
DATABASE SYSTEMS

Copyright c© 2009 by Leonid Libkin

These slides are free to download for students and instruc-
tors. If you use them for teaching a course, you can only
distribute them to students free of charge. These slides
cannot be posted on other web sites without permission of
the author.

Database Systems 1 L. Libkin

The relational model

• Data is organized in relations (tables)

• Relational database schema:

set of table names

list of attributes for each table

• Tables are specified as: <table name>:<list of attributes>

• Examples:

Account: number, branch, customerId

Movie: title, director, actor

Schedule: theater, title

• Attributes within a table have different names

• Tables have different names

Database Systems 2 L. Libkin

Example: relational database

Movie title director actor
Shining Kubrick Nicholson
Player Altman Robbins

Chinatown Polanski Nicholson
Chinatown Polanski Polanski
Repulsion Polanski Deneuve

Schedule theater title
Le Champo Shining
Le Champo Chinatown
Le Champo Player

Odéon Chinatown
Odéon Repulsion

Database Systems 3 L. Libkin

Examples of queries

• Find titles of current movies:
answer title

Shining
Player

Chinatown
Repulsion

• Find theaters showing movies directed by Polanski:

answer theater
Le Champo

Odéon

• Find theaters showing movies featuring Nicholson:

answer theater
Le Champo

Odéon

Database Systems 4 L. Libkin

• Find all directors who directed themselves:
answer director

Polanski

• Find directors whose movies are playing in all theaters:

answer director
Polanski

• Find theaters that only show movies featuring Nicholson:

answer theater

but if Le Champo stops showing ’Player’, the answer to the query
becomes:
answer theater

Le Champo

Database Systems 5 L. Libkin

Query results

• They are tables constructed from tables in the database

How to ask a query?

• Query languages

Commercial: SQL

Theoretical: Relational calculus, algebra, datalog etc

Database Systems 6 L. Libkin

Declarative vs Procedural

• In our queries, we ask what we want to see in the output.

• But we do not say how we want to get this output.

• Thus, query languages are declarative: they specify what is needed
in the output, but do not say how to get it.

• Database system figures out how to get the result, and gives it to the
user.

• Database system operates internally with different, procedural lan-
guages, which specify how to get the result.

Database Systems 7 L. Libkin

Declarative vs Procedural: example

Declarative:

{ title | (title, director, actor) ∈ movies }

Procedural:

for each tuple T=(t,d,a) in relation movies do

output t

end

Database Systems 8 L. Libkin

Declarative vs Procedural: another example

Declarative:

{ theater | (title, director, actor) ∈ movies,
(theater, title) ∈ schedule,
actor=‘Nicholson’ }

Procedural:

for each tuple T1=(t1,d,a) in relation movies do

for each tuple T2=(th,t2) in relation schedule do

if t1 = t2 and a=‘Nicholson’ then output th

end

end

Database Systems 9 L. Libkin

Declarative vs Procedural

• Theoretical languages:

Declarative: relational calculus, rule-based queries

Procedural: relational algebra

• Practical languages: mix of both, but mostly one uses declarative fea-
tures.

What’s next?

We’ll do examples of queries in various query languages.

Database Systems 10 L. Libkin

Examples of queries

• Find titles of current movies:

answer(tl) :– movies(tl, dir, act)

• That is, while (tl, dir, act) ranges over relation movies, output tl (the
title attribute)

• We formulate queries as rules, that say when certain elements belong
to the answer.

• Queries like this one are called conjunctive queries; we’ll see later why.

Database Systems 11 L. Libkin

Next example

• Find theaters showing movies directed by Polanski:

answer(th) :– movies(tl, ’Polanski’, act), schedule(th, tl)

• While (tl, dir, act) range over tuples in movies, check if dir is ’Polanski’;
if not, go to the next tuple, if yes, look at all tuples (th, tl) in schedule
corresponding to the title tl in relation movies, and output th.

This is the most common type of queries one asks.

Database Systems 12 L. Libkin

• Find directors who acted in their own movies:

answer(dir) :– movies(tl, dir, act), dir=act

• While (tl, dir, act) ranges over tuples in movies, check if dir is the same
as act, and output it if that is the case.

Database Systems 13 L. Libkin

A more complicated example

• Find directors whose movies are playing in all theaters.

• “All” is often problematic: one needs universal quantifier ∀.

• We use notation from mathematical logic:

• { dir | ∀ (th, tl) ∈ schedule
∃ (tl’, act): (tl’,dir,act) ∈ movies ∧ (th, tl’) ∈ schedule }

• That is, to see if director dir is in the answer, for each theater name
th, check that there exists a tuple (tl’, dir, act) in movies, and a tuple
(th, tl’) in schedule

Reminder:

• ∀ means “for all”, ∃ means “exists”

• ∧ is conjunction (logical AND)

Database Systems 14 L. Libkin

SQL

• Structured Query Language

• Developed originally at IBM in the late 70s

• First standard: SQL-86

• Second standard: SQL-92

• Latest standard: SQL-99, or SQL3, well over 1,000 pages

• ”The nice thing about standards is that you have so many to choose
from.” – Andrew S. Tanenbaum.

• De-facto standard of the relational database world – replaced all other
languages.

Database Systems 15 L. Libkin

Examples of SQL queries

• Find titles of current movies

SELECT Title

FROM Movies

• SELECT lists attributes that go into the output of a query

• FROM lists input relations

Database Systems 16 L. Libkin

More examples

• Find theaters showing movies directed by Polanski:

SELECT Schedule.Theater

FROM Schedule, Movies

WHERE Movies.Title = Schedule.Title

AND Movies.Director=‘Polanski’

Differences:

• SELECT now specifies which relation the attributes came from – because
we use more than one.

• FROM lists two relations

• WHERE specifies the condition for selecting a tuple.

Database Systems 17 L. Libkin

Joining relations

• WHERE allows us to join together several relations

• Consider a query: list directors, and theaters in which their movies are
playing

• Conjunctive query:

answer(dir,th) :– schedule(th,tl), movies(tl,dir,act)

• SQL query:

SELECT Movies.Director, Schedule.Theater

FROM Movies, Schedule

WHERE Movies.Title = Schedule.Title

Database Systems 18 L. Libkin

Joining relations cont’d

• SELECT Movies.Director, Schedule.Theater

FROM Movies, Schedule

WHERE Movies.Title = Schedule.Title

• Semantics: nested loops over relations listed in FROM

for each tuple (Title1, Director, Actor) in Movies do

for each tuple (Theater, Title2) in Schedule do

if Title1=Title2 then output (Director, Theater)

end

end

• This operation is called join. It is one of the most fundamental oper-
ations in database queries.

We will see many examples throughout the course.

Database Systems 19 L. Libkin

Procedural Language: Relational algebra

• We start with a subset of relational algebra that suffices to capture
queries defined by simple rules, and by SQL SELECT-FROM-WHERE state-
ments.

• The subset has three operations:

Projection π

Selection σ

Cartesian Product ×

• Sometimes we also use renaming ρ but it can be avoided.

Database Systems 20 L. Libkin

Projection

• Chooses some attributes in a relation

• πA1,...,An(R): only leaves attributes A1, . . . , An in relation R.

• Example:

πtitle,director











title director actor

Shining Kubrick Nicholson

Player Altman Robbins

Chinatown Polanski Nicholson

Chinatown Polanski Polanski

Repulsion Polanski Deneuve











=

title director

Shining Kubrick

Player Altman

Chinatown Polanski

Repulsion Polanski

• Provides the user with a view of data by hiding some attributes

Database Systems 21 L. Libkin

Selection

• Chooses tuples that satisfy some condition

• σc(R): only leaves tuples t for which c(t) is true

• Conditions: conjunctions of

R.A = R.A′ – two attributes are equal

R.A = constant – the value of an attribute is a given constant

Same as above but with 6= instead of =

• Examples:

Movies.Actor=Movies.Director

Movies.Actor 6= ’Nicholson’

Movies.Actor=Movies.Director ∧ Movies.Actor=‘Nicholson’

• Provides the user with a view of data by hiding tuples that do not
satisfy the condition the user wants.

Database Systems 22 L. Libkin

Selection: Example

σactor=director∧director=′Polanski′

















title director actor
Shining Kubrick Nicholson
Player Altman Robbins

Chinatown Polanski Nicholson
Chinatown Polanski Polanski
Repulsion Polanski Deneuve

















=
title director actor

Chinatown Polanski Polanski

Database Systems 23 L. Libkin

Combining selection and projection

• Find directors who acted in their movies

• answer(dir) :– movies(tl,dir,act), act=dir

• SELECT Director

FROM Movies

WHERE Director=Actor

• Relational algebra query:

Q = πdirector (σdirector=actor (Movies))

• σdirector=actor (Movies) gives us
title director actor

Chinatown Polanski Polanski

• Thus πdirector (σdirector=actor (Movies)) gives us
director
Polanski

Database Systems 24 L. Libkin

Combining selection and projection cont’d

• There could be more than one way to write selection-projection queries

• Example: find movies and directors excluding Polanski’s movies

• answer(tl,dir) :– movies(tl, dir, act), dir 6= ’Polanski’

• Relational algebra query:

Q1 = σ
director 6=′Polanski′

(πtitle,director(Movies))

• An equivalent relational algebra query

Q2 = πtitle,director (σ
director 6=′Polanski′

(Movies))

• The same declarative query can be translated into more than one pro-
cedural query

Database Systems 25 L. Libkin

Combining selection and projection cont’d

• Are Q1 and Q2 the same?

• They are the same semantically, as they produce the same result.

• But differ in terms of their efficiency.

• Q1 scans Movies, projects out two attributes, and scans the the result
again.

• Q2 scans movies, selects some tuples, and then only scans selected

tuples

• Thus, it is likely that Q2 is more efficient

• Procedural languages can be optimized: there are semantically equiv-
alent ways to write the same query, and some of those ways are more
efficient

Database Systems 26 L. Libkin

Cartesian Product

• Puts together two relations

• R1 ×R2 puts together each tuple t1 of R1 and each tuple t2 of R2

• Example:

R1 A B

a1 b1

a2 b2

×

R2 A C

a1 c1

a2 c2

a3 c3

=

R1.A R1.B R2.A R2.C

a1 b1 a1 c1

a1 b1 a2 c2

a1 b1 a3 c3

a2 b2 a1 c1

a2 b2 a2 c2

a2 b2 a3 c3

• We renamed attributes to include the name of the relation: in the
resulting table, all attributes must have different names.

Database Systems 27 L. Libkin

Cartesian Product cont’d

• If R1 has n tuples and R2 has m tuples, then R1 × R2 has n × m

tuples

• This is an expensive operation: if R and S each have 1,000 tuples
(small relations), R× S has 1,000,000 tuples (quite large)

• Query processing algorithms try to avoid building products – instead
they attempt to build only subsets which contain relevant information.

Database Systems 28 L. Libkin

Cartesian Product: Example

• Find theaters playing movies directed by Polanski

• answer(th) :– movies(tl,dir,act), schedule(th,tl), dir=‘Polanski’

• Step 1: Let R1 = Movies× Schedule

• We don’t need all tuples, only those in which titles are the same, so:

• Step 2: Let R2 = σcond(R1) where cond is Movies.title = Schedule.title

• We are only interested in movies directed by Polanski, so
R3 = σdirector=′Polanski′(R2)

• In the output, we only want theaters, so finally
Answer = πtheater(R3)

• Summing up, the answer is

πtheater(σdirector=′Polanski′(σMovies.title=Schedule.title(Movies× Schedule)))

Database Systems 29 L. Libkin

Cartesian Product: Example cont’d

• Several selections can be combined into one:

• σc1(σc2(R)) = σc1∧c2(R)

• So the answer to the query is

πtheater(σdirector=′Polanski′∧Movies.title=Schedule.title(Movies× Schedule)))

Database Systems 30 L. Libkin

SQL and relational algebra

• We have to translate declarative languages into procedural languages

• Idea:

SELECT is projection π

FROM is Cartesian product ×

WHERE is selection σ

• A simple case: only one relation in FROM

SELECT A, B, · · ·
FROM R

WHERE condition c

is translated into

πA,B,···(σc(R))

Database Systems 31 L. Libkin

Translating declarative queries into relational algebra

• Find titles of all movies

• answer(tl) :– movies(tl,dir,act)

• SELECT Title

FROM Movies

• This is simply projection:

πtitle(Movies)

Database Systems 32 L. Libkin

Translation Examples

• Find theaters showing movies directed by Polanski:

• SELECT Schedule.Theater

FROM Schedule, Movies

WHERE Movies.Title = Schedule.Title

AND Movies.Director=‘Polanski’

• First, translate into a rule:

answer(th) :– schedule(th,tl), movies(tl,’Polanski’,act)

• Second, change into a rule such that:

constants appear only in conditions

no two variables are the same

• This gives us:

answer(th) :– schedule(th,tl), movies(tl’,dir,act), dir = ’Polanski’, tl=tl’

Database Systems 33 L. Libkin

Translation Examples cont’d

• answer(th) :– schedule(th,tl), movies(tl’,dir,act), dir = ’Polanski’, tl=tl’

Two relations =⇒ Cartesian product

Conditions =⇒ selection

Subset of attributes in the answer =⇒ projection

• Step 1: R1 = Schedule × Movies

• Step 2: Make sure we talk about the same movie:

R2 = σSchedule.title=Movies.title(R1)

• Step 3: We are only interested in Polanski’s movies:

R3 = σMovies.director=Polanski(R2)

• Step 4: we need only theaters in the output

answer = πschedule.theater(R3)

Database Systems 34 L. Libkin

Translation Examples cont’d

Summing up, the answer is:

πschedule.theater(σMovies.director=Polanski(σSchedule.title=Movies.title(Schedule×Movies)))

or, using the rule σc1(σc2(R)) = σc1∧c2(R):

πschedule.theater(σMovies.director=Polanski ∧ Schedule.title=Movies.title(Schedule×Movies))

Database Systems 35 L. Libkin

Formal translation: SQL to rule-based queries

SELECT attribute list 〈Ri.Aj〉
FROM R1, . . . , Rn

WHERE condition c

is translated into:

answer(〈Ri.Aj〉) : −

R1(<attributes>),
. . . ,

Rn(<attributes>),
c

Database Systems 36 L. Libkin

Rules into Relational algebra

• How are rules translated into algebra?

answer(a1, . . . , ak) :- R1(~A1), . . ., Rn(~An), conditions

• First, make sure no two attributes are the same: if we have Ri(. . . , A, . . .)
and Rj(. . . , A, . . .), turn then into Ri(. . . , A

′, . . .) and Rj(. . . , A
′′, . . .),

and add A′ = A′′ to the conditions.

• For example, answer(th,dir) :- movies(tl,dir,act), schedule(th,tl)
is rewritten to
answer(th,dir) :- movies(tl’,dir,act), schedule(th,tl”), tl’=tl”

• Such rules are translated into

πa1,...,ak
(σconditions(R1 × . . .×Rn))

Database Systems 37 L. Libkin

Putting it together: SQL into relational algebra

• Combining translations:

SQL into rule-based queries and rule-based into relational algebra

we have the following SQL to relational algebra translation:

•
SELECT attribute list 〈Ri.Aj〉
FROM R1, . . . , Rn

WHERE condition c

is translated into

π〈Ri.Aj〉(σc(R1 × . . .×Rn))

Database Systems 38 L. Libkin

Another example

• Find theaters showing movies featuring Nicholson.

• SELECT Schedule.Theater

FROM Schedule, Movies

WHERE Movies.Title = Schedule.Title

AND Movies.Actor=‘Nicholson’

• Translate into a rule:

answer(th) :– movies(tl, dir, ’Nicholson’), schedule(th, tl)

• Modify the rule:

answer(th) :– movies(tl, dir, act), schedule(th, tl’), tl=tl’, act=‘Nicholson’

Database Systems 39 L. Libkin

Another example cont’d

• answer(th) :– movies(tl, dir, act), schedule(th, tl’), tl=tl’, act=‘Nicholson’

• Step 1: R1 = Schedule × Movies

• Step 2: Make sure we talk about the same movie:

R2 = σSchedule.title=Movies.title(R1)

• Step 3: We are only interested in movies with Nicholson:

R3 = σMovies.actor=Nicholson(R2)

• Step 4: we need only theaters in the output

answer = πschedule.theater(R3)

Summing up:

πschedule.theater(σMovies.actor=Nicholson ∧ Schedule.title=Movies.title(Schedule×Movies))

Database Systems 40 L. Libkin

Natural Join

• We have seen the following common steps in the last two queries:

Step 1: R1 = Schedule × Movies

Step 2: Make sure we talk about the same movie:

R2 = σSchedule.title=Movies.title(R1)

• Attributes of R2:

Schedule.Theater, Schedule.Title,
Movies.Title, Movies.Director, Movies.Actor

• But one of the title attributes is redundant:
Movies.Title and Schedule.Title are always the same in R2.

• Thus, we can reduce R2 to a simple relation with the attributes:

Schedule.Theater, Title, Movies.Director, Movies.Actor

• This is the natural join Schedule 1 Movies

Database Systems 41 L. Libkin

Natural join: example

title director actor

Shining Kubrick Nicholson

Player Altman Robbins

Chinatown Polanski Nicholson

Chinatown Polanski Polanski

Repulsion Polanski Deneuve

1

theater title

Le Champo Shining

Le Champo Chinatown

Le Champo Player

Odéon Chinatown

Odéon Repulsion

=

=

title director actor theater

Shining Kubrick Nicholson Le Champo

Player Altman Robbins Le Champo

Chinatown Polanski Nicholson Le Champo

Chinatown Polanski Nicholson Odéon

Chinatown Polanski Polanski Le Champo

Chinatown Polanski Polanski Odéon

Repulsion Polanski Deneuve Odéon

Database Systems 42 L. Libkin

Join cont’d

• Join is not a new operation of relational algebra

• It is definable with π, σ,×

• Suppose R is a relation with attributes A1, . . . , An, B1, . . . , Bk

• S is a relation with attributes A1, . . . , An, C1, . . . , Cm

• R 1 S has attributes A1, . . . , An, B1, . . . , Bk, C1, . . . , Cm

R 1 S

= πA1,...,An, B1,...,Bk,C1,...,Cm(σR.A1=S.A1∧...∧R.An=S.An(R× S))

Database Systems 43 L. Libkin

Properties of join

• Commutative: R 1 S = S 1 R

• Associative: R 1 (S 1 T) = (R 1 S) 1 T

• Hence we can write R1 1 R2 1 . . . 1 Rn

Database Systems 44 L. Libkin

Commutativity and Associativity of Joins

R employee department
Jones D1
Brown D2
Smith D3

S department office
D1 USA
D2 UK

T office head
USA Andrews
UK Morrison

R 1 S 1 T employee department office head
Jones D1 USA Andrews
Brown D2 UK Morrison

Database Systems 45 L. Libkin

Select-Project-Join (SPJ) queries

• These are the most common queries

• Simple rules, or simple SELECT-FROM-WHERE queries.

• Find theaters showing movies directed by Polanski:

• answer(th) :– schedule(th,tl), movies(tl,’Polanski’,act)

• As SPJ query:

πtheater(σdirector=′Polanski(Movies 1 Schedule))

• What is simpler compared to earlier version?

πschedule.theater(σMovies.director=Polanski(σSchedule.title=Movies.title(Schedule×Movies)))

• Selection Schedule.title=Movies.title is eliminated; it is implied by the
join.

Database Systems 46 L. Libkin

Properties of relational algebra operators

Sizes of outputs

• Projection: size(π(R)) ≤ size(R)

• But sometimes size(π(R)) < size(R)

• This happens if some attribute values are the same

πA





A B
a b1
a b2



 =
A
a

• Selection: 0 ≤ size(σ(R)) ≤ size(R)

• Depends on how many tuples satisfy the condition.

Database Systems 47 L. Libkin

Sizes of joins and cartesian products

• size(R× S) = size(R)× size(S), but:

• 0 ≤ size(R 1 S) ≤ size(R)× size(S)

• Dangling tuples that do not participate in the join:

R employee department

Jones D1

Brown D2

Smith D3

1

S department office

D1 USA

D2 UK

=

R 1 S employee department office

Jones D1 USA

Brown D2 UK

• (Smith, D3) is not joined with any tuple in S: S has no information
about department D3.

Database Systems 48 L. Libkin

Empty joins

• Joins could be empty:

R employee department
Jones D1
Brown D2
Smith D3

1

S ′ department office
D4 France
D5 Italy

=
R 1 S ′ employee department office

Database Systems 49 L. Libkin

Translating SPJ queries back into rules and SQL

• Q = π ~A
(σc(R 1 S))

• Let B1, . . . , Bm be the common attributes in R and S

• Equivalent SQL statement:

•
SELECT ~A

FROM R, S

WHERE c, R.B1 = S.B1 AND . . . AND R.Bm = S.Bm

• Equivalent rule query:

answer(~A) :–
R(<attributes of R>), S(<attributes of S>),
R.B1 = S.B1, ..., R.Bm = S.Bm, c

Database Systems 50 L. Libkin

SPJ to SQL: Example

• Find directors of currently playing movies featuring Ford:

• πdirector(σactor=‘Ford(Movies 1 Schedule))

• In SQL:

SELECT Movies.director

FROM Movies, Schedule

WHERE Movies.title=Schedule.title AND Movies.actor=‘Ford’

Database Systems 51 L. Libkin

What we’ve seen so far

• Simple queries given by SQL SELECT-FROM-WHERE

• Same queries are defined by rules

• They are also the same queries as those definable by π, σ,× in relational
algebra

Database Systems 52 L. Libkin

Saving space

• We don’t want to repeat relation names many times

• SQL lets you use temporary names for relations

• SELECT S.Theater

FROM Schedule S, Movies M

WHERE S.Title=M.Title AND M.Director=‘Polanski’

• Using a variable after relation name indicates that the relation is tem-
porarily renamed.

Database Systems 53 L. Libkin

Nested queries: simple example

• So far in the WHERE clause we used comparisons of attributes.

• In general, a WHERE clause could contain another query, and test some
relationship between an attribute and the result of that query.

• We call queries like this nested, as they use subqueries

• Example: Find theaters showing Polanski’s movies

SELECT Schedule.Theater

FROM Schedule

WHERE Schedule.Title IN

(SELECT Movies.Title

FROM Movies

WHERE Movies.Director=‘Polanski’)

Database Systems 54 L. Libkin

Nested queries: comparison

SELECT S.Theater SELECT S.Theater

FROM Schedule S FROM Schedule S, Movies M

WHERE S.Title IN WHERE S.Title=M.Title

(SELECT M.Title AND M.Director=’‘Polanski’

FROM Movies M

WHERE M.Director=‘Polanski’)

• These express the same query

• On the left, each subquery refers to one relation

• The real advantage of nesting is that one can use more complex predi-
cates than IN.

Database Systems 55 L. Libkin

Disjunction in queries

• Find actors who played in movies directed by Kubrick OR Polanski?

• SELECT Actor

FROM Movies

WHERE Director=‘Kubrick’ OR Director=‘Polanski’

•

• Can this be defined by a single rule?

• NO!

Database Systems 56 L. Libkin

Disjunction in queries cont’d

• Solution: Disjunction can be represented by more than one rule.

•
answer(act) :– movies(tl,dir,act), dir=‘Kubrick’
answer(act) :– movies(tl,dir,act), dir=‘Polanski’

• Semantics: compute answers to each of the rules, and then take their
union.

• SQL has another syntax for that:

SELECT Actor

FROM Movies

WHERE Director=‘Kubrick’

UNION

SELECT Actor

FROM Movies

WHERE Director=‘Polanski’

Database Systems 57 L. Libkin

Disjunction in queries cont’d

• How to translate a query with disjunction into relational algebra?

• answer(act) :– movies(tl,dir,act), dir=‘Kubrick’

is translated into Q1 = πactor(σdirector=Kubrick(Movies))

• answer(act) :– movies(tl,dir,act), dir=‘Polanski’

is translated into Q2 = πactor(σdirector=Polanski(Movies))

• The whole query is translated into Q1 ∪Q2

πactor(σdirector=Kubrick(Movies))
⋃

πactor(σdirector=Polanski(Movies))

Database Systems 58 L. Libkin

Union in relational algebra

• Another operation of relational algebra: union

• R ∪ S is the union of relations R and S

• R and S must have the same set of attributes.

• We now have four relational algebra operations:

π, σ,×,∪

(and of course 1 which is definable from π, σ,×)

• This fragment is called positive relational algebra, or SPJU-queries
(select-project-join-union)

Database Systems 59 L. Libkin

Interaction of relational algebra operators

• π ~A
(R ∪ S) = π ~A

(R) ∪ π ~A
(S)

• σc(R ∪ S) = σc(R) ∪ σc(S)

• (R ∪ S)× T = R× T ∪ S × T

• T × (R ∪ S) = T ×R ∪ T × S

Database Systems 60 L. Libkin

SPJU queries

Every SPJU query is equivalent to a union of SPJ queries.

Because: one propagates the union operation.

Example:

πA(σc((R× (S ∪ T)) ∪W))

= πA(σc((R× S) ∪ (R× T) ∪W))

= πA(σc(R× S) ∪ σc(R× T) ∪ σc(W))

= πA(σc(R× S))
⋃

πA(σc(R× T))
⋃

πA(σc(W)

Database Systems 61 L. Libkin

Equivalences

Positive relational algebra (SPJU queries)
= Unions of SPJ queries
= queries defined by multiple rules
= SQL SELECT-FROM-WHERE-UNION

= unions of conjunctive queries
= queries defined with ∃,∧,∨

Question: is INTERSECTION an SPJU query?

That is, given R, S with the same set of attributes, find R ∩ S.

Database Systems 62 L. Libkin

More on union

• Relation R1:father,child

R1 father child
George Elizabeth
Philip Charles
Charles William

• Relation R2:mother,child
R1 mother child

Elizabeth Charles
Elizabeth Andrew

• We want their union, which should be the “parent-child” relation.

• But we cannot use R1∪R2 because R1 and R2 have different attributes!

• Hence we must rename attributes.

Database Systems 63 L. Libkin

Renaming

• Let R be a relation that has attribute A but does not have attribute
B.

• ρB←A(R) is the same relation as R except that A is renamed to be B.

•

ρparent←father







father child

George Elizabeth

Philip Charles

Charles William






=







parent child

George Elizabeth

Philip Charles

Charles William







ρparent←mother





mother child

Elizabeth Charles

Elizabeth Andrew



 =





parent child

Elizabeth Charles

Elizabeth Andrew





Database Systems 64 L. Libkin

Renaming

The desired union now is:

ρparent←father(R1)
⋃

ρparent←mother(R2)

and it produces:

parent child
George Elizabeth
Philip Charles
Charles William

Elizabeth Charles
Elizabeth Andrew

Database Systems 65 L. Libkin

Renaming in SQL

• New attribute names can be introduced in SELECT using keyword AS.

• SELECT Father AS Parent, Child

FROM R1

SELECT Mother AS Parent, Child

FROM R2

• The union of these queries can be taken, as they have the same set of
attributes:

SELECT Father AS Parent, Child

FROM R1

UNION

SELECT Mother AS Parent, Child

FROM R2

Database Systems 66 L. Libkin

Queries with “All”

• Find directors whose movies are playing in all theaters.

{ dir | ∀ (th, tl’) ∈ Schedule ∃ tl, act Schedule(th,tl) ∧ Movies(tl, dir, act) }

• What does it actually mean?

• To understand this, we revisit rule-based queries, and write them in
logical notation.

Database Systems 67 L. Libkin

Rules revisited

• By now, this query is very familiar:

• answer(th) :– movies(tl, ’Polanski’, act), schedule(th,tl)

• What does it actually mean?

• It asks, for each theater (th): “Does there exist a movie (tl) and an
actor (act) such that (th,tl) is in Schedule and (tl, ’Polanski’, act) is in
Movies?

• This can be stated using notation from mathematical logic:

Q(th) = ∃ tl ∃ act Movies(tl, ’Polanski’, act) ∧ Schedule(th,tl)

Database Systems 68 L. Libkin

Other queries in logical notation

• answer(th) :– movies(tl, dir, ’Nicholson’), schedule(th,tl)

•

Q(th) = ∃ tl ∃ dir Movies(tl, dir, ’Nicholson’) ∧ Schedule(th,tl)

• In general, every single-rule query can be written in the logical notation
using only:

existential quantification ∃, and

logical conjunction ∧ (AND)

Database Systems 69 L. Libkin

SPJU queries in logical form

• Find actors who played in movies directed by Kubrick OR Polanski.

• Rule-based query:

answer(act) :– movies(tl,dir,act), dir=‘Kubrick’
answer(act) :– movies(tl,dir,act), dir=‘Polanski’

• Logical notation:

Q(act) = ∃ tl ∃ dir

(

Movies(tl,dir,act)
∧ (dir=‘Kubrick’ ∨ dir=‘Polanski’)

• New element here: logical disjunction ∨ (OR)

• SPJU queries can be written in logical notation using:

existential quantifiers ∃

conjunction ∧ and disjunction ∨

Database Systems 70 L. Libkin

Queries with “for all”

• { dir | ∀ (th, tl’) ∈ Schedule ∃ tl, act Schedule(th,tl) ∧ Movies(tl, dir, act) }

• New element here: universal quantification “for all” ∀

• ∀xF (x) = ¬∃x¬F (x)

• So really the new element is: negation

• One has to be careful with negation: what is the meaning of

{x | ¬R(x)}

• It seems to say: give us everything that is not in the database. But
this is an infinite set!

Database Systems 71 L. Libkin

Queries with “all” and negation cont’d

• Safety: a query written in logical notation is safe it is guaranteed to
return finite results on all databases.

• Clearly this has to be enforced in practical languages.

• Bad news: No algorithm can possibly to check if a query is safe.

• A bit of good news: All SPJ and SPJU queries are safe.

Because: everything that occurs in the output must have occurred in
the input: no new elements are created.

• So we have to figure out how to handle negation.

Database Systems 72 L. Libkin

Relational Calculus

• Relational calculus: queries written in the logical notation using:

relation names (e.g., Movies)

constants (e.g., ’Nicholson’)

conjunction ∧, disjunction ∨

negation ¬

existential quantifiers ∃

universal quantifiers ∀

• ∧,∃,¬ suffice:

∀xF (x) = ¬∃x¬F (x)

F ∨G = ¬(¬F ∧ ¬G)

• Another name for it: first-order predicate logic.

Database Systems 73 L. Libkin

Relational Calculus cont’d

• Bound variable: a variable x that occurs in ∃x or ∀x

• Free variable: a variable that is not bound.

• Free variables are those that go into the output of a query.

• Two ways to write a query:

Q(~x) = F , where ~x is the tuple of free variables

{~x | F}

• Examples:

{x, y | ∃z (R(x, z) ∧ S(z, y))}

{x | ∀yR(x, y)}

• Queries without free variables are called Boolean queries.

• Their output is true or false

∀xR(x, x)

∀x∃yR(x, y)

Database Systems 74 L. Libkin

Safe Relational Calculus

• A relational calculus query Q(~x) is safe if it always returns a finite
result.

• Examples of safe queries:

Any Boolean query

Any SPJ or SPJU query

• Examples of unsafe queries:

{x | ¬R(x)}

{x, y | Movies(x,Polanski,Nicholson) ∨Movies(Chinatown,Polanski,y)}

• Safe relational calculus = set of safe relational calculus queries.

• But safety cannot be checked algorithmically!

• Still, we can describe this language.

Database Systems 75 L. Libkin

Difference

• If R and S are two relations with the same set of attributes, then R−S

is their difference:

The set of all tuples that occur in R but not in S.

• Example:

A B
a1 b1
a2 b2
a3 b3

−

A B
a2 b2
a3 b3
a4 b4

=
A B
a1 b1

Database Systems 76 L. Libkin

Relational Algebra

• Includes operations π, σ,×,∪,−, ρ

Fundamental Theorem of Relational Database Theory

Safe Relational Calculus = Relational Algebra

• We won’t give a formal proof of this statement, but try to explain why
it is true.
You’ll also see some examples of relational algebra programming along
the way.

Database Systems 77 L. Libkin

From Relational algebra to Safe relational calculus

• Show that relational algebra can be expressed by relational calculus
(and it is certainly safe)

• Each expression e producing an n-attribute relation is translated into a
formula Fe(x1, . . . , xn)

• R → R(x1, . . . , xn)

• σc(R) → R(x1, . . . , xn) ∧ c

For example, if R has attributes A, B then σA=B(R) is translated into
(R(x1, x2) ∧ x1 = x2).

Database Systems 78 L. Libkin

From Relational algebra to Safe relational calculus cont’d

• If R has attributes A1, . . . , An, B1, . . . , Bm, then

πA1,...,An(R)

is translated into

∃y1, . . . , ym R(x1, . . . , xn, y1, . . . , ym)

Important: it is the attributes that are not projected that are quantified.

Example: for R with attributes A, B, πA(R) is ∃x2R(x1, x2).

• R× S is translated into R(x1, . . . , xn) ∧ S(y1, . . . , ym)

(note that all the variables are distinct; hence the output will have
n + m attributes)

Database Systems 79 L. Libkin

From Relational algebra to Safe relational calculus cont’d

• If R and S both have the same attributes, then R ∪ S is translated
into R(x1, . . . , xn) ∨ S(x1, . . . , xn)
(note that all the variables are the same, hence the output will have n

attributes)

• If R and S both have the same attributes, then R − S is translated
into R(x1, . . . , xn) ∧ ¬S(x1, . . . , xn)
(note that all the variables are the same, hence the output again will
have n attributes)

Database Systems 80 L. Libkin

Getting ready for the calculus to algebra translation

• Active domain of a relation: the set of all constants that occur in it.

• Example: active domain of
R1 A B

a1 b1

a2 b2

is {a1, a2, b1, b2}.

• Computing the active domain of R.
Suppose R has attributes A1, . . . , An.

ADOM(R) = ρB←A1
(πA1

(R)) ∪ . . . ∪ ρB←An(πAn(R))

• It is a relation with one attribute B.

• Similarly we can compute

ADOM(R1, . . . , Rk) = ADOM(R1) ∪ . . . ∪ ADOM(Rk)

Database Systems 81 L. Libkin

From safe relational calculus to relational algebra

• A safe query over relations R1, . . . , Rn cannot produce an element
outside of ADOM(R1, . . . , Rn)

• That is, for a safe query Q,

ADOM(Q(R1, . . . , Rn)) ⊆ ADOM(R1, . . . , Rn)

• Because: every element outside of ADOM(R1, . . . , Rn) “looks” like
any other element: so if one is in the output, then all are, and hence
the query isn’t safe.

• We thus translate relational calculus queries evaluated within
ADOM(R1, . . . , Rn) into relational algebra queries.

• Each relational calculus formula F (x1, . . . , xn) is translated into an
expression EF that produces a relation with n attributes.

Database Systems 82 L. Libkin

From safe relational calculus to relational algebra: translation

• Easy cases (for R with attributes A1, . . . , An):

R(x1, . . . , xn) → R

∃x1R(x1, . . . , xn) → πA2,...,An(R)

• Not so easy cases:

• condition c(x1, . . . , xn) is translated into

σc(ADOM× . . .× ADOM)

E.g., x1 = x2 is translated into σx1=x2
(ADOM× ADOM)

• Negation ¬R(~x) → ADOM× . . .× ADOM−R

That is, we only compute the tuples of elements from the database that
do not belong to R

Database Systems 83 L. Libkin

From safe relational calculus to relational algebra cont’d

• The hardest case: disjunction

• Let both R and S have two attributes.

• Relational calculus query:

Q(x, y, z) = R(x, y) ∨ S(x, z)

• Its result has three attributes, and consists of tuples (x, y, z) such that
either:

(x, y) ∈ R, z ∈ ADOM, or

(x, z) ∈ S, y ∈ ADOM

• The first one is simply R× ADOM

• The second one is more complex: π#1,#3,#5(σ#1=#4∧#2=#5(S×ADOM×
S))

• Thus, Q is translated into

R× ADOM ∪ π#1,#3,#5(σ#1=#4∧#2=#5(S × ADOM× S))

Database Systems 84 L. Libkin

Queries with “all” in relational algebra revisited

• Find directors whose movies are playing in all theaters.

{ dir | ∀ (th, tl’) ∈ Schedule ∃ tl, act Schedule(th,tl) ∧ Movies(tl, dir, act) }

• Define:

T1 = πtheater(S) T2 = πtheater,director(M 1 S)

(to save space, we use M for Movies and S for Schedule)

• T1 has all theaters, T2 has all directors and theaters where their movies
are playing.

• Our query is:
{d | ∀t ∈ T1 (t, d) ∈ T2}

Database Systems 85 L. Libkin

Queries with “all” cont’d

{d | ∀t ∈ T1 T2(t, d)}

is rewritten to
{d | ¬(∃t ∈ T1 (t, d) 6∈ T2)}

Hence, the answer to the query is

πdirector(M)− V

where V = {d | (∃t ∈ T1 (t, d) 6∈ T2)}.

Pairs (theater, director) not in T2 are

T1 × πdirector(M) − T2

Thus
V = πdirector(T1 × πdirector(M) − T2)

Database Systems 86 L. Libkin

Queries with “all” cont’d

• Reminder: the query is
Find directors whose movies are playing in all theaters.

• Putting everything together, the answer is:

πdirector(M)−πdirector(πtheater(S)×πdirector(M)− πtheater,director(M 1 S))

• This is much less intuitive than the logical description of the query.

• Indeed, procedural languages are not nearly as comprehensible as declar-
ative.

Database Systems 87 L. Libkin

For all and negation in SQL

• Two main mechanisms: subqueries, and Boolean expressions

• Subqueries are often more natural

• SQL syntax for R ∩ S:

R INTERSECT S

• SQL syntax for R− S:

R EXCEPT S

• Find all actors who are
not directors: also directors:

SELECT Actor AS Person SELECT Actor AS Person

FROM Movies FROM Movies

EXCEPT INTERSECT

SELECT Director AS Person SELECT Director AS Person

FROM Movies FROM Movies

Database Systems 88 L. Libkin

For all and negation in SQL cont’d

• Find directors whose movies are playing in all theaters.

• SQL’s way of saying this: Find directors such that there does not exist
a theater where their movies do not play.

SELECT M1.Director

FROM Movies M1

WHERE NOT EXISTS (SELECT S.Theater

FROM Schedule S

WHERE NOT EXISTS (SELECT M2.Director

FROM Movies M2

WHERE M2.Title=S.Title

AND

M1.Director=M2.Director))

Database Systems 89 L. Libkin

For all and negation in SQL cont’d

Same query using EXCEPT.

SELECT M.Director

FROM Movies M

WHERE NOT EXISTS (SELECT S.Theater

FROM Schedule S

EXCEPT

SELECT S1.Theater

FROM Schedule S1, Movies M1

WHERE S1.Title=M1.Title

AND M1.Director=M.Director)

• Other conditions: IN, NOT IN, EXISTS

Database Systems 90 L. Libkin

More examples of nested queries: using EXISTS and IN

Find directors whose movies are playing at Le Champo:

SELECT M.Director

FROM Movies M

WHERE EXISTS (SELECT *

FROM Schedule S

WHERE S.Title=M.Title

AND S.Theater=‘Le Champo’

SELECT M.Director

FROM Movies M

WHERE M.Title IN (SELECT S.Title

FROM Schedule S

WHERE S.Theater=‘Le Champo’

Database Systems 91 L. Libkin

More examples of nested queries: using NOT IN

Find actors who did not play in a movie by Kubrick.

SELECT M.Actor

FROM Movies M

WHERE M.Actor NOT IN

(SELECT M1.Actor

FROM Movies M1

WHERE M1.Director=‘Kubrick’)

The subquery finds actors playing in some movie by Kubrick; the top two
lines take the complement of that.

Database Systems 92 L. Libkin

Database Constraints

• So far we assumed that the title attribute identifies a movie.

• But this may not be the case:

title director actor length
Dracula Browning Lugosi 75
Dracula Fischer Lee 83
Dracula Badham Langella 109
Dracula Coppola Oldman 130

• Database constraints: provide additional semantic information about
the data.

• Most common ones: functional and inclusion dependencies, and their
special cases: keys and foreign keys.

Database Systems 93 L. Libkin

Why didn’t we have this problem before?

• What does it mean that title identifies a movie uniquely? A movie may
have several actors, but at most one director – hence it means that
title determines the value of the director attribute.

• This is expressed as a functional dependency

title → director

• In general, a relation R satisfies a functional dependency A → B,
where A and B are attributes, if for every two tuples t1, t2 in R:

πA(t1) = πA(t2) implies πB(t1) = πB(t2)

Database Systems 94 L. Libkin

Functional dependencies and keys

• More generally, a functional dependency is X → Y where X, Y are
sequences of attributes. It holds in a relation R if for every two tuples
t1, t2 in R:

πX(t1) = πX(t2) implies πY (t1) = πY (t2)

• A very important special case: keys

• Let K be a set of attributes of R, and U the set of all attributes of
R. Then K is a key if R satisfies functional dependency K → U .

• In other words, a set of attributes K is a key in R if for any two tuples
t1, t2 in R,

πK(t1) = πK(t2) implies t1 = t2

• That is, a key is a set of attributes that uniquely identify a tuple in a
relation.

Database Systems 95 L. Libkin

keys cont’d

• Consider
title director actor length year

Dracula Browning Lugosi 75 1931
Dracula Fischer Lee 83 1958
Dracula Badham Langella 109 1979
Dracula Coppola Oldman 130 1992

• Then the following are keys:

(Title, Year)

(Title, Actor)

(Title, Length)

Database Systems 96 L. Libkin

Inclusion constraints

• We expect every Title listed in Schedule to be present in Movies.

• These are referential integrity constraints: they talk about attributes
of one relation (Schedule) but refer to values in another one (Movies).

• These particular constraints are called inclusion dependencies (ID).

• Formally, we have an inclusion dependency R[A] ⊆ S[B] when every
value of attribute A in R also occurs as a value of attribute B in S:

πA(R) ⊆ πB(S)

• As with keys, this extends to sets of attributes, but they must have the
same number of attributes.

• There is an inclusion dependency R[A1, . . . , An] ⊆ S[B1, . . . , Bn]
when

πA1,...,An(R) ⊆ πB1,...,Bn(S)

Database Systems 97 L. Libkin

Foreign keys

• Most often inclusion constraints occur as a part of a foreign key

• Foreign key is a conjunction of a key and an ID:

R[A1, . . . , An] ⊆ S[B1, . . . , Bn] and

{B1, . . . , Bn} → all attributes of S

• Meaning: we find a key for relation S in relation R.

• Example: Suppose we have relations:
Employee(EmplId, Name, Dept, Salary)

ReportsTo(Empl1,Empl2).

• We expect both Empl1 and Empl2 to be found in Employee; hence:
ReportsTo[Empl1] ⊆ Employee[EmplId]

ReportsTo[Empl2] ⊆ Employee[EmplId].

• If EmplId is a key for Employee, then these are foreign keys.

Database Systems 98 L. Libkin

