SQL: Basic concepts

e SQL operates with tables, so the first thing to do is create tables.

e Syntax:
CREATE TABLE <Name> (<attrl> type, ..., <attrN> type>)
e For example:

CREATE TABLE Movies (title char(20),
director char(10),
actor char(10))

CREATE TABLE Schedule (theater char(10),

title char(20))

Database Systems 1 L. Libkin

Types

e char(n) — fixed length string of exactly n characters.

Example: ’Polanski’

e varchar(n) — variable length string of up to n characters.
Example: Polanski’. What's the difference? We'll see soon.

Note: varchar is actually an abbreviation for char varying.

e bit(n) — fixed length bit string of exactly n bits.
Example: B’0101’, X’C1’

e bit varying(n) — variable length bit string of up to n bits.

Database Systems 2 L. Libkin

Types cont'd

e int — signed integer (4 bytes)
e smallint — signed integer (2 bytes)
e real — real numbers.

e In fact, there is a general float type float(s), and real is float(s)
where s is implementation defined.

e SQL has many more types, such as date, time, timestamp, character
sets in different alphabets, etc.

Database Systems 3 L. Libkin

Types cont'd: Dates and Times

e date type: keyword DATE followed by a date in an appropriate form,
e.g. DATE ’2001-12-14°

e time type: keyword TIME followed by a string representing time; SQL
uses the 24-hour clock.

e timestamp type: combines date and time. For example,
TIMESTAMP ’2001-12-14 11:28:00’ is 11:28am on December 14,
2001.

e Operations on these types: they can be compared for equality, and for
order. If for two dates d; and d> we have d; < d, then dy is earlier
than dg.

Database Systems 4 L. Libkin

Populating tables

e General syntax:
INSERT INTO <name> VALUES (...)
e Examples:

INSERT INTO Movies VALUES
(‘Chinatown’, ‘Polanski’, ‘Nicholson’)

INSERT INTO Schedule VALUES (‘Odeon’, ‘Chinatown’)

e More generally, one can use other queries for insertion:

INSERT INTO Name
(SELECT ... FROM ... WHERE ...)

as long as the attributes in the result of the query as the same as those
of Name.

Database Systems 5 L. Libkin

Dropping tables

e DROP TABLE Name

removes the table from the database.

Changing tables

e Adding attributes:

ALTER TABLE Name ADD COLUMN
newcolumn type

Example:

ALTER TABLE Schedule ADD COLUMN
screen# smallint

Dropping columns

e ALTER TABLE Name DROP COLUMN columnname
e Example:

ALTER TABLE Schedule DROP COLUMN screen#

Database Systems 6 L. Libkin

Default values can be specified for some attributes
CREATE TABLE Name (... <attribute> <type> DEFAULT <value> ..

CREATE TABLE F (A1 INT DEFAULT O, A2 INT)

INSERT INTO F VALUES (1,1)
SELECT * FROM F

INSERT INTO F (A2) VALUES (3)
SELECT * FROM f

)

Database Systems

L. Libkin

Fixed and variable length

CREATE TABLE fool (AA CHAR(10))
INSERT INTO fool VALUES (‘xx’)
SELECT LENGTH(AA) AS X FROM fool

CREATE TABLE foo2 (AA VARCHAR(10))
INSERT INTO foo2 VALUES (‘xx’)
SELECT LENGTH(AA) AS X FROM foo2

Database Systems 8 L. Libkin

SQL and constraints

e Keys are the most common type of constraints

e One should declare them in CREATE TABLE

e Example:

CREATE TABLE Employee
(EmpId int not null primary key,
FirstName char(20),
LastName char(20),
Dept char (10),
Salary int default 0)

e not null means that the value of the attribute must always be present.

Database Systems 9 L. Libkin

Primary keys

e CREATE TABLE specifies that certain constraints must be satisfied
e SQL then checks if each update preserves constraints

e Declare a table:
create table r (al int primary key not null, a2 int)

e Insertions:

db2 => insert into r values (1,2)
DB20000I The SQL command completed successfully.
db2 => insert into r values (1,3)

DB21034E The command was processed as an SQL statement because it was
not a valid Command Line Processor command. During SQL processing it
returned: SQLO803N One or more values in the INSERT statement, UPDATE
statement, or foreign key update caused by a DELETE statement are not
valid because they would produce duplicate rows for a table with a
primary key, unique constraint, or unique index. SQLSTATE=23505

Database Systems 10 L. Libkin

Another way to declare primary keys

CREATE TABLE Employee CREATE TABLE Employee
(EmpId int not null primary key, (EmpId int not null,
FirstName char(20), FirstName char(20),
LastName char(20), LastName char(20),
Dept char(10), Dept char(10),

Salary int default 0) Salary int default O,

primary key (EmpId))

These are equivalent.

Database Systems 11 L. Libkin

More than one key

e Primary in primary keys refers to primary means of accessing a relation.
e What if we have another key, e.g., (FirstName, LastName)

e We cannot declare it as another primary key.

e WWhat does it mean that attributes K form a key for R?

e It means that for any tuple ¢ of values for K, there exists a unique
tuple t' in R with mx(t') = t.

e Hence we have unique declaration is SQL.

Database Systems 12 L. Libkin

UNIQUE in SQL

e Revised example:

CREATE TABLE Employee
(EmpId int not null,
FirstName char(20) not null,
LastName char(20) not null,
Dept char(10),
Salary int default O,
primary key (EmpId),
unique (FirstName,LastName))

e Unique specifications are verified in the same way as primary key.

create table R (A not null, unique (A))
insert into R values 1

works fine but the following
insert into R values 1 gives an error message.

Database Systems 13 L. Libkin

Inclusion constraints: reminder

e Referential integrity constraints: they talk about attributes of one
relation but refer to values in another one.

e There is an inclusion dependency R|Ay,..., A, C S|By,...,B,]

when
A, A (R) € 7p..B,5)

e Most often inclusion constraints occur as a part of a foreign key

e Foreign key is a conjunction of a key and an ID:
R[Al,...,An] QS[Bl,,Bn] and
{By,...,B,} — all attributes of S

e Meaning: we find a key for relation S in relation R.

Database Systems 14 L. Libkin

Inclusion dependencies in SQL

CREATE TABLE Movies
(Title char(20), Director char(10), Actor char(10))

CREATE TABLE Schedule

(Title char(20) references Movies(Title),
Theater char(20))

Semantics:

Schedule[Title] € Movies|Title]

Database Systems 15 L. Libkin

Foreign keys in SQL

General definition:

CREATE TABLE Person
(FirstName char(20) not null,
LastName char(20) not null,

primary key (FirstName, LastName))

Database Systems 16

L. Libkin

Foreign keys in SQL cont'd

CREATE TABLE Employee
(FirstName char(20) not null,
LastName char(20) not null,

foreign key (FirstName, LastName)
references Person(FirstName, LastName))

CREATE TABLE Student
(FName char(20) not null,
LName char(20) not null,

foreign key (FName, LName)
references Person(FirstName, LastName))

Database Systems 17 L. Libkin

Foreign keys in SQL cont'd

In some systems, you can only use a restricted form of this definition:

CREATE TABLE Employee
(FirstName char(20) not null,
LastName char(20) not null,

foreign key (FirstName, LastName)
references Person)

In general:
CREATE TABLE T1 (...
foreign key <attrl,...,attrN>

references T2)

In T2, <attril,...,attrN> must be present and form a primary key.

Database Systems 18 L. Libkin

SELECT * FROM T1

SELECT A1 FROM T1

Al

N ~ N+~

Duplicates

Database Systems

19

L. Libkin

Duplicates cont’d

e SELECT is not exactly the projection of relational algebra.
e Projection returns the set {1,2}

e SELECT keeps duplicates.

e How to remove duplicates? Use SELECT DISTINCT

SELECT DISTINCT A1l FROM T1

Database Systems 20 L. Libkin

Dealing with duplicates

e So far, in relational algebra and calculus, we operated with sets. SQL,
on the other hand, deals with bags, that is, sets with duplicates.

e This requires small changes to the operations of the relational algebra.

e Projection m no longer removes duplicates:

A|B

ai 51
TA b — {a17 g, CL1}
as | 02

ai 52

Notice that aqy occurs twice.

e There is a special duplicate elimination operation:

duplicate elimination({ay, as, a1}) = {a1,as}

Database Systems 21 L. Libkin

Dealing with duplicates: union

e The union operation just puts two bags together:

S = {1,1,2,2,3,3}
T = {1,2,2,2,3}
SUT = {1,1,1,2,2,2,2,2,3,3,3}

That is, if a occurs k times in S, and m times in T’, then it occurs
k+m timesin SUT.

e This is, however, not the UNION operation of SQL. SQL’'s UNION does
eliminate duplicates.

e If you want to keep duplicates, use UNION ALL:

SELECT * FROM S
UNION ALL
SELECT * FROM T

Database Systems 22 L. Libkin

Dealing with duplicates: intersection

e The intersection operation keeps the minimum number of occurrences
of an element:

S ={1,1,2,2,3,3}
T = {1,2,2,2,3}
SNT = {1,2,2,3}
That is, if a occurs k times in S, and m times in T", then it occurs
min(k, m) times in SNT.

e Thisis, again, notthe INTERSECT operation of SQL. SQL's INTERSECT,
just as UNION, eliminates duplicates.

e If you want to keep duplicates, use INTERSECT ALL:

SELECT * FROM S
INTERSECT ALL
SELECT * FROM T

Database Systems 23 L. Libkin

Dealing with duplicates: difference

e The difference operation works as follows:

S ={1,1,2,2,3,3}
T = {1,2,2,2,3}
S—T = {1,3}
That is, if a occurs k times in S, and m times in T’, then it occurs

k —m timesin S — T, if k> m, and does not occur at all in S — T
if £ <m.

e This is, again, not the EXCEPT operation of SQL. SQL's EXCEPT, just
as UNION and INTERSECT, eliminates duplicates.

e If you want to keep duplicates, use EXCEPT ALL:

SELECT * FROM S
EXCEPT ALL
SELECT * FROM T

Database Systems 24 L. Libkin

SQL is NOT a programming language

e Calculate 2 + 2 in SQL
e Step 1: there must be a table to operate with:

create table foo (a int)

e 2 + 2 itself must go into selection. We also have to give it a name
(attribute).

o Try:

db2 => select 2+2 as X from foo

0 record(s) selected.

Database Systems 25 L. Libkin

SQL is NOT a programming language cont'd

e Problem: there were no tuples in foo.

e Let's put in some:

insert into foo values 1
insert into foo values 5

select 2+2 as X from foo

2 record(s) selected.

Database Systems 26 L. Libkin

SQL is NOT a programming language cont'd

e |t is also important to eliminate duplicates.

e So finally:

db2 => select distinct 2+2 as X from foo

1 record(s) selected.

Database Systems 27 L. Libkin

Empty set traps

e Assume there are three relations, S, T, R, with the same attribute A.
e Query: compute Q@ = RN (SUT).
e A seemingly correct way to write it:

SELECT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

elet R=S5={1},T =0. Then @ = {1}, but the SQL query produces
the empty table.

e Why?

Database Systems 28 L. Libkin

More on the WHERE clause

e Once we have types such as strings, numbers, we have type-specific
operations, and hence type-specific selection conditions

e create table finance (title char(20),
budget int,
gross int)

insert into finance values (‘Shining’, 19, 100)
insert into finance values (‘Star wars’, 11, 513)
insert into finance values (‘Wild wild west’, 170, 80)

Database Systems 29 L. Libkin

More on the WHERE clause

e Find movies that lost money:

select title
from finance
where gross < budget

e Find movies that made at least 10 times as much as they cost:

select title
from finance
where gross > 10 * budget

e Find profit each movie made:

select title, gross - budget as profit
from finance
where gross - budget > 0O

Database Systems 30 L. Libkin

More on the WHERE clause cont’d

e Is Kubrick spelled with a “k” or “ck” at the end?

e No need to remember.

SELECT Title, Director
FROM Movies
WHERE director LIKE ’Kubr’’

e Is Polanski spelled with a “y" or with an “i"?

SELECT Title, Director
FROM Movies
WHERE director LIKE ’Polansk_’

Database Systems 31 L. Libkin

LIKE comparisons

e attribute LIKE pattern

e Patterns are built from:
letters
_ — stands for any letter

% — stands for any substring, including empty

e Examples:
address LIKE ’%Edinburghy’
pattern ’_a_b_’ matches cacbc, aabba, etc

pattern ’%a’%b_’ matches ccaccbc, aaaabcbcbbd, aba, etc

Database Systems 32 L. Libkin

LIKE comparisons: telling the truth

e SELECT Title, Director
FROM Movies
WHERE director LIKE ’Polansk_’

returns the empty set
e Because sometimes x = y is true, but x LIKE y is false!
e The reason: trailing spaces

e ’Polanski >’ = ’Polanski ’ is true, but
’Polanski > LIKE ’Polanski °’ is false.

e Director was defined as char(10), so ’Polanski’ isreally *’Polanski ’
and thus doesn’'t match ’Polanski_’.

Database Systems 33 L. Libkin

LIKE and trailing spaces

e Solution 1: use varchar (or char varying) declarations.
e Solution 2: use ’Polansky’ as a pattern

e Solution 3: use the TRIM function:

SELECT Title, Director

FROM Movies
WHERE TRIM(TRAILING FROM Director) LIKE ’Polansk_’

e TRIM TRAILING eliminates trailing spaces (LEADING eliminates lead-
ing spaces, BOTH eliminates both leading and trailing spaces)

e Warning: not all systems like it ...

Database Systems 34 L. Libkin

Adding attributes ... towards aggregate queries

ALTER TABLE Movies ADD COLUMN Length int DEFAULT O

UPDATE Movies
SET Length = 131
WHERE title=‘Chinatown’

UPDATE Movies

SET Length = 146
WHERE title=‘Shining’

adds attribute Length, and puts in values of that attribute.

Database Systems 35 L. Libkin

Adding attributes cont'd

ALTER TABLE Schedule ADD COLUMN Time int DEFAULT O

UPDATE Schedule
SET Time = 18
WHERE Theater=‘Le Champo’ AND Title=‘Chinatown’

INSERT INTO Movies VALUES (‘Le Champo’, ‘Chinatown’, 21)

adds attribute Time and puts in values.

Note that there could be more than one showing of a movie, hence we use
both UPDATE and INSERT.

Database Systems 36 L. Libkin

Simple aggregate queries

Count the number of tuples in Movies

SELECT COUNT ()
FROM Movies

Add up all movie lengths

SELECT SUM(Length)
FROM Movies

Database Systems 37 L. Libkin

Duplicates and aggregation

Find the number of directors.

Naive approach:

SELECT COUNT(Director)
FROM Movies

returns the number of tuples in Movies.

Because: SELECT does not remove duplicates.

Correct query:

SELECT COUNT(DISTINCT Director)
FROM Movies

Database Systems 38

L. Libkin

Aggregation and grouping

For each director, return the average running time of his/her movies.

SELECT Director, AVG(Length) AS Avgl
FROM Movies
GROUP BY Director

How does grouping work?

director ... length
di o h director director avgl|
dl l — d A{lL,.... I} — di Ooi lL)/n
d,

Database Systems 39 L. Libkin

Aggregation and duplicates

Fool | A1l A2 A3
a 1 b
a 1 2
a 2 2
a 2 3

SELECT A1, AVG(A3)
FROM Fool
GROUP BY A1l

Al 2
a !

Database Systems 40 L. Libkin

Aggregation and duplicates cont'd

One approach: take all the values of A3 and compute their average:

S5+2+2+3
4

= 3

Another approach: only attributes A1 and A3 are relevant for the query.

(Al A2 A3\ Al A3
a 1 5 -
TatAa3| a 1 2 = . 9
a 2 2 . 3
\a 2 3)
b5+2+3 10
Average = =
3 3

Database Systems 41 L. Libkin

Aggregation and duplicates cont'd

e SQL approach: always keep duplicates.
e The right answer is thus 3.

e However, one has to be careful:
SELECT AVG(A2) FROM Fool

returns 1
e The reason: rounding

e Solution: cast as real numbers:
SELECT AVG(CAST (A2 AS REAL)) FROM Fool

returns 1.5

e Syntax for CAST
CAST (<attribute> AS <type>)

Database Systems 42 L. Libkin

More on duplicates

e What if we want to eliminate duplicates before computing aggregates?
e Use DISTINCT
e SELECT AVG(DISTINCT A3) FROM Fool

produces 3, due to rounding, but

e SELECT AVG(DISTINCT CAST (A3 AS REAL)) FROM Fool
produces, as expected, 3.3333...

More on rounding

e A dirty trick to cast integers as reals:
SELECT AVG(A3 + 0.0) FROM Fool

Database Systems 43 L. Libkin

Other aggregates

e MIN — minimum value of a column
e MAX — maximum value of a column
e SUM — adds up all elements in a column

e COUNT - counts the the number of values in a column

e MIN and MAX produce the same result regardless of duplicates

e SUM adds up all elements in a given column;
SUM DISTINCT adds up all distinct elements in a given column

e COUNT counts elements in a given column;
COUNT DISTINCT counts distinct elements in a given column

Database Systems 44 L. Libkin

SUM, COUNT, and duplicates

e SELECT COUNT(A3) FROM Fool

produces 4

e SELECT COUNT(DISTINCT A3) FROM Fool

produces 3

e SELECT SUM(A3) FROM Fool
produces 12

e SELECT SUM(DISTINCT A3) FROM Fool
produces 10

e SELECT MIN(A3) FROM Fool and
SELECT MIN(DISTINCT A3) FROM Fool
give the same result.

e [he same holds for MAX.

Database Systems 45

L. Libkin

Selection based on aggregation results

e Find directors and average length of their movies, provided they made
at least one movie that is longer than 2 hours.

e |dea: calculate two aggregates: AVG(Length) and MAX(Length) and
only choose directors for whom MAX (Length) > 120.

e SQL has a special syntax for it: HAVING.

e SELECT Director, AVG(Length+0.0)
FROM Movies
GROUP BY Director
HAVING MAX(Length) > 120

Database Systems 46 L. Libkin

Aggregation and join

e Aggregate queries may use more than one relation.

e For each theater showing at least one movie that is longer than 2 hours,
find the average length of movies playing there.

e SELECT S.Theater, AVG(CAST (M.Length AS REAL))
FROM Schedule S, Movies M
WHERE S.Title=M.Title
GROUP BY S.Theater
HAVING MAX(M.Length) > 120

e What it says: produce the join Movies X Schedule, and over that join
run the aggregate query that computes the average.

Database Systems 47 L. Libkin

Aggregation, join and duplicates

e One could have unexpected results due to duplicates.

e [wo tables:

R|IA1 A2 > Al A3
T a b
a 1 a7
b2 'b" 3

e Query:

SELECT R.A1, SUM(R.A2)

FROM R, S

WHERE R.A1=S.A1 AND R.A1=‘a’
GROUP BY R.A1l

HAVING MIN(S.A3) > O

e What is the result?

Database Systems 48 L. Libkin

Aggregation, join and duplicates cont'd

e |t appears that table S is irrelevant, and the result should be the same
as that of:

SELECT A1, SUM(A2)
FROM R

WHERE Al1=‘a’

GROUP BY A1l

e This returns (‘a’, 1).

e However, the original query returns (‘a’, 2).

Database Systems 49 L. Libkin

Aggregation, join and duplicates cont'd

e Why is this happening?

e Because the query first constructs the join R X S:

RXS|A1 A2 A3
a1 5
a1 7
b’ 2 3

e and then runs the aggregate part against it, that is:

SELECT A1, SUM(A2)
FROM R X S

WHERE Al=‘a’

GROUP BY A1l

HAVING MIN(A3) > O

e Of course this returns (‘a’,2)

Database Systems 50 L. Libkin

Aggregation, join and duplicates cont'd

e One has to be careful about duplicates even if it appears that there
aren't any.

e To return ('a’,1), write it is with DISTINCT:

SELECT R.A1, SUM(DISTINCT R.A2)
FROM R, S

WHERE R.A1=S.A1 AND R.A1=‘a’
GROUP BY R.A1l

HAVING MIN(S.A3) > O

Database Systems 51 L. Libkin

Aggregates in WHERE

e Results of aggregates can be used for comparisons not only in the
HAVING clause.

e Find movies that run longer than the longest currently playing movie:

SELECT M.Title

FROM Movies M

WHERE M.length > (SELECT MAX(M1.length)
FROM Movies M1, Schedule S
WHERE M1.title=S.title)

Database Systems 52 L. Libkin

Aggregates in WHERE cont'd

e Be careful not to write:

SELECT M.Title

FROM Movies M

WHERE M.length > MAX(SELECT M1.length
FROM Movies M1, Schedule S
WHERE M1.title=S.title)

which is incorrect.

e Instead, you can write in SQL:

SELECT M.Title

FROM Movies M

WHERE M.length > ALL(SELECT M1.length
FROM Movies M1, Schedule S
WHERE M1.title=S.title)

Database Systems 53 L. Libkin

Aggregates in WHERE cont'd

e A similar query:
e Find movies that are shorter than some currently playing movie:

SELECT M.Title

FROM Movies M

WHERE M.length < (SELECT MAX(M1.length)
FROM Movies M1, Schedule S
WHERE M1.title=S.title)

or

SELECT M.Title

FROM Movies M

WHERE M.length < ANY(SELECT M1.length
FROM Movies M1, Schedule S
WHERE M1.title=S.title)

e Note that it's ANY but not ALL in this case.

Database Systems 54 L. Libkin

ALL vs ANY

e <value> <condition> ALL (<query>)
is true if either:
o <query> evaluates to the empty set, or
o for every <valuel> in the result of <query>,
<value> <condition> <valuel> is true.
e For example,
5> ALL(() is true;
5 > ALL({1,2,3} is true;
5> ALL({1,2,3,4,5,6} is false.

Database Systems 55 L. Libkin

ALL vs ANY cont'd

e <value> <condition> ANY (<query>)
is true if for some <valuel> in the result of <query>,
<value> <condition> <valuel> is true.
e For example,
5 < ANY(() is false;
h < ANY({1,2,3,4} is false;
h < ANY({1,2,3,4,5,6} is true.

Database Systems 56 L. Libkin

Aggregates in WHERE cont'd

e Nor all comparisons with aggregate results can be replaced by ANY and
ALL comparisons.

e |s there a movie whose length is at least 10% of the total lengths of all
other movies combined?

SELECT M.Title

FROM Movies M

WHERE M.length >= 0.1 * (SELECT SUM(M1.length)
FROM Movies M1
WHERE M1.title <> M.title)

Database Systems 57 L. Libkin

Joins in queries

e When we explained the semantics of aggregate queries, we used the
following “query”:

SELECT A1, SUM(A2)
FROM R X S

WHERE Al1=‘a’

GROUP BY A1l

HAVING MIN(A3) > O

e This isn't an SQL query — it uses X from relational algebra.
e But we can write this in SQL:

e SELECT A1, SUM(A2)
FROM R NATURAL JOIN S
WHERE Al1=‘a’

GROUP BY A1l
HAVING MIN(A3) > O

Database Systems 58 L. Libkin

Joins in queries cont'd

e Not all systems understand NATURAL JOIN.

e There is a more general syntax for joins:

SELECT A1, SUM(A2)

FROM R JOIN S ON R.A1=S.A1
WHERE Al1=‘a’

GROUP BY A1l

HAVING MIN(A3) > O

e R JOIN S ON ¢ computes
g.(R x S)

e Condition ¢ could be more complicated than simple attribute equality,
eg. R.A2 > S.A3 - 4.

Database Systems 59 L. Libkin

Theta joins

e Expressions like R JOIN S ON c are usually called theta-joins and are
often included in relational algebra:

R MW S
e This is not a new operation of the relational algebra but simply an
abbreviation for oy(R x .5).

e Reason for the name: traditionally, conditions were denoted by 6.

Database Systems 60 L. Libkin

Joins in queries cont'd

e Caveat: it is no longer clear which relation a given attribute comes
from:

SELECT A1, SUM(A2)
FROM R JOIN S5 ON R.A1=5.A1
GROUP BY R.A1l

e SQL complains: A reference to column "A1" is ambiguous.

e db2 => select * from r join s on r.al=s.al

Al A2 A1l A3

a 1 a 5
a 1 a 14
b 2 b 3

Database Systems 61 L. Libkin

Joins in queries cont'd

e To use aggregation, one has to specify which relation attributes come
from:

SELECT S.Theater, MAX(M.Length)
FROM Movies M JOIN Schedule S ON M.Title=S.Title
GROUP BY S.Theater

finds theaters and the lengths of the longest movies playing there.
e Note aliasing used inside the JOIN expression.

e Joins can also be given different names:

SELECT JT.theater, MAX(JT.Length)
FROM (Movies NATURAL JOIN Schedule) AS JT

Database Systems 62 L. Libkin

Joins in queries cont'd

e Join expressions could be quite complicated:

((R JOIN S ON <condl>) AS Tablel
JOIN
(U JOIN V ON <cond2>) AS Table2
ON <cond3>)

e One has to be careful with referencing tables in conditions, e.g.:

o <cond1> can refer to R, S, but not U, V, Tablel, Table?2
o <cond2> can refer to U, V, but not R, S, Tablel, Table2
o <cond3> can refer to Tablel, Table2 but notR, S, U, V

Database Systems 63 L. Libkin

More on subqueries

e So far we saw subqueries only in the WHERE clause, and in a limited
way, in the FROM clause.

e But they can occur anywhere!

e Example: avoiding GROUP BY.

SELECT DISTINCT S.theater,
(SELECT MAX(M.Length)
FROM Movies M
WHERE M.Title=S.Title)
FROM Schedule S

Database Systems 64 L. Libkin

More on subqueries cont'd

e Avoiding HAVING: subqueries in WHERE.

SELECT DISTINCT S.theater,
(SELECT MAX(M.Length)
FROM Movies M
WHERE M.Title=S.Title)
FROM Schedule S
WHERE (SELECT COUNT(DISTINCT Title)
FROM Movies M1
WHERE M1.title IN (SELECT Si.title
FROM Schedule S1
WHERE S1.theater=S.theater)) > 5

restricts the previous query to theaters showing 6 or more movies.

e In general, the new standard is very liberal about where one can use a
subquery, but not all systems fully comply yet.

Database Systems 65 L. Libkin

A useful feature: ordering the output

db2 => SELECT * FROM S

A1l A3

a 5
a 4
b 3

Al A3
b 3
a 5

Database Systems 66 L. Libkin

A useful feature: ordering the output cont'd

e Decreasing order:

db2 => SELECT * FROM S ORDER BY A3 DESC

Al A3

a 7
a 5
b 3

e Ordering involving multiple attributes:

db2 => SELECT * FROM S ORDER BY A1, A3

Al A3

a 5
a 7
b 3

Database Systems 67 L. Libkin

Intermediate results

e There is a way to save intermediate results, for future reference

e Such intermediate results are called views

e Usually it is done when the result of a certain query is needed often
e Syntax: CREATE VIEW <name> (<attributes>) AS <query>

e Example: suppose we need theaters, directors whose movies are playing
there, and lengths of those movies:

CREATE VIEW TDL (th, dir, len) AS
SELECT S.theater, M.director, M.length
FROM Movies M, Schedule S
WHERE S.title=M.title

Database Systems 68 L. Libkin

Using views

e Once a view is created, it can be used in queries.

e Find theaters showing long (> 2 hours) movies by a director whose
name starts with “K"

e SELECT th
FROM TDL
WHERE len > 120 and dir LIKE ‘K%’

e Advantage: if the view is already created, one no longer has to perform
a join.

e Thus views are useful if many queries are asked against them.

Database Systems 69 L. Libkin

Using views cont'd

e Views are also useful for making queries more readable, e.g., by creating
intermediate values.

e However, it is not a good idea to use views for those purposes (e.g., one
would need to say DROP VIEW afterwards, when the view is no longer
needed).

e Instead, one can use keyword WITH:

WITH TDL (th, dir, len) AS
(SELECT S.theater, M.director, M.length
FROM Movies M, Schedule S
WHERE S.title=M.title)

SELECT th

FROM TDL

WHERE len > 120 and dir LIKE ‘K%’

Database Systems 70 L. Libkin

Database modifications

e \We have seen how to insert tuples in relations:
INSERT INTO Table VALUES (...)

e One can also insert results of queries, as long as attributes match.

e Example: We want to ensure that every movie in table Schedule is
listed in table Movies. This is done by

INSERT INTO Movies(title)
SELECT DISTINCT S.Title
FROM Schedule S
WHERE S.Title NOT IN (SELECT title
FROM Movies)

e What are the values of director and actor attributes when a new
title is inserted? Answer — default values (most often nulls). We'll
see them later.

Database Systems 71 L. Libkin

Database modification: deletions

e Suppose we want to delete movies which are not currently playing in
theaters, unless they are directed by Kubrick:

DELETE FROM Movies
WHERE title NOT IN (Select title FROM Schedule) AND
director <> ‘Kubrick’

e General form:

DELETE FROM <relation name>
WHERE <condition>

e Conditions apply to individual tuples; all tuples satisfying the condition
are deleted.

Database Systems 72 L. Libkin

Database modification: updates

e Suppose we have a table Personnel with two of its attributes being
name and gender.

e Now, we want to replace, in table Movies, each name X of a male
director by ‘Mr. X':

UPDATE Movies
SET director = ‘Mr. ’ || director
WHERE director in
(SELECT name FROM Personnel WHERE gender=‘male’)

e Here | | is the SQL notation for string concatenation.

e General form of updates:
UPDATE <table> SET <value-assignments> WHERE <conditions>

e Tables are updated one tuple at a time.

Database Systems 73 L. Libkin

Referential integrity and updates

e Updates can create problems with keys and foreign keys.
e \We have seen that insertions can violate key constraints.

e The situation is more complex with foreign keys.

create table R (a int not null, b int, primary key (a))
create table S (a int not null, foreign key (a) references r)
insert into R values (1,1)

insert into S values 1

Database Systems 74 L. Libkin

Referential integrity and updates cont'd

So far so good, but inserting 2 into S results in an error:

db2 => insert into s values 2

DB21034E The command was processed as an SQL statement because it was
not a valid Command Line Processor command. During SQL processing it
returned: SQLO530N The insert or update value of the FOREIGN KEY
"LIBKIN.S.SQL010129175143860" is not equal to any value of the parent
key of the parent table. SQLSTATE=23503

Database Systems 75 L. Libkin

Referential integrity and updates cont'd

e More serious problem: deletion
e Tables: R(A,B), A primary key; S(A,C)
e Suppose S.A is a foreign key for R.A

A C A B
e S has 1 2 , R has 1 2
2 2 2 3

e We now delete (1,2) from R, what happens then?

e Possibilities:
1) reject the deletion operation
2) propagate it to S and delete (1,2) from S

3) “we don't know approach”: keep the tuple, but put no value for
the A attribute there.

Database Systems 76 L. Libkin

Referential integrity and updates cont'd

e All three approaches are supported in SQL

e create table R1 (a int not null primary key, b int)
create table S1 (a int, c int,
foreign key (a) references ril)

e and insert (1,2) and (2,3) in R1, and (1,2) and (2,2) in S1
e delete from r1l where a=1 and b=2

e results in an error due to the foreign key constraint

Database Systems 77 L. Libkin

Referential integrity and updates cont'd

e All three approaches are supported in SQL

e create table R1 (a int not null primary key, b int)
create table S2 (a int, c int,

foreign key (a) references rl on delete cascade)
create table S3 (a int, c int,
foreign key (a) references rl on delete set null)

e insert (1,2) and (2,3) in R1, and (1,2) and (2,2) in S2 and S3
e delete from rl1 where a=1 and b=2

e What do we get?

Database Systems 78 L. Libkin

Referential integrity and updates cont'd

e For on delete cascade

db2 => select * from s2

e For on delete set null

db2 => select *x from s3

Database Systems 79 L. Libkin

