XML Data Exchange

Relational Data Exchange Settings

Data Exchange Setting: (o, 7,%)
o: Source schema.
7: Target schema.

>.: Set of rules that specify relationship between the target
and the source (source-to-target dependencies).

- Source-to-target dependency:

¢T(j7 2) T @U(jv y)

- o (Z,q): conjunction of atomic formulas over o.

- ,(Z, Z): conjunction of atomic formulas over 7.

Example: Relational Data Exchange Setting

e 0 = Book(Title, AName, Aff)

e 7 = Writer(Name, BTitle, Year)

o ¥ = Writer(xo,x1,21) :— Book(xy,x2,y1).

Relational Data Exchange Problem

e Given a source instance S, find a target instance T’ such
that (5, 7) satisfies 3.

- (S,7T) satisfies ¥~ (%, 2) :— po(ZT,y) if whenever S satisfies
©o(@,b), there is a tuple ¢ such that T satisfies v, (a, ¢).

- T is called a solution for S.

e Previous example:

Book | Title AName Aff
S: Algebra Hungerford U. Washington

Real Analysis Royden Stanford

Relational Data Exchange Problem

Possible solutions:

Writer | Name BTitle Year
17 Hungerford Algebra 1974
Royden Real Analysis 1988
Writer | Name BTitle Year
Ts: Hungerford Algebra 14
Royden Real Analysis 15

Query Answering

e () is a query over target schema.

What does it mean to answer ()7

certain(@,S) = ﬂ ﬂ Q(R)

T is a solution for S RePOSS(T)

e Previous example:

- certain(3y3z Writer(x,y, z), I) = {Hungerford, Royden}

XML Documents

db
book book
@title author @title author
“Algebra” /\ “Real Analysis” /\
@name Q@Qaff @name Qaff
“Hungerford” “U. Washington” “Royden” “Stanford”

XML Documents

db
book book
@title author @title author
“Algebra” /\ “Real Analysis” /\
@name Q@Qaff @name Qaff
“Hungerford” “U. Washington” “Royden” “Stanford”
db — book™
DTD : book — author™

author — ¢

XML Documents

db
book book
@title author @title author
“Algebra” /\ “Real Analysis” /\
@name Q@Qaff @name Qaff
“Hungerford” “U. Washington” “Royden” “Stanford”
db — book™
DTD : book — author™ book — Qtitle
author — ¢ author — Qname, Qaff

XML Data Exchange Settings

e Instead of source and target relational schemas, we have

source and target DTDs.

e But what are the source-to-target dependencies?
To define them, we use tree patterns.

If a certain pattern is found in the source, another pattern

has to be found in the target.

Tree Patterns: Example

book

N

Qtitle author

’ l
Qname
Y

Tree Patterns: Example

book

N

Qtitle author

’ l
Qname
Y

db

/\

book;

T

Q@title author

“Algebra” /\

@name Qaff
“Hungerford” “U. Washington”

Tree Patterns: Example

book

N

Qtitle author

’ l
Qname
Y

/\

db

book;

T

@title

author

“Real Analysis” /\

@name
“Royden”

Qaff
“Stanford”

Tree Patterns: Example

db
book C book
@title author @title author
x i “Real Analysis” /\
@name @name Qaff
Y “Royden” “Stanford”

Collect tuples (z,y): (Algebra, Hungerford), (Real Analysis, Royden)

Tree Patterns

e Example: book(Qtitle = x)|author(Qname = y)]|.

e Language also includes wildcard _ (matching more than one

symbol) and descendant operator //.

XML Source-to-target Dependencies

e Source-to-target dependency (STD):

%(f» 2) - 900(3_773/_)7

where o, (Z,7) and (%, Z) are tree-patterns over the
source and target DTDs, resp.

e Example:
writer book
Qname work e Qtstle author
LN ’ l
Qtitle Qyear Qname
x z Y

10

XML Data Exchange Settings

XML Data Exchange Setting: (D,, D, >)
D, : Source DTD.
D,: Target DTD.

>.: Set of XML source-to-target dependencies.

Each constraint in X is of the form ¢, (%, 2) :— ¢, (T, 7).

- o (T,Y): tree-pattern over D, .

- 9, (%, Z): tree-pattern over D, .

11

Example: XML Data Exchange Setting

e Source DTD:

db — book™
book — author™ book — Qistle
author — ¢ author — Qname, Qaff

e Target DTD:

bib — writer™
writer — work™ writer — Qname
work — ¢ work — Qtitle, Qyear

o D

writer(@Qname = y)|work(Qtitle = x, Qyear = z)| —
book (Qtitle = x)|author(Qname = y)).

12

XML Data Exchange Problem

e Given a source tree T, find a target tree 7" such that
(T, T") satisfies X .

- (T, T") satisfies ¥+ (Z,2) — 0o (T, y) if whenever T satisfies
¢ (@, b), there is a tuple & such that T satisfies 1), (@, c).

- T" is called a solution for T.

13

XML Data Exchange Problem

Let 7" be our original tree:

db
book book
@title author @title author
“Algebra” /\ “Real Analysis” /\
@name Qaff @name Qaff
“Hungerford” “U. Washington” “Royden” “Stanford”

14

XML Data Exchange Problem

A solution for T

bib
writer writer
Qname work Qname work
“Hungerford” /\ “Royden” /\
Qtitle Q@year Qtitle Q@year
“Algebra” “1974” “Real Analysis” “1988%”

15

XML Data Exchange Problem

Another solution for T

bib
writer writer
Qname work Qname work
“Hungerford” /\ “Royden” /\
Qtitle Q@year Qtitle Q@year
“Algebra” “147 “Real Analysis” “157

16

Consistency of XML Data Exchange Settings

e What if we have target DTD

bib — writer™
writer — nowvelist”, poet* writer — Qname
novelist — work™

poet — work™
work — ¢ work — Qtitle, Qyear

In our previous example?

e The setting becomes inconsistent!

- There are no T conforming to D, and T" conforming to D, such
that (7, T") satisfies X .

17

Consistency of XML Data Exchange Settings

e An XML data exchange setting is inconsistent if it does not
admit solutions for any given source tree. Otherwise it is

consistent.

e A relational data exchange setting is always consistent.

e An XML data exchange setting is not always consistent.

- What is the complexity of checking whether a setting is consistent?

18

Bad News: General Case

Fact Checking if an XML data exchange setting is consistent

necessarily takes exponential time.

Complexity-theoretic statement: EXPTIME-complete.

But the parameter is the size of the DTDs and constraints —

typically not very large. Hence 29 is not too bad.

19

Good News: Consistency for Commonly used DTDs

DTDs that commonly occur in practice tend to be simple. In

fact more than 50% of regular expressions are of this form:

A

{ — 21,...,@”1,

where all the ¢;'s are distinct, and { is one of the following: 7,
or /* or {7, or (7

For example, book — title, author™, chapter®, publisher?

A better algorithm For non-recursive DTDs that only have
these rules, checking if an XML data exchange setting is
consistent is solvable in time O((||Ds|| + || D-]) - |2]|%).

20

Query Answering in XML Data Exchange

e Decision to make: what is our query language?

e XML query languages such as XQuery take XML trees and
produce XML trees.

- This makes it hard to talk about certain answers.

e For now we use a query language that produces tuples of

values.

21

Conjunctive Tree Queries

e Query language C70 is defined by

Q = ¢ | QAQ | FzQ,

where ¢ ranges over tree-patterns.

e Reminder: relational conjunctive queries are defined by the
same rules where ¢ ranges over relational atoms (i.e.,

formulas R(x1,...,2y)).

22

Example: Conjunctive Tree Query

List all pairs of authors that have written articles with the same title.

Qz,y) =
writer writer
Jz (Q@Qname work A Qname work)
‘ i : i
@title Q@title
2 2

23

Computing Certain Answers

e Semantics: as in the relational case.

certain(Q,T) = m Q(T").

T’ is a solution for T

e Given data exchange setting (D,, D-,Y) and query Q:

e PROBLEM: For a tree T' conforming to D, compute
certain(Q,T)

24

Computing Certain Answers: General Picture

It is not even clear if the problem is solvable.

Good news For every XML data exchange setting and
C7Q-query (), the problem CERTANSW(Q) is solvable in

exponential time.

Not so good news Sometimes exponential time is

unavoidable (the problem ma be coNP-complete)

We want to find cases that admit fast algorithms.

25

Computing Certain Answers: Eliminating bad cases

Suppose one of the following is allowed in tree patterns over the target
in STDs:

e descendant operator //, or
e wildcard _, or

e patterns that do not start at the root.

Then one can find source and target DTDs (in fact, very simple
DTDs) and a C7Q-query @ such that CERTANSW((Q) must take
exponential time.

A more precise statement: is coNP-complete.

26

Fully specified constraints

e \We disallow the three features that make query answering
hard.

e This gives us fully-specified STDs:

We impose restrictions on tree patterns over target DTDs:
- no descendant relation //; and
- no wildcard _; and

- all patterns start at the root.

No restrictions imposed on tree patterns over source DTDs.

e Subsume non-relational data exchange handled by IBM.

27

An efficient case

e Recall relational data exchange and conjunctive queries:
then certain(Q, S) = certain(Q), CANSOL(S)).

e |dea: given a source tree T', compute a solution T™ for T’
such that

certain(Q,T) = remove_null_tuples(Q(T™)).

e '™ is a canonical solution for T'.

e \We compute T™ in two steps:

- We use STDs to compute a canonical pre-solution cps(T’) from T
- Then we use target DTD to compute T from cps(T).
28

Example: XML Data Exchange Setting

e Source DTD:

r — A* B*
A — ¢ A — @/
B — ¢ B — @/

e Target DTD:

r — (C,D)*
C — ¢ C — Qm
D — K
E — ¢ E — @n
o D :
rlC(@m =x)] — A(Qf=uzx),

29

Example: Computing Canonical Pre-solution

T

N

A B
o
@¢ @/
66177 ((277

30

Example: Computing Canonical Pre-solution

-
d

i

A

l

@r

i

r

N

A B
C
@/ @/
“177 “277

30

Example: Computing Canonical Pre-solution

-
d

i

A

l

@r

i

r

N

A B
C
@r @/
66177 “277

30

Example: Computing Canonical Pre-solution

r r
i i
C cC - A
i i l
Qm Qm Q¢
64177 CC :L,

30

Example: Computing Canonical Pre-solution

:

i

Qm
66177

30

Example: Computing Canonical Pre-solution

:

i

Qm
66177

r

N

A B
C
@/ @/
“177 “277

30

Example: Computing Canonical Pre-solution

.
|
C
|

o

1

r
|
¢ +— B
b
@m @r
x x

30

Example: Computing Canonical Pre-solution

.
|
C
|

o

1

r
|
¢ +— B
b
@m @r
x x

30

Example: Computing Canonical Pre-solution

,
l
C
l
Qm
64177
r r r
l l /N
C C - B A B
l L C
Qm Qm Q/f Q/f Q/
2 T T “1” 2

30

Example: Computing Canonical Pre-solution

:

i

Qm
66177

<—Q<—ﬁ

64277

30

Example: Computing Canonical Pre-solution

Canonical pre-solution:

r

T

C C
l l
Qm Qm
64177 64277

Not yet a solution: it does not conform to the target DTD.

31

Example: Computing Canonical Solution

C C
i l
Qm Qm
66177 66277

32

Example: Computing Canonical Solution

C C
| |
Qm Qm
«1” “o
r — (C,D)"

32

Example: Computing Canonical Solution

C D C
| |
Qm Qm
«1” “o
r — (C,D)"

32

Example: Computing Canonical Solution

C D C
| |
Qm Qm
«1” «o
D — FE

32

Example: Computing Canonical Solution

C D C
| | |
Qm E Qm
«1” «o
D — FE

32

Example: Computing Canonical Solution

C D C
| | |
Qm E Qm
«1” «o
E — @n

32

Example: Computing Canonical Solution

r

) e

C D C D
| | |
Qm E Qm
«1” L «o
@Qn
‘L
E — @n

32

Example: Computing Canonical Solution

r

) e

C D C D
Qm, E Qm,
((177 L ((277
Qn
“J_l 29
D — FE

32

Example: Computing Canonical Solution

C D C
| | |
Qm E Qm
«1” L «o
@Qn
‘.
D — FE

32

Example: Computing Canonical Solution

C D C
| | |
Qm E Qm
«1” L «o
@Qn
‘L
E — @n

32

Example: Computing Canonical Solution

r

) e

C D C D
i i i l
Qm E Qm E
((177 L ((277 l
Qn Qn
CCJ_177 CCJ_277

EFE — Qn

32

Example: Computing Canonical Solution

r

) e

C D C D
i i i l
Qm E Qm E
((177 L ((277 l
Qn Qn
CCJ_177 CCJ_277

32

Does this always work?

Depends on regular expressions in target DTDs.

e class of good regular expressions.
- Examples: (A|B)", A ,B",C*, D7, (A*|B"),
_ bad: A, (B|O).

- exact definition: quite involved.

(C, D)*.

33

Does this always work? cont'd

e For target DTDs only using good regular expressions:

- There exists a solution for a tree 1" iff there exists a canonical
solution T for T..

- Previous algorithm computes canonical solution T for T in
polynomial time.

- certain(Q,T) = remove_null_tuples(Q(T™)), for every
CTQ/ -query.

e Complexity: polynomial time.

34

