Inconsistent databases

- Often arise in data integration.
- Suppose have a functional dependency name \rightarrow salary and two tuples (John, 10K) in source 1, and (John, 20K) in source 2.
- One may want to clean data before doing integration.
- This is not always possible.
- Another solution: keep inconsistent records, and try to address the issue later.
- Issue = query answering.

Inconsistent databases cont'd

- Setting:
 - \circ a database D;
 - \circ a set of integrity constraints IC e.g. keys, foreign keys, functional dependencies etc
 - \circ a query Q
- D violates IC
- ullet What is a proper way of answering Q?
- Certain Answers:

$$\operatorname{certain}_{IC}(Q, D) = \bigcap_{D_r \text{ is a repair of } D} Q(D_r)$$

Repairs

- How can we repair an instance to make it satisfy constraints?
- ullet If constraints are functional dependencies: say $A \to B$ and we have

Α	В	С
a1	b1	c 1
a1	b2	c2

we have to delete one of the tuples.

ullet If constraints are referential constraints, e.g. $R[A]\subseteq S[B]$ and we have

then we have to add a tuple to S.

Repairs cont'd

- Thus to repair a database to make it satisfy IC we may need to add or delete tuples.
- ullet Given D and D', how far are they from each other?
- A natural measure: the minimum number of deletions/insertions of tuples it takes to get to D' from D.
- In other words,

$$\delta(D, D') = (D - D') \cup (D' - D)$$

- A repair is a database D' so that
 - \circ it satisfies constraints IC, and
 - \circ there is no D'' satisfying constraints IC with $\delta(D,D'')\subset\delta(D,D')$

How many repairs are there?

Can easily be exponential even for keys: i.e. $\sqrt{2}^N$.

A B				
1 1			Α	В
2 0	$plus key A \to B$	REPAIR ⇒	1	•
2 1			2	•
			n	•
$n \mid 0$				
$n \mid 1$				

I.e. for N=2n tuples we have $2^n=\sqrt{2}^N$ repairs. (A side remark: this construction gives us $\sqrt[c]{c}^n$ repairs for any number c. What is the maximum of $\sqrt[c]{c}$?)

Query answering

- $\bullet \ \operatorname{Recall} \ \operatorname{certain}_{IC}(Q,D) \ = \ \bigcap_{D_r \ \text{is a repair of } D} Q(D_r).$
- Computing all repairs is impractical.
- Hence one tries to obtain a rewriting Q':

$$Q'(D) = \operatorname{certain}_{IC}(Q, D).$$

• Is this always possible?

Query rewriting: a good case

- One relation R(A, B, C)
- Functional dependency $A \to B$
- Query Q: just return R
- If an instance may violate $A\to B$, then we can rewrite Q to $R(x,y,z)\wedge \forall u\forall v\ \left(R(x,u,v)\to u=y\right)$ or

```
SELECT * FROM R
WHERE NOT EXISTS (SELECT * FROM R R1
WHERE R.A=R1.A AND R.B <> R1.B)
```

• This technique applies to a small class of queries: conjunctive queries without projections, i.e.

```
SELECT * FROM R1, R2 ...
WHERE <conjucation of equalities>
```

Query rewriting: a mildly bad case

- One relation R(A, B); attribute A is a key
- Query $Q = \exists x, y, z \ (R(x, z) \land R(y, z) \land (x \neq y))$
- When are certain answers false?
- ullet If there is a repair in which the negation of Q is true.
- What is the negation of Q?

$$\circ \neg Q = \forall x, y, z \left((R(x, z) \land R(y, z)) \to x = y \right)$$

- ullet This happens precisely when R contains a perfect matching
- But checking for a perfect matching cannot be expressed in SQL.
- ullet Hence, no SQL rewriting for certain $_{IC}(Q)$.

Query rewriting: the worst

ullet One can find an example of a rather simple relational algebra query Q and a set of constraints IC so that the problem of finding

$$certain_{IC}(Q, D)$$

is coNP-complete.

- In general for most types of constraints one can limit the number of repairs but they give rather high complexity bounds
 - typically classes "above" PTIME and contained in PSPACE hence almost certainly requiring exponential time.

Other approaches

- Repair attribute values.
 - A common example: census data. Don't get rid of tuples but change the values.
 - Distance: sum of absolute values of squares of differences new value – old value
 - Typically one considers aggregate queries and looks for approximations or ranges of their values
- A different notion of repair.
 - \circ Most commonly: the cardinality of $(D-D')\cup (D'-D)$ must be minimum.
 - This is a reasonable measure but the complexity of query answering is high.