Data Integration and Exchange, Homework 1

Problem 1 (10 marks) Consider a sound GAV setting with source relations $R_1(A, B)$ and $R_2(B, C)$ and global schema relations $G_1(A, C)$ and $G_2(B, C)$ with the mapping defined by

$$\begin{array}{rcl} G_1 &\supseteq & \pi_{AC}(R_1 \Join_B R_2) \\ G_2 &\supseteq & \pi_{BC}(\sigma_{A=1}(R_1 \Join_B R_2)) \end{array}$$

Consider a query $Q = G_1 \Join_C G_2$. Show how to compute certain answers to Q using the sources. Why does this solution work? Write your solution as an SQL query (in terms of the source relations).

Problem 2 (20 marks) We mentioned in class that

(*) there is no algorithm that checks, for a relational algebra expression e, whether $e(D) = \emptyset$ for every possible database D.

To show that query answering in LAV or GAV data exchange is undecidable (impossible to compute algorithmically) for relational algebra queries, we need a slightly different assumption: there is no algorithm that checks whether the result of a relational algebra expression is constant, i.e. independent of the input database.

Your goal is to prove this statement under the assumption (*).

Note that correctness of a proof is often inversely proportional to its length – verbosity rarely translates into correctness. If you go beyond 10-15 lines, it probably means something is seriously wrong!

Problem 3 (30 marks) This question is about optimization of conjunctive queries. Consider two SQL queries below over relations R(A,B) and S(B,C).

Query Q₂

\$ ···· 9 \$ 1	€
SELECT R1.A, S1.C	SELECT R2.A, S2.C
FROM R R1, R R2, R R3, S S1 S S2	FROM R R1, R R2, S S1, S S2
WHERE R1.A=R3.A AND R1.B=R2.B	WHERE R1.A=R2.A AND S1.C=S2.C
AND S1.C=S2.C AND R1.B=S1.B	AND R1.B=S1.B AND R2.B=S2.B
AND R3.B=S2.B	

Answer the following quersions. Each one is worth 10 marks.

1. Write both Q_1 and Q_2 as rule-based queries.

 $Query Q_1$

- 2. Is Q_1 contained in Q_2 ? Is Q_2 contained in Q_1 ? Explain your answer.
- 3. Find a query equivalent to Q_1 that has the minimum number of joins. Express it both as an SQL query and as a relational algebra query.

Problem 4 (40 marks) This question is about LAV (local-as-view) data integration. We have a global schema with two relations $G_1(A, B)$ and $G_2(B, C)$ and two sources S_1 and S_2 such that the LAV mapping is provided by the SQL queries below:

SELECT G1.A, G1.B, G2.C	SELECT G2.C
FROM G1, G2	FROM G1, G2
WHERE G1.B=G2.B	WHERE G1.B=G2.B

That is, the content of the first source is the result of applying the first query to a global-schema database, and likewise for the second query.

In addition we have a query Q over the global schema given by:

SELECT G11.A
FROM G1 G11, G1 G12, G1 G13, G1 G14, G2 G21, G2 G22, G2 G23
WHERE G11.A=G22.C AND G22.C=G21.C AND G12.B=G13.B AND
G13.A=G14.A AND G11.B=G23.B AND G14.B=G22.B AND G12.B=G21.B

The goal is to see how Q can be answered over the sources. To do so, you must answer the following questions. The first and the third are worth 10 marks, the second is worth 20 marks.

- 1. Express the views defining S_1 and S_2 , as well as the query Q, as rule-based queries and as tableaux.
- 2. Find a rewriting of Q using S_1 and S_2 . Explain how you achieve it; in this step it suffices to provide a rewriting as a tableau or a rule-based query.
- 3. Express the rewriting from the previous item in both relational algebra and SQL.