
Incremental Query Generation

Laura Perez-Beltrachini∗ Claire Gardent‡ Enrico Franconi∗

‡CNRS/LORIA
∗Free University of Bozen-Bolzano

Ontology-based query tool: Quelo
[Franconi et al., 2010a, Franconi et al., 2011, Franconi et al., 2010b]

Efficient and user-friendly way of querying data sources.

◮ makes use of ontologies and reasoning services

◮ provides query manipulation operations and a NL interface

Users do not need to know about the KR language nor about the
KB/DB structure

Query language, representation and operations

◮ Tree shaped conjunctive DL queries

S ::= C | ∃R .(S) | S ⊓ S
(∃ limited existential restriction, ⊓ conjunction)

R ::= r i for each r i ∈ Ro
C ::= c i for each c i ∈ Ac

Query tree:

x

y w

z

{Man}

{Person}

{House,
Beautiful}

{RichPerson}

marriedTo livesIn

ownedBy

Operations:

◮ addCompatible(node, concept)

◮ addProperty(node, relation, concept)

◮ substitute(selection, concept)

◮ deletion(selection)

Quelo’s Natural Language Interface (NLI)

Masks the composition of a formal query as the composition of
English text (Conceptual Authoring).

At each point during the interactive query formulation process:

◮ computes all extensions of the current query that are
consistent and non redundant (using automated reasoners)

◮ displays a NL description of these extensions

Quelo’s Natural Langauge Generation (NLG) module

Goal: Improve fluency and generation flexiblity.

◮ Current template-based approach
◮ provides a restricted set of syntactic constructions and uses

ad-hoc methods
◮ sequences of NP VP (slots filled in by concepts and relations)

+ ellision of repeated elements

◮ not clear how to extend them for the verbalisation of query
results

◮ Proposed grammar-based approach
◮ allows for syntactic variability (e.g. relative clauses, PPs, etc.)
◮ chart-based algorithm supports the incremental generation

required by ontology-based querying

Outline of the talk

Incremental query generation

NLG architecture

Evaluation

Discussion

Incremental query generation NLG architecture Evaluation Discussion

Text revisions

I am looking for something (initial query)
⊤

I am looking for a man (substitute concept)
Man

I am looking for a young man (add compatible concept)
Man ⊓ Young

I am looking for a young man who is married to a Person

(add relation)
Man ⊓ Young ⊓ ∃isMarried .(Person)

I am looking for a young married man (substitute selection)
MarriedMan ⊓ Young

I am looking for a married man (delete concept)
MarriedMan

Incremental query generation NLG architecture Evaluation Discussion

Order constraints

Car ⊓ ∃runOn.(Diesel) ⊓ ∃equippedWith.(AirCond)

a. A car which runs on Diesel and is equipped with air
conditioning

b. A car which is equipped with air conditioning and runs on
Diesel

Incremental query generation NLG architecture Evaluation Discussion

Constraints on the generation of DL queries

Input: current DL query Q (i.e. query tree) update U
Output: NL verbalisation of Q incorporating U

◮ support the modifications, deletions and additions required by
incremental processing

◮ the query revisions should minimally effect the linear order of
the NL query

Incremental query generation NLG architecture Evaluation Discussion

The NLG Architecture

Document planning: linearises the input query and partitions the
input into sentence size chunks

Surface realisation: maps each sentence size L formula into a
sentence.

Referring expression generator: verbalises NPs.

Incremental query generation NLG architecture Evaluation Discussion

Query linearisation
Document planning[Dongilli, 2008, Franconi et al., 2010a]

x

w

z

{Man}

{House}

livesIn

{RichPerson}

ownedBy

x

w

z

{Man}

{House,
Beautiful}

livesIn

{RichPerson}

ownedBy

x

y w

z

{Man}

{Person}

{House,
Beautiful}

{RichPerson}

marriedTo livesIn

ownedBy

Man marriedTo Person livesIn House Beautiful ownedBy
RichPeron

Man(m)[0] marriedTo(m,p)[1] Person(p)[2] livesIn(p,h)[3]
House(h)[4] Beautiful(h)[5] ownedBy(h,r)[6]
RichPerson(r)[7]

Incremental query generation NLG architecture Evaluation Discussion

Content segmentation
Document planning

Given a linearised query q, the document planner uses some
heuristics based on the number and the types of relations/concepts
present in q to output a sequence of sub-formulae each of which
will be verbalised as a sentence.

Incremental query generation NLG architecture Evaluation Discussion

Grammar based Surface Realisation

◮ Difficulty to find corpora containing the queries an their
possible increments

◮ Need to produce query verbalisations for ontologies of any
domain

◮ SemTAG naturally supports conceptual authoring
◮ It systematically relates text, syntax and semantics

◮ Automatic lexicon extraction (map concept/relations into
TAG trees [Trevisan, 2010])

◮ Tabular Algorithm
◮ Efficient (avoids recomputation of intermediate structures)
◮ Simple implementation of revisions (addition, deletion,

substitution) operations

◮ Beam search
◮ Cost function to enforce constituent ordering preferences

Incremental query generation NLG architecture Evaluation Discussion

Feature-based Lexicalised Tree Adjoining Grammar

(FB-LTAG) equipped with semantics

NPj

John

l1:john(j)

Sx

NP↓ j VPx
a

Va

runs

lv:run(a,j)

VPa

often VP*a
lo:often(a)

l1:named(j john), lv:run(a,j), lv:often(a)

Incremental query generation NLG architecture Evaluation Discussion

Incremental chart-based realisation

C, the current chart. A, an empty agenda.

Add concept or property X : the trees selected by X are added to A
and tried for combination with the elements of C.

Substitute selection X with Y : all chart items derived from a tree
selected by X are removed from the chart. Conversely, all chart
items derived from a tree selected by Y are added to the agenda
and tried for combination with the elements of C.

Delete selection X : all chart items derived from a tree selected by
X are removed from C. Intermediate structures that had previously
combined with a tree selected by X are moved to the agenda and
the agenda is processed until generation halts.

Incremental query generation NLG architecture Evaluation Discussion

Beam search

Scoring Function favors derivations with low word order
cost and large semantic coverage.

Word Order Cost = distance between actual position and required
position (given by the linearised input)
Semantic Coverage = number of literals covered by derivation

Incremental query generation NLG architecture Evaluation Discussion

Beam search (Ct’d)

House(h)[0] ownedBy(h,r)[1] RichPerson(r)[2]

S

NPr ↓ VP

V⋄ NPh ↓

ownedBy(h, r)

ÖThe rich person owns a house.

S

NPh ↓ VP PP

V⋄ P NPr ↓

by

ownedBy(h, r)

XThe house is owned by a rich person.

Incremental query generation NLG architecture Evaluation Discussion

Referring Expression Generation

Input: Sequence of phrase structure trees output by the surface
realiser.

Uses heuristics to decide for each NP whether it should be
verbalised as a pronoun, a definite or an indefinite NP.

Heuristics based on the linear order and the morpho-syntactic
information contained in the phrase structure trees of the
generated sentences.

Incremental query generation NLG architecture Evaluation Discussion

Linearisation

◮ 4 series of queries q1 · · · qn where qi+1 is an increment of qi

◮ 14 revisions in total

◮ encompass addition, deletion and substitution of possible
operations at different points of the preceding query

◮ for all queries, the word order produced by the generator
matches the linearisation of the DL query.

Incremental query generation NLG architecture Evaluation Discussion

Assessing Quelo template-based queries
Fluency and clarity

41 queries capturing different combinations of concepts and
relations

8 raters

50% of the queries are rated as disfluent
10% of the queries are rated as unclear

Free Comments: too repetitive, lacks aggregation

Incremental query generation NLG architecture Evaluation Discussion

Comparing template vs grammar -based queries
Fluency and clarity

10 raters, 14 query pairs built from two ontologies (cars,
universities)

Fluency Clarity

Grammar 19.76 6.87
Templates 7.2 8.57

Incremental query generation NLG architecture Evaluation Discussion

Portability

◮ General, domain independent, grammar + Automatically
extracted lexicon (cf. [Trevisan, 2010]).

◮ Lexicon extraction tested on 200 ontologies. Coverage: 85%
of the ontology relations (12000 relns, 13 templates)

◮ 40 queries on 5 ontologies (cinema, wines, human abilities,
assistive devices, ecommerce). Coverage 87%

Incremental query generation NLG architecture Evaluation Discussion

Conclusions and future work

◮ Previous approach uses ad hoc generation algorithm based on
templates

◮ Tabular algorithm naturally supports the definition of an
incremental algorithm for query verbalisation

◮ The grammar based approach generates queries that are
better accepted by human users

Incremental query generation NLG architecture Evaluation Discussion

Conclusions and future work (Ct’d)

◮ Improve fluency, clarity (lexicon extraction, SR ranking)

◮ Use existing system to build a parallel corpus (DL/NL query)
and train

◮ a joint model of input segmentation, surface realisation and
referring expression generation

◮ a ranking module (to guide beam search)

Incremental query generation NLG architecture Evaluation Discussion

Thank you!

Incremental query generation NLG architecture Evaluation Discussion

References I

Dongilli, P. (2008).

Natural language rendering of a conjunctive query.
KRDB Research Centre Technical Report No. KRDB08-3). Bozen, IT: Free University of Bozen-Bolzano,
2:5.

Franconi, E., Guagliardo, P., and Trevisan, M. (2010a).

An intelligent query interface based on ontology navigation.
In Workshop on Visual Interfaces to the Social and Semantic Web, VISSW, volume 10. Citeseer.

Franconi, E., Guagliardo, P., and Trevisan, M. (2010b).

Quelo: a NL-based intelligent query interface.
In Pre-Proceedings of the Second Workshop on Controlled Natural Languages, volume 622.

Franconi, E., Guagliardo, P., Trevisan, M., and Tessaris, S. (2011).

Quelo: an Ontology-Driven Query Interface.
In Description Logics.

Trevisan, M. (2010).

A Portable Menuguided Natural Language Interface to Knowledge Bases for Querytool.
PhD thesis, Master’s thesis, Free University of Bozen-Bolzano (Italy) and University of Groningen
(Netherlands).

	Incremental query generation
	NLG architecture
	Evaluation
	Discussion

