoR & Jy: (v,y)€ Rand (y,2) € R

e A schema mapping X for two schemas o and 7 is viewed as a binary

relation
S is a o-instance }

¥ = {(S, T) ‘ T is a T-instance
T is a solution for S

e The composition of mappings > from o to 7 and A from 7 to w is now

) o A

e Question (closure): is there a mapping I' between ¢ and w so that

I'' = XX o A

L. Libkin 11 Data Integration and Exchange

Composition: when it works

o If X

o does not generate any nulls, and

o no variables u for source formulas

e Example:
> T(ZCl, ZCQ) N\ T(ZCQ, ZCg) - S(ﬂ?l, X9, 333>
A W(xy, 9, 2) = T(x1,x9)
e First modify into:
> T(ZCl,ZCQ> - S(ﬂfl,ZCQ,ZC?))
> T(SEQ,ZC?)) - S(ﬂfl,ZCQ,ZC?))
A Wi(xy, 29, 2) = T(x1, 29)

e [hen substitute in the definition of W

L. Libkin 12 Data Integration and Exchange

Composition: when it cont’d

W($1,$2,Z> T S(xlax%y)
Wi(xy,x9,2) = Sy, x1,22)
toget X o A.

Explaining the second rule:

W(xla X9, Z)
— T'(x1,x9) using T'(vary, vary) -— S(vars, vary, vars)
— S(y7 X1, x?)

L. Libkin 13 Data Integration and Exchange

Composition: when it doesn’t work

e Schema o: Takes(st_name, course)
e Schema 7: Takes'(st_name, course), Nameld(st_name, st id)
e Schema w: Enroll(st_id, course)

e Mapping X from o to 7:

Takes'(s, c) :— Takes(s, c)
Nameld(s,7) = dc Takes(s, ¢)

e Mapping A from 7 to w:
Enroll(,c) := Nameld(s,) A Takes (s, c)

e A first attempt at the composition: Enroll(7, ¢) :— Takes(s, ¢)

L. Libkin 14 Data Integration and Exchange

Composition: when it doesn’t work cont’d

e What's wrong with I":

Enroll(i, ¢) :— Takes(s, ¢)?

e Student id 7 depends on both name and course!

Takes'- John | CS1

Takes. | S0P [CSL] & K John | CS2 A g [L]CSE

A John [CS2 Mot TTCS2
Nameld: |John| L

But:

|John |CS1| 1 L] CS1
Takes: John €S = Enroll: 1,1Cs
L. Libkin 15 Data Integration and Exchange

Composition: when it doesn’t work cont’d

e Solution: Skolem functions.

o [": Enroll(f(s),c) :— Takes(s,c)

e [hen:

Takes:

e where | = f(John)

John

CS1

John

CS2

=

Enroll:

CS1

—| -

CS2

L. Libkin

16

Data Integration and Exchange

Composition: another example

e Schema o: Empl(eid)
e Schema 7: Mngr(eid,mngid)
e Schema w: Mngr'(eid,mngid), SelfMng(id)
e Mapping X from o to 7:
Mngr(e,m) :— Empl(e)

e Mapping A from 7 to w:
Mngr'(e, m) = Mngr(e, m)
SelfMng(e) :— Mngr(e, e

e Composition:

Mngr'(e, f(e)) :— Empl(e)
SelfMng(e) :— Empl(e) Ae = f(e)

L. Libkin 17 Data Integration and Exchange

Composition and Skolem functions

e Schema mappings with Skolem functions compose!
e Algorithm:

o replace all nulls by Skolem functions
- Mngr(e, f(e)) :— Empl(e)
- A stays as before
o Use substitution:
- Mngr'(e, m) :— Mngr(e, m) becomes
Mngr'(e, f(e)) :— Empl(e)
- SelfMng(e) :— Mngr(e, e) becomes
SelfMng(e) :— Empl(e) A e = f(e)

L. Libkin 18 Data Integration and Exchange

Inverting mappings

e Harder than composition.
e Intuition: ¥ o X! = ID.
e But even what ID should be is not entirely clear.

e Some intuitive examples will follow.

L. Libkin 19 Data Integration and Exchange

Examples of inversion

e The inverse of projection is null invention:
o T'(x) == S(x,y)
o S(x,y) —T(x)

e Inverse of union requires disjunction:
oT(x) = S(x) T(x):-5"x)
o S(x)V S'(x):=T(x)

e So reversing the rules doesn't always work.

L. Libkin 20

Data Integration and Exchange

Examples of inversion cont’d

e Inverse of decomposition is join:
o T'(x1,x9) NT" (9, x3) = S(x1, T2, X3)
o S(x1,x9,x3) = T'(x1,12) NT" (2, X3)

e But this is also an inverse of T'(x1,x2) AT (x2, x3) == S(x1, 2, x3):
o S(x1,x9,2) = T(x1,x9)

© S(Z7 L2, 333) - Tl('rQa 333)

L. Libkin 21 Data Integration and Exchange

Examples of inversion cont’d

e One may need to distinguish nulls from values in inverses.

e X given by
Ti(x) = S(x,x)
TQ(ZC,Z> = S(ﬂf,y) A S(g,ﬂ?)
T5(x1, 29, 2) = S(x1,x9)

e Its inverse X! requires:

o a predicate NotNull and
o inequalities:

S(z,x) = Ti(x) NTs(x,y1) ATs(x, z,y2) A NotNull(z)

Sz, x9) = Ts(x1,22,y) A (1 # x2) A NotNull(z1) A NotNull(z-)

L. Libkin 22 Data Integration and Exchange

