
Schema mappings

• Rules used in data exchange specify mappings between schemas.

• To understand the evolution of data one needs to study operations on
schema mappings.

• Most commonly we need to deal with two operations:

◦ composition

◦ inverse

L. Libkin 1 Data Integration and Exchange



Composition and inverse

S1 S2 S3

Σ ∆

L. Libkin 2 Data Integration and Exchange



Composition and inverse

S1 S2 S3

Σ ∆

Σ ◦ ∆

L. Libkin 3 Data Integration and Exchange



Composition and inverse

S1 S2 S3

S1’

Σ ∆

Γ

Σ ◦ ∆

L. Libkin 4 Data Integration and Exchange



Composition and inverse

Γ−1 ◦ (Σ ◦ ∆)

S1 S2 S3

S1’

Σ ∆

Γ

Σ ◦ ∆

L. Libkin 5 Data Integration and Exchange



Mappings

• Schema mappings are typically given by rules

ψ(x̄, z̄) :– ∃ū ϕ(x̄, ȳ, ū)

where

◦ ψ is a conjunction of atoms over the target:

T1(x̄1, z̄1) ∧ . . . ∧ Tm(x̄m, z̄m)

◦ ϕ is a conjunction of atoms over the source:

S1(x̄
′
1, ȳ1, ū1) ∧ . . . ∧ Sk(x̄

′
k, ȳk, ūk)

• Example: Served(x1, x2, z1, z2) :– ∃u1, u2 Route(x1, u1, u2)∧BG(x1, x2)

L. Libkin 6 Data Integration and Exchange



The closure problem

• Are mappings closed under

◦ composition?

◦ inverse?

• If not, what needs to be added?

• It turns out that mappings are not closed under inverses and composi-
tion.

• We next see what might need to be added to them.

L. Libkin 7 Data Integration and Exchange



Skolem functions

• Source: EP(empl name,dept,project);
Target: EDPH(empl id,dept,phone), DP(dept,project)

• A natural mapping is:

EDPH(z1, x2, z3) ∧ DP(x2, x3) :– EP(x1, x2, x3)

• This is problematic: if we have tuples

(John, CS, P1) (John, CS, P2)

in EP, the canonical solution would have

EDPH
⊥1 CS ⊥′

1

⊥2 CS ⊥′
2

corresponding to two projects P1 and P2.

• So empl id is hardly an id!

L. Libkin 8 Data Integration and Exchange



Skolem functions cont’d

• Solution: make empl id a function of empl name.

• Such “invented” functions are called Skolem functions (see Logic 001
for a proper definition)

• Source: EP(empl name,dept,project);
Target: EDPH(empl id,dept,phone), DP(dept,project)

• A new mapping is:

EDPH(f(x1), x2, z3) ∧ DP(x2, x3) :– EP(x1, x2, x3)

• f assigns a unique id to every name.

L. Libkin 9 Data Integration and Exchange



Other possible additions

• One can look at more general queries used in mappings.

• Most generally, relational algebra queries, but to be more modest, one
can start with just adding inequalities.

• One may also disjunctions: for example, if we want to invert

T (x) :– S1(x)
T (x) :– S2(x)

it seems natural to introduce a rule

S1(x) ∨ S2(x) :– T (x)

L. Libkin 10 Data Integration and Exchange



Composition: definition

• Recall the definition of composition of binary relations R and R′:

(x, z) ∈ R ◦R′ ⇔ ∃y : (x, y) ∈ R and (y, z) ∈ R′

• A schema mapping Σ for two schemas σ and τ is viewed as a binary
relation

Σ =

{

(S, T )

∣

∣

∣

∣

S is a σ-instance
T is a τ -instance
T is a solution for S

}

• The composition of mappings Σ from σ to τ and ∆ from τ to ω is now

Σ ◦ ∆

• Question (closure): is there a mapping Γ between σ and ω so that

Γ = Σ ◦ ∆

L. Libkin 11 Data Integration and Exchange



Composition: when it works

• If Σ

◦ does not generate any nulls, and

◦ no variables ū for source formulas

• Example:

Σ : T (x1, x2) ∧ T (x2, x3) :– S(x1, x2, x3)
∆ : W (x1, x2, z) :– T (x1, x2)

• First modify into:

Σ : T (x1, x2) :– S(x1, x2, x3)
Σ : T (x2, x3) :– S(x1, x2, x3)
∆ : W (x1, x2, z) :– T (x1, x2)

• Then substitute in the definition of W :

L. Libkin 12 Data Integration and Exchange



Composition: when it cont’d

W (x1, x2, z) :– S(x1, x2, y)
W (x1, x2, z) :– S(y, x1, x2)

to get Σ ◦ ∆.

Explaining the second rule:

W (x1, x2, z)
→ T (x1, x2) using T (var1, var2) :– S(var3, var1, var2)
→ S(y, x1, x2)

L. Libkin 13 Data Integration and Exchange



Composition: when it doesn’t work

• Schema σ: Takes(st name, course)

• Schema τ : Takes’(st name, course), NameId(st name, st id)

• Schema ω: Enroll(st id, course)

• Mapping Σ from σ to τ :

Takes′(s, c) :– Takes(s, c)
NameId(s, i) :– ∃c Takes(s, c)

• Mapping ∆ from τ to ω:

Enroll(i, c) :– NameId(s, i) ∧ Takes′(s, c)

• A first attempt at the composition: Enroll(i, c) :– Takes(s, c)

L. Libkin 14 Data Integration and Exchange



Composition: when it doesn’t work cont’d

• What’s wrong with Γ: Enroll(i, c) :– Takes(s, c)?

• Student id i depends on both name and course!

Takes:
John CS1
John CS2

Σ
⇒

Takes’:
John CS1
John CS2

NameId: John ⊥

∆
⇒ Enroll:

⊥ CS1
⊥ CS2

But:

Takes:
John CS1
John CS2

Γ
⇒ Enroll:

⊥1 CS1
⊥2 CS2

L. Libkin 15 Data Integration and Exchange



Composition: when it doesn’t work cont’d

• Solution: Skolem functions.

• Γ′: Enroll(f(s), c) :– Takes(s, c)

• Then:

Takes:
John CS1
John CS2

Γ
⇒ Enroll:

⊥ CS1
⊥ CS2

• where ⊥ = f(John)

L. Libkin 16 Data Integration and Exchange



Composition: another example

• Schema σ: Empl(eid)

• Schema τ : Mngr(eid,mngid)

• Schema ω: Mngr’(eid,mngid), SelfMng(id)

• Mapping Σ from σ to τ :

Mngr(e,m) :– Empl(e)

• Mapping ∆ from τ to ω:

Mngr’(e,m) :– Mngr(e,m)
SelfMng(e) :– Mngr(e, e)

• Composition:

Mngr’(e, f(e)) :– Empl(e)
SelfMng(e) :– Empl(e) ∧ e = f(e)

L. Libkin 17 Data Integration and Exchange



Composition and Skolem functions

• Schema mappings with Skolem functions compose!

• Algorithm:

◦ replace all nulls by Skolem functions

- Mngr(e, f(e)) :– Empl(e)

- ∆ stays as before

◦ Use substitution:

- Mngr’(e,m) :– Mngr(e,m) becomes

Mngr’(e, f(e)) :– Empl(e)

- SelfMng(e) :– Mngr(e, e) becomes

SelfMng(e) :– Empl(e) ∧ e = f(e)

L. Libkin 18 Data Integration and Exchange



Inverting mappings

• Harder than composition.

• Intuition: Σ ◦ Σ
−1 = ID.

• But even what ID should be is not entirely clear.

• Some intuitive examples will follow.

L. Libkin 19 Data Integration and Exchange



Examples of inversion

• The inverse of projection is null invention:

◦ T (x) :– S(x, y)

◦ S(x, y) :– T (x)

• Inverse of union requires disjunction:

◦ T (x) :– S(x) T (x) :– S ′(x)

◦ S(x) ∨ S ′(x) :– T (x)

• So reversing the rules doesn’t always work.

L. Libkin 20 Data Integration and Exchange



Examples of inversion cont’d

• Inverse of decomposition is join:

◦ T (x1, x2) ∧ T
′(x2, x3) :– S(x1, x2, x3)

◦ S(x1, x2, x3) :– T (x1, x2) ∧ T
′(x2, x3)

• But this is also an inverse of T (x1, x2) ∧ T
′(x2, x3) :– S(x1, x2, x3):

◦ S(x1, x2, z) :– T (x1, x2)

◦ S(z, x2, x3) :– T ′(x2, x3)

L. Libkin 21 Data Integration and Exchange



Examples of inversion cont’d

• One may need to distinguish nulls from values in inverses.

• Σ given by
T1(x) :– S(x, x)

T2(x, z) :– S(x, y) ∧ S(y, x)
T3(x1, x2, z) :– S(x1, x2)

• Its inverse Σ
−1 requires:

◦ a predicate NotNull and

◦ inequalities:

S(x, x) :– T1(x) ∧ T2(x, y1) ∧ T3(x, x, y2) ∧ NotNull(x)

S(x1, x2) :– T3(x1, x2, y) ∧ (x1 6= x2) ∧ NotNull(x1) ∧ NotNull(x2)

L. Libkin 22 Data Integration and Exchange


