
Using regular tree grammars to
optimise surface realisation

A dissertation submitted to

the Faculty of Computer Science,

Free University of Bozen-Bolzano

in fulfillment of the degree of

Masters of Science in Computer Science
as part of the

European Masters Program in Language and
Communicaton Technologies

Submitted by :
Laura Haide Perez

Supervisors :
Dr. Rafaella Bernardi
Dr. Claire Gardent

July 2009

ii

Acknowledgements

First of all, I would like to thank my supervisors Raffaella Bernardi and Claire
Gardent for their great support and expert guidance. Not only in this thesis
work but also along this two years of studies.

I am immensely grateful to my parents and brother who have always encouraged
me in every single thing I took up. Without their unconditional support and
love I could not have made this far. I want to thank Yann because of staying
by my side supporting me and making me happy.

Laura

iii

iv

Abstract

Surface realisation is the task within Natural Language Generation responsible
for mapping an abstract linguistic structure (e.g., a logical formula) into one
or more sentence(s). Particularly, reversible surface realisers, i.e. surface re-
alisers that use the same reversible grammar for both parsing and generation,
generally take as input a flat logical formulae. This kind of realisers present
a number of important advantages but at the same time require some optimi-
sations to overcome the complexity introduced due to the generation from flat
semantics. To remedy this shortcoming, various optimisations have been pro-
posed. In particular, filtering techniques have been developed which, on some
given criterion, filter out from the initial search space all candidate solutions
which cannot possibly lead to valid ones.

This thesis work aims to optimise such a realiser, specifically, we aim to
reduce the initial search space by reducing the effects of one of the sources
of complexity namely, lexical ambiguity. The surface realiser we focus on, is
based on a wide-coverage Feature Based Lexicalized Tree Adjoining Grammar
extended with a compositional semantics. The realiser furthermore integrates
a polarity filter. Although it was shown to drastically reduce the initial search
space, polariy filtering still has some limitations. In this thesis, we investigate an
alternative filtering technique based on a novel formal framework for modeling
polarity counts, namely Feature Based Regular Tree Grammar. The underlying
motivation for this work is that the derivation trees of a Tree Adjoining Gram-
mar can be encoded as the language of a Regular Tree Grammar. Thus, we can
model polarities (the syntactic resources and requirements associated with a
given TAG tree) based on all the information provided by the elementary trees.
Furthermore, detecting the initial candidate combinations of trees that can not
possibly yield a full derivation tree boils down to parsing with an RTG.

In this thesis, we make the RTG filtering idea precise. Next, we provide it
with an implementation by developing an RTG based module for generating a
parse forest from the logical formulae input to the surface realiser. Third, we
compare the impact of RTG-based filtering with polarity filtering on a number
of carefully selected test cases and using different metrics.

v

vi

Contents

1 Introduction 1

2 Surface Realisation 5
2.1 Task definition . 5
2.2 Two types of surface realisers . 5
2.3 Surface realisation from flat semantics 7
2.4 Complexity in surface realisation 7

2.4.1 Related work on efficient realisation 8

3 Optimising surface realisation 13
3.1 Generating with Tree Adjoining Grammars 13

3.1.1 The grammar: FB-LTAG integrating semantic information 14
3.1.2 A TAG based surface realiser 17

3.2 TAG naturally derived optimisations 18
3.2.1 Two composition operations: Two phase generation . . . 18
3.2.2 Polarity filtering . 19

3.3 RTG-Based optimisation . 23
3.3.1 From TAG to RTG . 23
3.3.2 RTG filtering . 25

4 Generation of the parse forest 27
4.1 A tabular Earley-style RTG parser 27

4.1.1 Chart parsing and Earley algorithm 27
4.1.2 Mechanisms included in the parser 29

4.2 Implementation . 32
4.2.1 Main data structures . 33
4.2.2 The algorithm . 35

5 Results and evaluation 43
5.1 Methodology . 43
5.2 Analysis of the results . 45

6 Conclusion 51
6.1 Summary . 51
6.2 Future work . 52

A Surface realization input resources 57

B Scripts summary 59

vii

viii CONTENTS

List of Figures

2.1 Typical Natural Language Generation pipeline 6

3.1 TAG substitution. 15
3.2 TAG Adjunction . 15
3.3 Flat semantics for “John often runs” 16
3.4 Derived and derivation trees for “John often runs” 17
3.5 Small grammar for the input semantics in 8 21
3.6 Automaton for the input semantics in 8 22

4.1 Parse forest generation module main predicate. 36
4.2 Initialization of the agenda: adding the edges corresponding to

the grammar axiom. 36
4.3 Comparing RTG non-terminal symbols and their feature struc-

tures. 37
4.4 Agenda manipulation operations. 37
4.5 Checking before adding an item into the chart with subsumption

check. 38
4.6 Checking before adding an item into the chart with subsumption

check. 38
4.7 Application of the inference rules, processEdge/1 predicate’s def-

inition. 39
4.8 Completion inference rule for passive edges, predicate’s definition

applyFundamentalRulePassive/1. 39
4.9 Completion inference rule for active edges, predicate’s definition

applyFundamentalRuleActive/2. 40
4.10 Prediction inference rule, predicate’s definition predictNewEdges/2. 41

5.1 Completion failure, top and bottom features structures do not
unify. 47

A.1 tag tree entry associated to intranditive verbs (e.g. “courir”) . . 58

ix

x LIST OF FIGURES

List of Tables

4.1 Earley deductive parsing system 28
4.2 Variables (i.e. non-terminal symbols) in the RTG grammar, var/4 33
4.3 RTG grammar rules Prolog datastructure, rule/5 34
4.4 Chart edge Prolog representation: edge/5 35
4.5 Edges stored in the agenda are arguments of the Prolog predicate

taskAgenda/1 . 35

5.1 Comparing the number of elementary trees left as input to the
realisation phase by the different approaches. 46

5.2 Comparing reduction per lexical item and the effect in the com-
binatorics. 48

5.3 Comparing filtering by auxiliary trees. 48
5.4 Comparing filtering by initial trees. 49
5.5 Comparing the number of trees left as input to the realisation

phase by the different approaches. 49
5.6 Comparing the chart and agenda size through the different levels

of RTG-filtering. 50

B.1 Test suite knowledge base format. 59

xi

xii LIST OF TABLES

Chapter 1

Introduction

Natural language generation (NLG) is seen in general as the sequence of opera-
tions needed to map information from some non-linguistic (e.g. raw data) into
linguistic form (either oral or written). NLG system architectures involve dif-
ferent subtasks [Reiter and Dale, 2000] to accomplish this. Surface Realisation
(SR) is the subtask that maps an abstract linguistic structure (e.g., a logical
formula) into one or more sentence(s).

In this thesis, we focus on surface realisation and on how to make this gener-
ation step more efficient. More specifically, we aim to optimise a surface realiser
that is based on a reversible Tree Adjoining Grammar (TAG)[Gardent and Kow, 2005,
Gardent and Kow, 2007a, Gardent and Kow, 2007b].

It is known [Kay, 1996, Carroll and Oepen, 2005] that for such surface re-
alisers and more generally, for grammar-based surface realisers whose input is
a flat semantic formula, the initial search space is exponential in the number
of literals contained in the input formula. One reason for this is the lack of
ordering information. Contrary to parsing where the input is a string, i.e. an
ordered list of words, the input to surface realisation is a set of literals. This
lack of constraint on the input results in an unguided exploration of all possible
combinations which in effect is exponential in the number of literals present
in the input semantics. Another ground for the exponential complexity of the
task is the high degree of lexical ambiguity generally allowed by the grammar.
Because the grammar associates one literal with many lexical and/or grammat-
ical structures, the number of possibilities to be explored is very high also in
practice.

To remedy this shortcoming, various optimisations have been proposed. In
particular, filtering techniques have been developped which, on some given crite-
rion, filter out from the initial search space all candidate solutions which cannot
possibly lead to valid ones.

One such approach is developed in [Gardent and Kow, 2005] which shows
how so-called polarity filtering can be used to exclude from the initial search
space all candidate solutions that cannot possibly yield a valid grammatical
structure. The basic idea underlying this approach is that the primitives of
the grammar (i.e., grammar rules or in the case of a Tree Adjoining Grammar,
elementary trees) can be associated with a “polarity count” indicating their
respective syntactic resources and requirements. This polarity count can then
be used to filter out from the initial search space all initial combinations of

1

2 CHAPTER 1. INTRODUCTION

grammatical units which cannot possibly yield a complete S tree either because
a requirement remains unsatisfied (a syntactic requirement cannot be fulfilled)
or because a resource cannot be used (some of the grammatical units selected by
the realiser cannot be integrated into the final S tree). [Gardent and Kow, 2005]
show that integrating such a polarity filtering technique into a TAG based
surface realiser dramatically increases its efficiency. Similar results are provided
in [Koller and Striegnitz, 2002] also for TAG and in [Carroll et al., 1999] for a
surface realiser based on a Head Driven Phrase Structure Grammar.

In this thesis, we pursue the polarity filtering idea using a novel formal
framework for modelling polarity counts, namely Regular Tree Grammar. As
shown in [Schmitz and Le Roux, 2008], the derivation trees of a TAG are RTG

(Regular Tree Grammar) trees and there exists a well defined translation of
feature-based TAG to RTG. In the present work, we use this encoding to de-
termine whether a given set of RTG-encoded TAG trees can be combined to
yield a well formed TAG derivation tree. Any set of trees that does not can be
filtered out (if there is no derivation tree, there can be no derived tree gener-
ated from this tree set and therefore no sentence). More specifically, we explore
different types of filtering depending on how much feature (linguistic) informa-
tion is preserved in the RTG trees. A first level is where only the syntactic
category is preserved -this is the level at which polarity filtering was applied. A
second level includes both syntactic category and semantic indices -this should
a priori provide much better guidance for the filtering process since semantics
information is what guides generation.

Our approach also departs from previous filtering approaches in that all TAG

elementary trees are taken into account. This is in contrast to [Gardent and Kow, 2005]
where auxiliary trees are not considered.

In practice, the work carried out in this thesis revolves around two main
issues:

• implementing a parsing algorithm for RTG that takes into account the
specific features of surface realisation (guided by semantic indices, un-
ordered input)

• experimenting with various levels of filtering, analysing the results and
comparing the results with those obtained with the polarity filtering tech-
nique presented in [Gardent and Kow, 2005].

The thesis is structured as follows. In Chapter 2 we briefly introduce the
generation task, the surface realisation subtask and the main types of existing
surface realisers. Furthermore, we discuss in more details the grounds underlying
the computational complexity of surface realisation and summarise the various
heuristics devised presented in the literature for optimising existing algorithms.

Chapter 3 introduces the background material needed to understand the rest
of the thesis and presents the RTG based filtering technique we use to filter the
initial search space. We start by describing the grammar formalism used by
our surface realiser, namely Feature Based Lexicalized Tree Adjoining Grammar
(FB-LTAG) enriched with a compositional semantics. We then sketch the
algorithm used to generate sentences from semantic formulae together with the
various optimisations already devised to increase its efficiency. In particular, we
explain how Polarity Filtering filtering works. Finally, we introduce our RTG

based proposal.

3

In Chapter 4, we present the RTG based parsing algorithm we will use for
filtering.

Chapter 5 goes on to present the results obtained using the RTG based
polarity filtering and compare these both qualitatively and quantitatively, with
the results previously obtained by [Gardent and Kow, 2005].

Chapter 6 concludes with pointers for further research.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Surface Realisation

This chapter gives a brief introduction to Natural Language Generation (NLG)
and situates surface realisation within this broader task (section 2.1). In sec-
tion 2.2, we identify two main approaches to surface realisation and give some
motivation for choosing the approach we adopted. Section 2.3 then goes on to
describe in more detail the type of input our realiser expects namely flat seman-
tics formulae. Finally, section 2.4 focuses on the computational complexity of
the surface realisation task. First, we give an intuitive explanation of why the
task is exponential in the length of the input. Next, we summarise existing ap-
proaches that were developed in an attempt to reduce the practical complexity
of the task by means of clever heuristics.

2.1 Task definition

Natural Language Generation (NLG) is usually seen as consisting of a basic
pipeline of tasks as illustrated in the Figure 2.1. These tasks can roughly be
divided into two parts, a strategic part which determines “what to say” with
domain knowledge, and a tactical one which determines “how to say it” with
linguistic knowledge. Finer-grained distinctions can also be made. Some years
ago, it has become clearer that some tasks require both domain and linguistic
knowledge and a new midway component was born, the microplanner. In this
thesis, we assume that the surface realiser sits at the end of this pipeline (as it
usually does) and receives its input from a microplanner.

The function of the Surface Realiser (SR) component is to take the text
specification produced by the microplanner and convert it into text. Linguistic
realisation of abstract representations, such as abstract syntax or lexicalized
case frames [Reiter and Dale, 2006] generally requires the use of a grammar,
this being a formal description of the syntactic and morphological resources
available in the output language.

2.2 Two types of surface realisers

The present work contributes to the syntactic aspect of realisation, that is,
making sure that the words come out in the right order in an efficient manner.

5

6 CHAPTER 2. SURFACE REALISATION

l1:love(e), agent(e,j), patient(e,m)

l3:mary(m)

l2:john(j)

John loves Mary.

Mary is loved by John.

It is Mary who John loves.

.......

surface
realiser

+
grammar

microplanner

strategic generation

[domain knowledge]

specificationgoal plandocument
planner realiser

surface
textdocumentcommunicative sentence

[linguistic knowledge]
tactical generation

Figure 2.1: Typical Natural Language Generation pipeline

There are numerous linguistic formalisms and theories which can be incorpo-
rated into an NLG realiser. Furthermore, depending on their use, on their
degree of non-determinism and on the type of grammar they assume, existing
surface realisers can be divided into two main categories, namely NLG geared
realisers and reversible realisers.

NLG geared realisers are meant as modules in a full-blown generation sys-
tem and as such, they are constrained to be deterministic: a generation system
must output exactly one text, no less, no more. In order to ensure this de-
terminism, NLG geared realisers generally rely on theories of grammar which
systematically link form to function such as systemic functional grammar (SFG,
[Matthiessen et al., 1991]). In these theories, a sentence is associated not just
with a semantic representation but with a semantic representation enriched with
additional syntactic, pragmatic and/or discourse information. This additional
information is then used to constrain the realiser output. One drawback of
these NLG geared realisers however, is that the grammar used is not usually re-
versible i.e., cannot be used both for parsing and for generation. Given the time
and expertise involved in developing a grammar, this is a non-trivial drawback.
Prominent general purpose NLG geared realisers include REALPRO, SURGE,
KPML, NITROGEN and HALOGEN.

Reversible realisers on the other hand, are meant to mirror the parsing pro-
cess. They are used on a grammar developed for parsing and equipped with a
compositional semantics. Given a string and such a grammar, a parser will as-
sign the input string all the semantic representations associated with that string
by the grammar. Conversely, given a semantic representation and the same
grammar, a realiser will assign the input semantics all the strings associated
with that semantics by the grammar. In such approaches, non-determinism is
usually handled by statistical filtering: treebank induced probabilities are used
to select from among the possible paraphrases, the most probable one. Since
the most probable paraphrase is not necessarily the most appropriate one in a
given context, it is unclear however, how such realisers could be integrated into
a generation system.

In this work, we focus on this second type of realiser as it presents a num-

2.3. SURFACE REALISATION FROM FLAT SEMANTICS 7

ber of important advantages. First, using a reversible grammar means that
one and the same grammar and lexicon can be used both for parsing and for
generation. Given the complexity involved in developing such resources, this is
an important feature. Second, there are some engineering and computational
motivations within the design of natural language systems such as consistency
and non-redundancy. Thus, in dialogue systems [Benotti, 2009] it is important
that the system produces the same language that it understands. Furthermore,
reversibility makes it easy to rapidly create very large evaluation suites: it suf-
fices to parse a set of sentences and select from the parser output the correct
semantics. In contrast, NLG geared realisers either work on evaluation sets
of restricted size (500 input for SURGE, 210 for KPML) or require the time
expensive of developing each suite. In addition, a reversible grammar can be
exploited to support not only realisation but also its reverse, namely semantic
construction. Indeed, reversibility is ensured through a compositional semantics
that is, through a tight coupling between syntax and semantics. Finally, the
grammar can be used both to generate and to detect paraphrases.

In summary, reversibility has important advantages. If it is possible to de-
velop reversible surface realisers which have comparable efficiency and function-
ality to non-reversible systems, then such systems would be preferred.

2.3 Surface realisation from flat semantics

A number of wide-coverage reversible computational grammars of Natural Lan-
guage (NL) have been developed over the past few years. These grammars are
used for generation from logical form input. The semantic input to the sur-
face realiser for such grammars often is a flat semantic formulae which has a
direct and unambiguous translation to first order logic [Copestake et al., 1999].
More specifically, a flat semantic formula is a bag of literals with semantic
relationships (scope) between formulae captured by the appropriate instantia-
tion of variable arguments (See Figure 2.1 for an illustration of such formulae).
For a detailed description of two flat semantics frameworks, we refer the reader
e.g., to [Gardent and Kallmeyer, 2003, Copestake et al., 1999]. For our purpose
however, it suffices to say that a flat semantic formula is a set of literals where
each literal consists of a predicate and some indices. There exist several flat
semantic formalisms, but they have at least this much in common. We show for
the sentence in (1) an example of a flat semantics input.

(1) John seems to leave

{leave(b), agent(b, c), john(c), seems(b)}

As argued in [Copestake et al., 1999], there are good reasons why Flat se-
mantic representations were adopted in Natural Language Processing (NLP).
Briefly, such representations fulfil the following criteria: (i) expressive adequacy,
(ii) underspecification, (iii) computational tractability, and (iv) grammatical
compatibility.

2.4 Complexity in surface realisation

As is well known [Kay, 1996], surface realisation is exponential in the length of
the input. We here give a brief and intuitive summary of why this is so.

8 CHAPTER 2. SURFACE REALISATION

One first reason for the exponential complexity of surface realisation is the
lack of ordering information . Contrary to parsing where the input is a stringlack of ordering

information i.e., an ordered list of words, the input to surface realisation is a set of literals.
Supposing each literal selects exactly one constituent in the lexicon, there could
in the worst case be 2n possible combinations between these constituents (the
number of subsets obtainable from a set of size n).

In practice of course, there are possible restrictions on constituent com-
bination. In particular, most existing realisers impose the constraint that only
constituents with non overlapping semantics and compatible indices can be com-
bined. Because of this restriction, the core of the complexity stems in practise
from intersective modiers ([Kay, 1996, Brew, 1992]). Given a set of n modifiersintersective modifiers

all modifying the same structure, all possible intermediate structures will be
constructed i.e. 2n. For instance, there are 23 = 8 possible subsets of modifiers
in fierce little black cat.

(2) cat,

fierce cat,

little cat,

black cat,

fierce little cat,

fierce black cat,

little black cat,

fierce little black cat

A second reason for the exponential complexity of surface realisation is lex-
ical ambiguity . In surface realisation from flat semantics, the input is used tolexical

ambiguity select a set of lexical entries, that is, all lexical entries whose semantics sub-
sumes one or more of the input literals. In a wide coverage grammar, one literal
will be associated with more than one lexical entries (as shown in Example 3
). So, if Lexi is the number of lexical entries associated with literal li , then,
for an input semantics comprising n literals, the number of sets of lexical items
covering the input semantics is:

∏

i=n
i=1Lexi

(3) the case of fast and quickly

In addition, lexical ambiguity can also come from the many uses of a single
lemma. For instance, different uses of verbs transitive and intransitive, or the
same lemma with different functions as noun or verb (e.g. 4 and 5).

(4) love is transitive and intransitive

(5) the case of place that is a noun and a transitive verb.

Finally, lexical ambiguity can increase further if the grammar is paraphrastic
i.e., associates several syntactic structures with the same semantics (e.g., John
destroyed the castle quickly/the destruction of the castle by John was quick).

The two sources of complexity (lexical ambiguity and lack of input ordering)
interact by multiplying out so that the potential number of combinations of

constituents is: 2n ∗
∏

i=1
i=nLexi .

2.4.1 Related work on efficient realisation

We now review different approaches and discuss how they deal with the different
sources of computational complexity in surface realisation.

2.4. COMPLEXITY IN SURFACE REALISATION 9

[Kay, 1996]’s chart generation and indexing

Kay takes up again a previously introduced idea of using parsing charts in
generation and defines a flexible approach for indexing.

Kay introduced an approach for indexing that relies on the use of flat seman-
tics. He argues that its notation can be analysed as free word-order languages.
Recall that a flat semantic formula is a set of literals where each literal consists
of a predicate and some indices. For instance, (6) is the representation of the
logical form of the sentences John run fast and John run quickly.

(6) run(r), past(r), fast(r), arg1(r, j), name(j, john)

It consist of a distinguished index r and a list of predicates whose relative
order is inmaterial.

The basic chart algorithm schema proposed by Kay uses a bottom-up tree
traversal. It assumes a grammar with binary rules and a lexicon that associates a
sequence of words with a category and a semantic representation. The category
and the semantic representation are linked with unification variables. The chart
is initialised with those entries from the lexicon whose semantics subsumes the
input semantics.

From this simple version of the algorithm Kay devised some key concepts.
The use of a bit vector is introduced to check the semantic coverage before
combining two edges , i.e. check whether two edges cover overlapping literals
from the input semantics. Two flaws regarding efficiency are highlighted: (i) the
fact that interactions must be considered explicitly between new edges and all
edges currently in the chart, because no indexing is used to identify the existing
edges that could interact with a new one; (ii) the process is exponential in the
worst case, if a sentence contains k modifiers then a version with each of the
2k subsets of those modifiers would be generated, all but one of them being
rejected when it is finally discover that their semantics does not subsume the
entire input.

To deal with the complexity issue of intersective modifiers Kay proposes a
strategy based on the definition of the concept of internal and external indices.
The basic idea is that edges should not be combined if the result of doing so
would be to make internal (i.e. not more accesible) an index occurring in part
of the input semantics that the new phrase does not subsume. This approach
does not solve the generation of an exponential number of variants of phrases
containing modifiers. However, it limits the spill out of ill effects by allowing
only the maximal one to be incorporated in larger phrases.

Efficient wide coverage realisation

[Carroll and Oepen, 2005] present an algorithm for efficient tactical generation
from underspecified logical-form semantics. They build on top of the chart gen-
eration proposed by Martin Kay and propose some refinements to the algorithm
as well as two techniques namely, the integration of subsumption-based local am-
biguity factoring, and a procedure to selectively unpack the generation forest
according to a probability distribution given by a conditional, discriminative
model.

This modified realisation algorithm is based on the Minimal Recursion Se-
mantics (MRS) formalism, a member of the family of flat, underspecified, event-

10 CHAPTER 2. SURFACE REALISATION

based semantic frameworks for computational semantics, and an HPSG gram-
mar. The basic chart generation procedure works as follows. In order to initialise
the chart, lexical entries are retrieved from the lexicon checking against the in-
put semantics. When a lexical entry is retrieved, the variable positions in its
relations are instantiated in one-to-one correspondence with the variables in the
input semantics. After initialising the chart (with inactive edges), active edges
are created from inactive ones by instantiating the head daughter of a rule; the
resulting edges are then combined with other inactive edges. Before combining
two edges a check is made to ensure that edges do not overlap, i.e. that they
do not cover the same relation(s).

In this approach, the generator operates exclusively on typed feature struc-
tures which are associated with chart edges. To guide the search from the input
semantics two techniques are employed that relate components of the logical
form to corresponding sub-structures in the feature structures. One is such that
all feature structure correspondences to logical variables from the input seman-
tics are made ground, namely skolemization of variables. The other is indexing
by Elementary Predications (EPs) coverage.

Kay’s coverage approach (Section 2.4.1) is implemented and it is used not
only to combine active and inactive edges, but also to (i) determine which
intersective modifier(s) can be adjoined into a partially incomplete subtree in
the second phase of chart generation, (ii) and for a subsumption check when
implementing local ambiguity factoring.

The authors argue that for a non trivial semantic input and a wide coverage
grammar hundreds or thousands of edges may be produced. Then, indexing
edges with a relatively small number of logical variables from the input semantics
involves bookkeeping that turns out to be worthless in practise. In contrast,
they suggest ruling out a priori edge combinations with incompatible indices by
edge coverage. Further, filtering out the reminder by checking before unification
which rules dominate which others and applying the quick-check as developed
for unification-based parsing.

On the basis of [Kay, 1996]’s proposal they implement the index accessibil-
ity filtering a more general mechanism aiming at dealing with modifiers. To
implement this, two sets of semantic indices are added for each chart edge.
One contains the semantic variables in the feature structure that are accessible
(could be picked up by another edge when it is combined). The other is the set
of inaccessible variables, those ones that were once accessible but no longer are.
The key usage of this sets to filter is on creating an inactive edge, each EP in
the input semantics that the edge does not (yet) cover is inspected, and if the
EPs index is in the edges inaccessible set then the edge is discarded (since there
is no way in the future that the EP could be integrated with any extension of
the edges semantics).

They review and compare their proposal with [Carroll et al., 1999]’s tech-
nique to deal with the modifiers problem, namely delayed modifier insertion.
The processing of modifiers is delayed to a second phase where they are inserted
in the generation forest at appropriate locations before the forest is unpacked.

To reduce the search space in generation the authors incorporate two tech-
niques which work together. The local ambiguity factoring technique is based
on a parsing strategy to compute the parse forest in polynomial time. It consist
in packing sub-analysis dominated by the same non terminal and covering the
same segment of the input string. In generation, the category equality test is

2.4. COMPLEXITY IN SURFACE REALISATION 11

replaced by feature structure subsumption and the input span is expressed as
coverage of the input semantics. They found that packing is crucial to improve
realisation time only if the subsumption operation between feature structures is
used rather than feature structure equality.

Exhaustive unpacking results in an exponential time, then, to keep the total
generation time polynomial they propose a selective unpacking procedure. A
small set of the n-best realisations is extracted from the generation forest at a
minimal cost.

The evaluation of the generator’s efficiency was carried out under different
configurations, i.e. different combinations of the techniques described above.
The best-performing one was the one phase-generation with packing and index
accessibility filtering. For cases with low- to medium-ambiguity, filtering gives
rise to a bigger improvement than packing.

12 CHAPTER 2. SURFACE REALISATION

Chapter 3

Optimising surface
realisation

TAG-based reversible surface realisation naturally admits the implementation
of different optimisation techniques. The strategy we investigate and implement
in this thesis work aims to optimise such a realiser. More precisely, we aim to
reduce the initial search space, that is to reduce the effects of one of the sources
of complexity: lexical ambiguity.

In this chapter, we first introduce the specific realiser we are working with
(Section 3.1). In Section 3.2.2, we then summarise the polarity filtering opti-
misation proposed in[Gardent and Kow, 2005, Kow, 2007]. To deal with lexical
ambiguity, polarity filtering permits eliminating combinations of lexical items
which cannot possibly lead to a syntactically valid sentence. Finally, in Section
3.3.2, we present a novel approach for reducing the initial search space. Based
on a conversion of the TAG grammar of elementary trees to an RTG (Regular
Tree Grammar) of TAG derivation trees, this approach aims to filter out from
the initial search space all combinations of elementary trees that cannot yield a
derivation tree covering the input semantics.

3.1 Generating with Tree Adjoining Grammars

Before describing the surface realiser algorithm, we review the grammatical
formalism it uses and recap some concepts such as TAG derivation trees, which
are central in our optimising approach.

The algorithm uses a Feature Based lexicalized TAG (FB-LTAG) extended
with semantic information as described in [Gardent and Kallmeyer, 2003]. We
present the formalism as it is used by the surface realiser. We first present the
core formalism and then introduce the two extensions which yield FB-LTAG.
We also describe the association of the grammar, the syntactic formalism, with
the flat semantic formalism. Finally, we emphasise the notion of TAG derivation
tree, which is a central concept in the approach we are proposing.

13

14 CHAPTER 3. OPTIMISING SURFACE REALISATION

3.1.1 The grammar: FB-LTAG integrating semantic infor-
mation

Tree-adjoining grammars: The core formalism

Tree-Adjoining grammar is a grammar formalism defined by [Joshi and Schabes, 1997].
The elementary objects manipulated by TAG are trees, i.e., structured objects
and not strings. Thus, it is a tree-generating system rather than string generat-
ing system. As defined in [Joshi and Schabes, 1997] a TAG consist of a tupple
(Σ, NT, I, A, S) where

1. Σ is a finite set of terminal symbols.

2. NT is a finite set of non-terminal symbols: Σ ∩NT = ∅.

3. S is a distinguished non-terminal symbol: S ∈ NT

4. I is a finite set of finite trees, called initial trees where

• interior nodes are labelled by non-terminal symbols;

• frontier nodes are labelled by terminals or non-terminals; non-terminal
symbols on the frontier are called substitution sites and are marked
for substitution, by convention, annotated with a down arrow (↓).

5. A is a finite set of finite trees, called auxiliary trees where

• interior nodes are labelled by non-terminal symbols;

• frontier nodes are labelled by terminal or non-terminal symbols; non-
terminal symbols on the frontier are marked for substitution except
for one node, called the foot node, by convention, annotated with an
asterisk (∗); the symbol labelling the foot node must be identical to
that labelling the root node.

The trees in I ∪ A are called elementary trees and describe the syntactic
structure of the basic components of a language, namely words or collocations.
A tree built by composition of two other trees is called derived tree. The two
composition operations that TAG uses are substitution and adjunction.

The substitution operation (Figure 3.1) replaces one substitution site of one
tree by the tree to be substituted. The tree to be substituted must be derived
from an initial tree. When a tree does not have substitution sites, we say that
it is syntactically complete.

The adjunction operation (Figure 3.2) can be understood as splicing an aux-
iliary tree into another tree (which can be of any type, initial, auxiliary or
derived.) Let α be a tree containing a non-substitution node n labelled by X ,
and β be an auxiliary tree whose root node is also labelled by X . Adjoining
β into α is built by (1) excising the sub-tree of α dominated by n (call it t)
(2) replacing the foot node of β with t to produce an intermediary structure β

′

and (3) replacing the excised tree in α with the augmented auxiliary tree β
′

.
Nodes on which adjunction may be performed are called adjunction sites. By
definition, any adjunction on a node marked for substitution is disallowed.

3.1. GENERATING WITH TREE ADJOINING GRAMMARS 15

NP

John

S

NP↓ VP

V

run

⇒

S

NP VP

John V

run

Figure 3.1: TAG substitution.

S

NP↓ VP

V

run

VP

often VP*
⇒

S

NP↓ VP

often VP

V

run

Figure 3.2: TAG Adjunction

Feature structure based TAG

A Feature Structure consists of a set of attribute-value pairs, where a value
may be either atomic or another feature structure. The main operation for
combination of feature structures is unification. A Feature Based TAG is a
TAG where features structures are associated with the nodes of the elementary
trees. That is, the tree nodes are decorated with two feature structures, called
top and bottom). The operations of substitution and adjunction are then
defined in terms of unification of appropriate feature structures, thus allowing
the constraints on substitution and adjunction to be modeled by the success
or failure of unifications. On substitution, the top of the substitution node
is unified with the top of the root node of the tree being substituted in. On
adjunction, the top of the root of the auxiliary tree is unified with the top of the
node where adjunction takes place; and the bottom features of the foot node
are unified with the bottom features of this node. At the end of the derivation,
a validation step takes place wherein the top and bottom of all nodes in the
derived tree are unified. If unification fails, the derived tree is invalid.

Lexicalized TAG

According to the definition given in [Joshi and Schabes, 1997], a grammar is
lexicalized if it consist of: (i) a finite set of structures each associated with a
lexical item; each lexical item will be called the anchor of the corresponding
structure; (ii) an operation or operations for composing the structures. In lexi-
calized TAG at least one terminal symbol, namely the anchor, must appear at
the frontier of all initial or auxiliary tree.

As mentioned at the beginning of this section, the surface realiser we work
with uses a FB-LTAG, which is a straightforward combination of FB-TAG

feature structures with LTAG lexicalization.

16 CHAPTER 3. OPTIMISING SURFACE REALISATION

TAG equipped with compositional semantics

To associate semantic representations with natural language representations,
the FB-LTAG is modified as proposed in [Gardent and Kallmeyer, 2003]. Each
elementary tree is associated with a flat semantic representation 1. For instance,
in Figure 3.3, the trees2 for John, run and often are associated with the semantic
john(j), run(r), agent(r,s), and often(x) respectively.

NPj

John

john(j)

S

NP↓ s VPr

V

run

run(r),agent(r,s)

VPx

often VP*
often(x)

⇒ john(j), run(r), agent(r,j), often(r)

Figure 3.3: Flat semantics for “John often runs”

Importantly, the arguments of a semantic functor are represented by unifi-
cation variables which occur both in the semantic representation of this functor
and on some nodes of the associated syntactic tree. More precisely, the substitu-
tion nodes of the tree associated with a semantic functor will be associated with
with semantic parameters, that is, unification variables, while root nodes and
certain adjunction nodes will be labelled with semantic indices. For instance,
in Figure 3.3, the semantic index s occurring in the semantic representation
of run also occurs in the subject substitution node of the associated elementary
tree.

The value of semantic arguments is determined by the unification resulting
from adjunction and substitution. For instance, the semantic index s in the tree
for run is unified during substitution with the semantic indices labelling the root
nodes of the tree for john. As a result, the semantic for John often runs is:

(7) {john(j), run(r), agent(r,j), often(r)}

Generally, the idea is that the association between tree nodes and unification
variables encodes the syntax/semantics interface, i.e. it specifies which node
in the tree provides the value for which semantic parameter in the semantic
representation of a semantic functor.

TAG Derivations

The tree obtained by derivation, the derived tree, does not give enough informa-
tion to determine how it was constructed. On the other hand, the derivation tree
is an object that specifies uniquely how a derived tree was constructed. Both
operations, adjunction and substitution, are considered in a TAG derivation.

1The examples given actually show a simplified version of the flat semantics used in the
surface realisation algorithm proposed in [Gardent and Kallmeyer, 2003] where in particular,
so-called labels are omitted. A full specification is given in [Gardent and Kallmeyer, 2003].

2Cx/Cx abbreviate a node with category C and a top/bottom feature structure including
the feature-value pair { index : x}.

3.1. GENERATING WITH TREE ADJOINING GRAMMARS 17

The definition of a derivation tree is best explained by means of an example.
Figure 3.4 shows the derived tree for the sentence John often runs. It has being
built with the elementary trees shown in Figure 3.3. The root of a derivation
tree for TAG s is labelled after the name of an initial tree of category S. All
other nodes in the derivation tree are labelled by auxiliary trees’ name in the
case of adjunction or initial trees’s name in the case of substitution. A tree
address is associated with each node in the derivation tree. This tree address is
the address of the node in the parent tree to which the adjunction or substitu-
tion has been performed. That is, back to the example, the derivation tree in
Figure 3.4 shows how the derived tree was obtained. It tells as (i) what elemen-
tary trees it is made of (ii) and how they were put together. This derivation
tree should be read as follows: the tree αjohn is substituted in the tree αrun

at address 1 (NP) and the tree αoften is adjoined in the tree αrun at address
2 (VP). The order in which the derivation tree is interpreted has no impact on
the resulting derived tree.

S

NP VP

John often VP

V

run

derived tree

αrun

αJohn
(1) βoften

(2)

derivation tree

Figure 3.4: Derived and derivation trees for “John often runs”

3.1.2 A TAG based surface realiser

In this work we develop a strategy for optimising surface realisation within the
context of the TAG-based surface realiser described in [Gardent and Kow, 2005,
Gardent and Kow, 2007b, Gardent and Kow, 2007a]. The basic surface realisa-
tion algorithm used is a bottom up, tabular realisation algorithm optimised for
TAGs. It follows a three step strategy that can be summarised as follows. Given
an empty agenda, an empty chart and an input semantics φ:

Lexical Selection. Select all elementary trees whose semantics subsumes (part
of) φ. Store these trees in the agenda. Auxiliary trees devoid of substitu-
tion nodes are stored in a separated agenda called the auxiliary agenda.

Substitution phase. Retrieve a tree from the agenda, add it to the chart and
try to combine it by substitution with trees present in the chart. Stop
when the agenda is empty.

Adjunction phase. Move the chart trees to the agenda and the auxiliary
agenda trees to the chart. Retrieve a tree from the agenda, add it to
the chart and try to combine it by adjunction with trees present in the
chart. Add any resulting derived tree to the agenda. Stop when the
agenda is empty.

18 CHAPTER 3. OPTIMISING SURFACE REALISATION

When processing stops, the yield of any syntactically complete tree whose se-
mantics is φ yields an output, that is, a grammatical sentence.

The workings of this algorithm can be illustrated by the following example.
Suppose that the input semantics that given in example (7). In a first step
(lexical selection), the elementary trees selected are the ones for john, runs,
often. Their semantics subsumes part of the input semantics. The trees for
john and runs are placed on the agenda, the one for often is placed on the
auxiliary agenda.

The second step (the substitution phase) consists in systematically exploring
the possibility of combining two trees by substitution. Here, the tree for john
is substituted into the one for runs, and the resulting derived tree for john runs
is placed on the agenda. Trees on the agenda are processed one by one in this
fashion. When the agenda is empty, indicating that all combinations have been
tried, we prepare for the next phase. All items containing an empty substitution
node are erased from the chart (here, the tree anchored by run). The agenda
is then reinitialised to the content of the chart and the chart to the content of
the auxiliary agenda (here often). The adjunction phase proceeds much like the
previous phase, except that now all possible adjunctions are performed. When
the agenda is empty once more, the items in the chart whose semantics matches
the input semantics are selected, and their strings printed out, yielding in this
case the sentence John often runs.

3.2 TAG naturally derived optimisations

In this section we start by summarising how TAG naturally supports the intro-
duction of different proposals aiming at reducing the surface realisation com-
plexity, specially, in light of the complexity issues we introduce in Chapter 2
([Gardent and Kow, 2006]). We then go on to describe the proposal put for-
ward in [Gardent and Kow, 2006] for optimising the surface realiser introduced
in previous Section 3.1.2.

3.2.1 Two composition operations: Two phase generation

The design of the surface realisation algorithm (Section 3.1.2) goes along with
the two composition operations of TAG. This supports the integration of a
mechanism to deal with intersective modifiers and to eliminate those ill trees
obtained after the first phase before the second phase starts. Both optimisations
prevent the proliferation of ill-combinations.

Reducing the impact of intersective modifiers

To deal with the lack of ordering information, more precisely, the problem
of intersective modifiers a technique which enforces the delayed adjunction of
modifiers has been introduced in [Carroll et al., 1999], and further evaluated in
[Carroll and Oepen, 2005] besides proposing another approach. These propos-
als either handle modifiers after a complete syntactic tree is built (i.e., after
all syntactic requirements are fulfilled) or before the modifiee is combined with
other items (e.g., before the head noun has combined with a determiner). Al-
though the number of intermediate structures generated is still 2n for n modiers,

3.2. TAG NATURALLY DERIVED OPTIMISATIONS 19

both strategies have the effect of blocking these 2n structures from multiplying
out with other structures in the chart.

There are two specificities in TAG that support the implementation of a
delayed adjunction of intersective modifiers. Due to the fact that in TAG sub-
stitution and adjunction are applied independently of each other a two-phase
generation strategy is naturally implemented [Gardent and Kow, 2006]. Thus,
generating all syntactically complete trees in a first phase. Second, in TAG

intersective modifiers are introduced by adjunction trees then they will be pro-
cessed in the second phase adding the modifiers to the complete trees obtained
in the previous phase. As a result, proliferation of intermediate structures syn-
tactically correct but semantically incomplete induced by intersective modifiers
is restricted.

An important difference with other approaches to delayed modifiers adjunc-
tion is that with TAG it is not necessary to specially write or modify rules of
the grammar to account for the delayed adjunction strategy.

Eliminating complete unusable trees

The two-phase generation strategy supports another optimisation which takes
place in between the two-phases. After the first phase was completed, it is
possible to filter out the ill formed trees before starting with the following phase.
This other mechanism aims at filtering out those derived trees produced by the
first phase for which there is no way to further combine them into a successfull
tree. Two different filters are applied respectively for:

• all trees with an unfilled substitution site

• all saturated trees whose root node is not labelled with an S category

The first filter eliminates unsaturated trees. That is, eliminates those trees
that were left with a not fulfilled substitution site after the first-phase. As
the second phase only applies adjunction, and adjunction is not allowed on
substitution nodes (Section 3.1.1), this trees would not be further completed
within the rest of the generation algorithm.

The second, called Root Node Filter (RNF), is based on the property of
auxiliary trees (described in Section 3.1.1) which insists that root and foot node
should be labelled with the same category. Because of this property, adjunction
cannot affect the category of the tree it adjoins to. In particular, a tree which
after all possible substitutions have been performed, has root label C with C 6= S

can never lead to the creation by adjunction of a tree with root label S. Thus,
this trees are also ruled out and not introduced into the following phase.

Both filters result in a reduction of the trees introduced in the second phase.
Hence, they contribute to the carry out the adjunction of modifiers only within
a reduce set of candidate trees.

3.2.2 Polarity filtering

The polarity filtering optimisation introduced in [Gardent and Kow, 2005] takes
place between the lexical selection phase and the generation phases of substitu-
tion and adjunction. The basic idea is that after selection of all the lexical items
whose semantics subsumes the input semantics, lexical combination with non-
neutral polarities are filter out, and then perform realisation on the remaining

20 CHAPTER 3. OPTIMISING SURFACE REALISATION

items. This technique reduces the complexity introduced by lexical ambiguity.
As explained in Section 2.4, the number of combinations that are a priori pos-
sible after the lexical selection phase is Π1≤i≤nai with ai the degree of lexical
ambiguity of the i-th literal and n the number of literals in the input semantics.

The motive for the interest in reducing this combinatorics is based in the
observation that not all the combinations of the lexical items would lead to a
successful derivations but only some of them. That is, some combinations of
lexical items that cover the input semantics turn out to be syntactically invalid
either because a syntactic requirement is not fulfilled or because a syntactic
resource is not used. For instance, given the semantics in (8), the set of lexically
selected items for this input are those shown in Figure 3.5.

(8) {picture(p), cost(c), agent(c, p), patient(c, h), high(h)}

In this example we can see that more than one tree was selected for each
literal in the semantics. For example, for the literal picture(p) the trees T picture :Lexical

ambiguity picture(p) and T painting : picture(p), the same occurs for cost(c) and high(h).
Although, it is not possible to successfully obtain all the combinations out of
them as there may be some syntactic incompatibilities. Indeed, T cost : cost(c)
may be combined with T ishigh : high(h) to form the sentence The cost of N is

high while combining T cost : cost(c) with T alot : high(h) results in the phrase
The cost of a lot which is an invalid sentence. The same occurs when combining
T costs : cost(c) with T alot : high(h) and T ishigh : high(h).

The problem of synonymy in the lexicon and generating the compatible
lexical combinations becomes even worse within the context of wide-coverage
lexicalized grammar. As sketched in Section 3.1.2, the realisation algorithm for aSyntactic

variations wide-coverage lexicalized TAG consist of three phases, namely lexical selection,
and two phase-generation: substitution and adjunction. In the first phase,
the realiser selects a set of elementary TAG tree schemas that are associated
with the lexical items steming from the lexical semantics in the input semantic
formula. Once this lexical selection is done, the realiser works over the selected
trees rather than over the whole grammar. However, for every lexical item
hundreds of trees might be selected in a wide-coverage grammar, then the size
of this set, and thus, the initial search space for the generation phases is not
trivial.

To detect and eliminate unsuccessful combinations polarity based filtering
proceeds as follows:

• assigns each lexical item a polarity signature reflecting its syntactic re-
quirements and resources

• computes for each possible combination of lexical items the net sum of its
syntactic requirements and resources and

• eliminates all combinations of lexical items that do not have a net sum of
zero (because such combinations cannot possibly lead to a syntactically
valid sentence)

Then, the filter has two main steps. The first one concerns calculating
the polarity signature of each lexical item. Since in TAG, substitution nodes
indicate syntactic requirements while an initial tree permits fulfilling a syntactic
requirement, polarity signatures can be automatically computed as follows:

3.2. TAG NATURALLY DERIVED OPTIMISATIONS 21

NP

Det N

the picture

T picture : picture(p)
(+np)

NP

Det N PP

the cost P NP↓

of

T cost : cost(c)
(+np,−np)

S

NP↓ VP

V Adj

is high

T ishigh : high(h)
(−np)

NP

Det N

the painting

T painting : picture(p)
(+np)

S

NP↓ VP

V NP↓

costs

T costs : cost(c)
(−np,−np)

NP

a lot

T alot : high(h)
(+np)

Figure 3.5: Small grammar for the input semantics in 8

• a polarity of the form +Cat is added to the tree polarity signature of each
initial tree with root node category Cat.

• a polarity of the form -Cat is added to the tree polarity signature of each
initial tree for each substitution node with category Cat in that tree.

In Figure 3.5 the polarity charge for each tree is shown below the tree. For
instance, the tree T costs has polarity (−np,−np) meaning that it requires two
NPs while if we considered the category s the polarity would be (+s) meaning
that it provides a sentence.

The second step is to compute the polarity of all possible combinations of
lexical items. This is done by:

• building a polarity automaton for each polarity category occurring in the
set of possible combinations (in this case, np),

• computing the intersection of these automaton and

• minimising the resulting automaton.

For the example we have followed so far, the final automaton is that given
in Figure 3.6 where each state is labelled with the accumulated polarity of
the path(s) leading to that state and where the transitions are labelled with the
lexical item covered. As discussed above, the combination of T cost : cost(c) with
T alot : high(h) is useless as we get the cost of a lot which is also incompatible
with the painting. This can be seen in the polarity automaton where the sum
up of the polarities of T painting : picture(p), T cost : cost(c), and T alot : high(h)
gives a +2np charge and the combination is rejected (does not finish in a final
state). In contrast, the combination of T painting : picture(p), T costs : cost(c),
and T alot : high(h) has a charge of 0np which means that this combination will
be worth trying in the surface realisation phase.

22 CHAPTER 3. OPTIMISING SURFACE REALISATION

picture(p) cost(c) high(h)

0 +1

+1

−1

+2

0

−2

cost
painting
picture

costs

a lot

is high

a lot

is high

Figure 3.6: Automaton for the input semantics in 8

Polarity filtering is naturally applied to TAG based on definitory properties
of TAG and it is proven that it drastrically reduces surface realisation search
space. Still, there are some limitations in the strategy.

Limited number of polarity keys. The definition of polarity key assumed
by the strategy is: a pair a : k where a is an attribute and k is a possible value for
that attribute. However, it is not possible in practise to take another attribute
rather than the category. This is because the strategy assigns polarities to
the lexical items based on the polarity key, that is based on the values of the
attributes. Then, it is required that the values of the attributes are instantiated.
For instance, the attribute associated to nodes in the tree which correspond
to the semantic indice (Figure 3.3) cannot be used. As the requirement of an
attribute value of being instantiated cannot be assured for most of the attributes
present in the nodes of the trees, practically, the category feature is the only
one that is can be taken into account by the filtering strategy.

Cost of automaton intersection. Using multiple polarity keys can be ex-
pensive because of the potential cost of computing their intersection. Although
polarity filtering simplifies the automaton enough for intersection not to be a
problem, it has being evaluated with a small set of polarity keys. The results
obtained in the stragey evaluation show that the more keys are included in the
set the better is the filtering done. But the improvements made by adding more
polarity keys has a limit which is given by the cost benefit relation. In other
words, it could be helpful to the extent that the overhead of building, minimising
and intersecting these automaton does not offset the gains made.

Ignoring of auxiliary trees. The polarity filtering strategy, as discussed so
far, is constructed based only on initial trees. In other words, the auxiliary
trees are invisible to the polarity filtering. However, an extention to account
for the auxiliary trees is forseen. Basically, it consist in defining differently the
charges of auxiliary trees, indeed, to obtain the polarity signature of a given
auxiliary tree, charges are multiplied instead of being added. An adjunction
automaton is constructed in similar way to the polarity automaton and it can
be further combined by the intersection operation with other adjunction or
polarity automatons. Despite this possibility of using adjunction automatons
the shortcoming comes down to the problem of using multiple polarity keys.

3.3. RTG-BASED OPTIMISATION 23

3.3 RTG-Based optimisation

In this section we present a more principled and empirically more complete filter-
ing method for TAG based surface realisation. This approach is also naturally
derived from TAG and is based on the fact that the derivation tree language of
TAG can be generated by a Regular Tree Grammar (RTG). Moreover, there ex-
ist a well defined translation from Feature Based TAG to a Feature Based RTG

[Schmitz and Le Roux, 2008]. Therefore, we can translate each TAG elemen-
tary tree, including as much linguistic information as convenient, into Regular
Tree Grammar (RTG) rules and then generate the derivation trees (defined in
Section 3.1.1). Using this TAG to RTG mapping, we can then identify those
combinations of TAG elementary trees that can be combined into a derivation
tree and therefore are worth taking into account for surface realisation.

We first introduce the grammatical formalism underlying our filtering method,
and then proceed by describing how the strategy works.

3.3.1 From TAG to RTG

Feature Based RTG is a formalism defined by [Schmitz and Le Roux, 2008].
They argument that the motivation behind the definition of the regular tree
grammar formalism extention was the fact that the derivation tree language of
TAG is much simpler to manipulate than the corresponding derived language
because of being a tree language. They observed that derivation trees are the
base of many approaches to sentence generation as well as semantic computa-
tion. However, if the grammar includes feature structures they should be moved
into the corresponding derivation trees, in order to account for all the informa-
tion given by the grammar. Therefore, [Schmitz and Le Roux, 2008] defined
the Feature Based variant of RTG and a translation from Feature Based TAG.
The Feature Based RTG produces derivation trees that account for the feature
structures found in a FB-TAG.

On one hand, TAG derivation trees encode two important pieces of infor-
mation about a derivations: the elementary trees involved and in which nodes
of the elementary trees the substitutions or adjunctions took place. Each node
of the derivation tree is named after an elementary tree and its daughter nodes
represent the elementary trees combined by substitution or adjunction in the
mother node. On the other hand, a RTG (grammar formalism defined in
[Comon et al., 2007]) provides the means for describing tree languages.

[Schmitz and Le Roux, 2008] start by defining the RTG of the TAG deriva-
tion trees. Briefly, each TAG elementary tree is converted to an RTG rule
where, in relation to the notion mentioned in previous paragraph, the rule con-
sists of a mother node as left-hand side (i.e. node carring the tree information
needed for combination into other trees) and daughter nodes as right-hand side
(i.e. indicating which operations can be applied and which trees can be used
for combinations into this tree). These daughter nodes were called active nodes
and the number of active nodes is the rank of the grammar rule. To name the
nodes in the grammar rule, they defined a labelling function that considers the
syntactic category and the type of the original TAG node. Considering a TAG

elementary tree γ, its nodes are labelled as follows to give rise to the RTG

non-terminals:

24 CHAPTER 3. OPTIMISING SURFACE REALISATION

{

XA if γi is an adjunction site
XS if γi is a substitution site

(3.1)

The labelling for the left-hand side of the RTG rule includes also the syntac-
tic category, but it will be XS if the rule is a map from an initial tree and XA

if the rule is a map from an auxiliary tree. For instance, the grammar rule cor-
responding to the elementary tree anchored by the cost of in Figure 3.5 is then
NP S → cost(NPA, DetA, NA, PPA, PA, NP S), meaning that this tree can be
substituted into an NP substitution node, and furthermore that it expects ad-
junctions on its NPA, Det, N , PP and P nodes and a substitution on its NP
node.

To model the fact that adjunction is in fact optional, an epsilon rule, XA →
εA, is added for each main category. Each epsilon rule describe the fact that a
CA category (with C ∈ {NP,Det,N, PP, P, V P, V }) can rewrite to the empty
string.

The important point for our purpose, is that, given each set of elementary
TAG trees, the TAG to RTG mapping makes it possible to determine whether
this set can be combined into a derivation tree.

So far, we saw how RTG rules are built from the TAG elementary trees
based on the type of trees and active nodes. To this first step of encoding,
[Schmitz and Le Roux, 2008] add the encoding of the features structures and
define the feature based regular tree grammar formalism.

In a feature-based regular tree grammar the rule categories become a tuple
where each non-terminal is accompanied of a feature structure. That is, rules
are of the form, (A, d) → a((B1 , d1), ..., (Bn , dn)), where A,B1 , ..., Bn are non-
terminals, d, d1 , ..., dn are feature structures, and a is a terminal with rank n.
The derivation relation for this kind of rules not only requires matching of the
non-terminal symbol but also the the computation of the most general unifier
mgu at each derivation step (i.e. an µ-substitution σ).

They propose two ways of encoding a FB-TAG. However, they argue and
show that the left corner transformation results in more predictive derivations.
Therefore, for our pourpose we have chosen to make use of this translation
mode. This transformation enables the derivations in the following order: first
apply the ε-rules of ranking 1, then apply the root adjunctions (i.e. auxiliary
trees that adjoin into root nodes of a derived or initial trees) in reversed order,
and end with the initial tree substitution.

As for the encoding of the feature structures within RTG rules, they propose
that the left-hand side and the lef-corner of the rules should provide a sort of
interface of the tree. That is, they should account for root top feature structure
information of initial and auxiliary trees and foot bottom feature structures for
the case of auxiliary trees. On the other hand, the right-hand side symbols
should include the top and bottom feature structure from the active nodes.

Concretely, the following definitions are devised in [Schmitz and Le Roux, 2008].
The first equations proposed by [Schmitz and Le Roux, 2008] describe the map
for the features structures, then, their definition below defines the map from
TAG elementary trees to RTG rules. We will see along this work how this
feature based RTG formalism is used by the RTG-based polarity filtering ap-
proach.

3.3. RTG-BASED OPTIMISATION 25

in(α) =

»

top : t
top : top(αr)

–

. (3.2)

in(β) =

2

4

top : t
top : top(βr)
bot : bot(βf)

3

5 . (3.3)

feat(γi) =

8

>

>

<

>

>

:

»

top : t
bot : bot(γr)

–

if γi = γr

»

top : top(γi)
bot : bot(γr)

–

otherwise
(3.4)

inlc(β) =

»

top : t
bot : bot(βf)

–

. (3.5)

feat(γi) =

8

>

>

<

>

>

:

2

4

top : t
top : top(γr)
bot : bot(γr)

3

5 if γi = γr

ˆ

feats(γi)
˜

otherwise

(3.6)

inlc(β) =
ˆ

trlc(γi) = (nt(γi), featsl c(γi))
˜

. (3.7)

Definition. The left-corner transformed feature-based RTG Glc =
〈SS , N∪NS∪NA, F lc, D,Rlc〉 of a TAG 〈Σ, N, I, A, S〉 with feature
structures in D has terminal alphabet F lc = I ∪ A ∪ {εA, εS} with
respective ranks rk(α) − 1, rk(β), 0, and 1, and set of rules
Rlc = {XS [top : t] → εS (X[top : t; bot : t])|XS ∈ NS}∪{(X, feats(α1)) →

α(trlc(α2), ..., trlc(αn))|α ∈ I, n = rk(α),X = lab(αr)}

∪ {(X, featslc(β1)) → β((X, inlc(β)), trlc(β2), ..., trlc(βn))

|β ∈ A,n = rk(β),X = lab(βr)}

∪ {(XA, in(β)) → β(tr(β1), trlc(β2), ..., trlc(βn))|β ∈ A,n = rk(β),X =

lab(βr)}

∪ {XA[top : t; bot : t] → εA|XA ∈ NA}

Importantly for our purpose, is the note they made regarding computational
complexity properties, that is that the translation can be computed in linear
time, and results in a grammar with at worst twice the size of the original TAG.

3.3.2 RTG filtering

The idea of RTG-based filtering is to use this TAG to RTG mapping to de-
termine whether a given set of RTG-encoded TAG trees can be combined to
yield a well formed TAG derivation tree. Any set of trees that does not can
be filtered out. This filtering takes place after the lexical selection phase in the
surface realisation algorithm (described in previous sections). This consist in,

• building the RTG grammar GRTG using the TAG encoding and the re-
sults from the lexical selection phase,

• obtaining L(GRTG), i.e. generating the corresponding parse forest

26 CHAPTER 3. OPTIMISING SURFACE REALISATION

After applying the translation we get a grammar GRTG as defined by the
translation such that all TAG elementary trees (i.e. initial and auxiliary trees)
are taken into account. The non-terminal symbols in the RTG grammar (i.e.
XA,XS and X) are built by the labelling function of the encoding from the
categories present in these trees. Thus, all the categories present in each node
of each TAG elementary trees are also present in the new grammar and con-
sequently can be used for filtering. In addition, the translation of the feature
structures allows the transference of linguistic information from the TAG of de-
rived trees to the RTG of derivation trees. We can, in principle, select different
features and feature values. As the derivation relation encompasses unification,
there are no difficulties in dealing with non-instantiated values for the features3.
The filtering algorithm could be any that implements the derivation relation de-
fined for RTG, the major requirement here being that the algorithm should be
guided by the input semantics.

Each elementary tree is represented as the fragment it contributes to the
derivation tree. Then, any set of TAG tree that cannot be combined into
a derivation tree in L(GRTG) should be ruled out. Further, the information
provided by L(GRTG), namely the set of successfull combinations and potential
candidates, can be taken into account by the surface realiser to produce the
TAG derived trees in a straightforward manner.

Different levels of filtering

We can define different types of filtering depending on how much linguistic
information (i.e. features from the feature structures) is preserved in the RTG

trees.
A first level of filtering would be where only the syntactic category is pre-

served. The categories constitute the non-terminal symbols in the RTG, then,
at this level no feature structures would be transferred. In some cases, the suc-
cessful combinations resulting from this filtering level would account for some
permutations of the trees in the combination as the semantic index information
is not included. This is the level at which polarity filtering was applied over-
coming one difference. In this RTG filtering we cover all the categories involved
in TAG derivations while in polarity filtering for each category considered one
more automaton is involved in the intersection operation. Then, for the latter
the complexity is growing exponentially for each new category that is added to
the filter.

A second level includes both syntactic category and semantic index (the
features presented in 3.1.1). This semantic information should a priori provide
much better guidance for the filtering process since semantics information is
what guides generation.

A third level would imply developing methods for automatically identifying
the grammar features that are most used in generation and then using those for
filtering.

3This is in contrast to the polarity filtering approach where only syntactic categories are
taken into account and unification of feature values is not performed.

Chapter 4

Generation of the parse
forest

The filtering technique we describe in the previous chapter, uses an RTG en-
coding of a Tree Adjoining Grammar to filter out from the initial search space,
all sets of elementary trees which cover the input semantics but cannot yield a
complete derivation tree.

To detect whether a given tree set can yield a full derivation tree thus boils
down to parsing with an RTG. Given the set of RTG rules that is associated by
the lexical selection module with the input semantics, such a parsing algorithm
permits determining which set of RTG rules, if any, covers the input semantics.

In this chapter, we present the RTG based parsing algorithm we use for
filtering and we discuss its integration in the surface realisation process.

We start by describing the main characteristics of this algorithm (Section
4.1). We then describe the Prolog implementation we wrote for testing our RTG
filtering proposal (Section 4.2).

4.1 A tabular Earley-style RTG parser

The algorithm we designed for implementing our RTG filter integrates several
ideas and techniques from the parsing literature. We draw on [Shieber et al., 1995]’s
deductive parsing framework as a flexible and declarative way to represent dif-
ferent parsing algorithms. To avoid the repeated computation of intermediate
structures common to several larger parse structures, we integrate [Kay, 1986]’s
chart mechanism1. Finally, the specific parsing strategy adopted is the Ear-
ley’s algorithm [Earley, 1970] adapted as described in [Kay, 1996] to support
generation from a flat semantics.

4.1.1 Chart parsing and Earley algorithm

As it is well known, chart parsing, through the concept of chart data struc-
ture, provides a means to “store” intermediate parsing results which can be
further used in different larger constructions along the parsing process. That

1The storing and reuse of intermediate results is also sometimes referred to as “tabulation”
or “dynamic programming”.

27

28 CHAPTER 4. GENERATION OF THE PARSE FOREST

is, whenever the same intermediate result is used within different larger parsing
constructions, it can be taken from the chart instead of being constructed each
time it is needed. In addition, chart parsing allows for pursuing all alternative
analyses in parallel. Particularly, in our problem, we are exploring not just one
but all possible lexical combinations that the RTG grammar can generate. In-
deed, in this process we generate several intermediate results which are used to
build several distinct derivation trees. By storing those intermediate results in
a chart we can avoid their re-computation. Hence, the implementation of the
parser for the filtering method is based on chart parsing.

The specific parsing algorithm we implement is the Earley algorithm as such
a search strategy provides a hybrid approach which integrates both top-down
predictions and bottom-up completions.

Finally, the parsing as deduction framework, by stating parsing algorithms
in terms of axioms, goals and set of inference rules, provides us with a useful
tool for describing the algorithm. To account for the feature structures present
in our grammar formalism, Feature Based RTG, and the fact that the parsing
process is guided by the input semantics, we furthermore adapt this algorithm
as summarized in Table 4.1.

Axiom
[S′ → •SS , ∅]

Goal [S
′

→ SS•, φ] where φ is the input semantics.

Prediction
[(A, d) → a(α • (B, di)β), ϕ]

[(B, σ(d′)) → b(•(B1 , σ(d′

1)), ..., (Bn , σ(d′

n))), ψ]

where (B,d
′

) → b((B1 , d
′

1), ..., (Bn , d
′

n)) is a rule in the grammar

with associated semantics ψ, σ = mgu(di , d
′

) and ϕ ∩ ψ = ∅

Completion
[(A,d) → a(α • (B, di)β), ϕ][(B, d′) → b(β)•, ϕ]

[(A, σ(d)) → a(α(B, σ(di)) • (C, σ(di+1))β), φ]

where σ = mgu(di , d
′

), ϕ ∩ ψ = ∅ and ϕ ∪ ψ = φ

Table 4.1: Earley deductive parsing system

The item standard representation is
[(A, d) → (B1 , d1), .., •(Bi , di), ..., (Bn , dn), ψ] where the dot in the production
marks the point reached by recognition or analysis of the derivation tree. The
second component of the item is ψ representing a semantic formula. In the items
we do not keep track of string positions, as usually done when parsing a string,
but rather we keep the associated semantic formula. As we saw in Section 3.1.1,
each TAG elementary tree is enriched with a flat semantic formula, accordingly,
their counterpart Feature Based RTG rules also maintain associated the same
flat semantic formula.

The algorithm starts from the initial fact, the axiom, [S
′

→ •SS , ∅]. Note
that in this item the non-terminal symbol SS is the axiom in the grammar

4.1. A TABULAR EARLEY-STYLE RTG PARSER 29

GRTG while the second component represents the empty semantics. In string
parsing, we would have the string index equal to 0 meaning that the recognition
of the string is at that point. In contrast, as we are parsing based on the input
semantics the part of the input semantics analysed so far is empty. Note here
that because of lexical ambiguity, there might be several axioms, steaming from
the several initial trees. On the other hand, in the goal item [S

′

→ SS•, φ] the
dot at the end of the item production means that SS has been analysed and that
on reaching this position the semantics should be exactly the input semantics.

Both inference rules, prediction and completion, have certain preconditions.
The semantic preconditions regarding the guidance of the input semantics rep-
resent the semantic coverage put forward in [Kay, 1996]. For the case of the
prediction inference rule it is required that not only the non-terminals match
but also that there exists σ = mgu(di , d

′

) between the features structures as-
sociated to the non-terminal symbols. Moreover, a restriction on the semantic
coverage of the items, imposes that the semantic coverage of the antecedent
item does not overlap with the semantic coverage of the consequent item. In
this way, we restrict predictions to those items that when becoming passive
would be successfully applied by future applications of the completion inference
rule. Specifically, in our grammar there might be many trees for each lexical
item augmented and sometimes most of them potentially predictable in the pre-
diction step. By checking for the semantic coverage we would rule out in advance
at the prediction step those trees corresponding to lexical items that were al-
ready considered, thus, introducing less items in the parsing process. As for the
completion inference rule, also known as fundamental rule, the first restriction
requires that there exists a most general unifier among the feature structures
present in the passive and active items. Further, the two semantic constraints
lay down the criteria on item combination based on the semantic coverage. One
of them establishes that the semantic coverage of the two items being combined
should not overlap and the other that the semantics of the resulting item should
include the semantics of the two items being combined.

Inference rules are applied repeatedly starting from the axioms, producing
new facts (active or passive items), and working the way towards the goal item.
Specifically, this processing is carried out by the chart parsing framework. When
talking about this items or facts within the chart parsing implementation we
would refer to them as edges. And as the items that we store in the chart are
complete and incomplete ones, that is active and inactive items, the type of
chart parser amounts to an active chart parser. Active edges are referred to as
dotted rules.

4.1.2 Mechanisms included in the parser

As mentioned above, there are several desired parsing techniques that are em-
bedded in the parsing approach we propose, namely chart parsing, Earley al-
gorithm and deductive parsing. Additionnally, several other mechanisms are
introduced which are specific to the problem at hand namely surface realisation
from a flat semantics. We now discuss each of these points in more detail.

Tabulation of intermediate results. Tabulation techniques are motivated
by considering problems which display a high degree of redundant computations

30 CHAPTER 4. GENERATION OF THE PARSE FOREST

such as in particular, Natural Language (NL) parsing. One major cause for re-
dundancy in Natural Language parsing lies in the inherent ambiguity of natural
language and thereby of its grammar. Additionally, in our case, because the
grammar used is a wide-coverage lexicalized grammar, lexical ambiguity (the
number of grammatical units associated with each word or lexical semantics)
is very high. Indeed, for one lexical item there might be several family trees
with several trees. Furthermore, each of these trees might give place to different
derivations where each of these derivations may have sub-derivations in com-
mon. By using tabulation, such intermediate or partial results can be “stored”
for future use thus avoiding their re-computation. One such approach for tab-
ulation of intermediate results is chart parsing.

Sharing of intermediate results and computing derivations. Tabula-
tion does not imply sharing, just storing. It is indeed possible to store interme-
diate results but to copy them whenever they need to be combined with several
distinct structures. To avoid copying, subtree sharing can be implemented by
means of pointers. This reduces the cost of storing items but adds a load in the
post-processing step when recovering parse trees.

Chart parsing facilitates item sharing in that parse trees can be reconstructed
out of chart items by some off-line technique (e.g. by following the trail of string
position indices). Alternatively, the construction of the derivation information
can be generated in parallel with the recognition process. Our parsing approach
requires the construction of derivations. For this, the items would include an-
other component whose value is a derivation tree, where nodes are labelled by
the TAG tree names (i.e. each production of the grammar that in fact also has
the tree name information) and the list of ordered daughter derivation trees,
one for each non-terminal of the right-hand side of the item before the dot.

This may seem to make the storage of items rather pointless as items with
different derivations will be regarded as different in the chart. The point thought
is that for our problem, the heavy re-use of items comes from combining several
times some intermediate structure (e.g. a given S intermediate structure) with
all possible trees in all possible families. Thus, we are still taking advantage for
this case and these intermediate results are not re-computed nor copied when
deriving new items. To eliminate these item differentiations, introduced by
keeping the derivation information as another component in the item represen-
tation, we should (i) write down the derivation information while the derivation
process is being performed and (ii) implement a post-processing approach to
reconstruct the derivations as suggested by [Shieber, 1988].

Agenda based control. As has been said (Section 4.1.1), chart parsing is
a mechanism for applying the inference rules on items and provides a chart
data structure for storing them. On applying the inference rules new items are
generated. This items are not directly placed into the chart but stored in an
auxiliary storage structure called agenda. Indeed, this agenda contains the items
to be analysed. The general schema for chart parsing algorithms [Shieber, 1988]
is the following:

• Move an item from the agenda into the chart.

• Apply inference rules and add the newly produced items into the agenda
for later processing.

4.1. A TABULAR EARLEY-STYLE RTG PARSER 31

• If there are no more items in the agenda then stop, otherwise process the
following item.

Note that the item taken from the agenda would be actually added into the
chart if it is not already in it. As the RTG rules are non-ground an adequate
existence checking requires subsumption checking, as we will discuss below.

The use of an agenda allows the customization of the search strategy. Specif-
ically, implementing the agenda as a stack would provide a depth-first search
strategy, whereas implementing it as a queue would result in a breadth-first
search. The difference in the search strategy does not affect the results pro-
duced by the selected tree traversal.

In our implementation we add one more checking for redundancy in the
agenda. That is, we prevent new derived items from being added more than
once in the agenda. By checking this early, we avoid having to keep track of
such redundant items.

Indexing. In string parsing, chart items standardly contain two indices, point-
ing at the start and end positions of the recognised span over the input string.
These positions help not only in ensuring correctness but also in improving ef-
ficiency, as two edges are only considered for combination whenever they are
adjacent. In this way, the number of non-productive attempts at applying the
inference rules is reduced. In our problem, because the input to surface real-
isation is a flat semantic formula that is a set of literals, there are no string
positions to use. Instead, we use the information given by the semantic indices
in the semantic formulae as proposed in [Kay, 1996].

Based on Kay’s proposal, we suggest the following mechanism for chart in-
dexing in our problem. Each item is associated with a given semantic index.
Moreover, we distinguish between active and passive items. For passive items,
we require that the index (index) be the distinguished semantic index associ-
ated with the lexical semantics or the semantics of the head of the item. For
active items on the other hand, the index (dotted-index) is determined by the
semantic index requirement of the current active symbol on the right-hand side
of the active item, that is, the idx feature in the top or bottom feature structure
of the node. When an item becomes passive both associated items should be the
same (index and dotted-index become the equal). Note that this condition
could be also further exploited to implement an efficient access to passive items
in the chart.

Semantic filter. A semantic filter is implemented based on the standard idea
of edge coverage. In our algorithm, we use this as described in the previous sec-
tion (preconditions regarding semantics in the inference rules). To begin with,
each predicted edge is associated with the semantic formulae in the grammar
rule that gives rise to this item. Next, when edges are combined their semantics
are too. Then, the semantic filter in edge combination takes place allowing or
not those edge combinations. That is, checking if their semantic does not cover
the same lexical items. Semantic filter in edge prediction consists in permit-
ting the prediction of new edges as long as the semantic of the newly predicted
item is not subsumed by the semantic of the active one (i.e. the intersection is
empty). This means that, in advance, we only predict edges which can combine
with actives edges at least from the semantic coverage point of view.

32 CHAPTER 4. GENERATION OF THE PARSE FOREST

Unification. In the completion or prediction steps, a unification mechanism
is used, given that our grammar rules do not consist of atomic categories but
rather of tuples (B, d). More precisely, as described in Section 3.3.1, B is a non-
terminal expressing both the syntactic category and the kind of site it represents
within the original TAG grammar (e.g. V PA (i) as node of category VP being
an adjunction site, if the non-terminal is present in the right hand-side of the
RTG rule, or (ii) as an adjunction tree with root category VP, if the non-
terminal is in the left-hand side of the RTG rule). d represents the top and
bottom feature structure associated with the non-terminal symbol. Therefore,
in our algorithm we use a specific unification procedure to match the grammar
categories.

Subsumption based blocking of new edges. On adding a new edge into
the chart, it is essential to check whether it already exists in the chart or not.
This verification, in our algorithm, involves subsumption checking. The reason is
that the RTG grammar rules contain feature structures, underspecified features
values and sometimes underspecified syntactic category (as in the case of epsilon
rules), therefore, newly derived edges may differ only in terms of instantiations.
Instead of keeping every differently instantiated edge, the idea is to keep the
most general form which would be available in the chart for further utilization
in different operations. Thus, we have to check whether a more general edge
has already been stored in the chart. In short, a new edge should be added to
the chart only if no subsuming (more general) edge already exists in it.

In addition, to ensure general enough predictions we always introduce into
the agenda the most general form of a given rule. The edges in its most general
form would be later used and unified according to many different situations
when completion steps are carryied out.

4.2 Implementation

We integrate the parse forest generation module within the context of the surface
realisation algorithm presented in Section 3.1.2.

This algorithm has three major inputs: the input semantics, the grammar
and the lexicon.

In the first so-called lexical selection (or lexical look-up) step, the realiser
retrieves from the Tree Adjoining Grammar all the elementary trees whose se-
mantics subsumes part of the input semantics. These trees are TAG elementary
trees which are present as tree schemas in the input TAG but anchored into
lexicalized trees after lexical selection.

Our filtering module works over this subset of the grammar output by the
lexical selection, but mapped into RTG rules. After applying the parse forest
generation algorithm, we obtain the language generated by the grammar, i.e.
the set of TAG derivation trees. The TAG trees output by the lexical selection
but not involved in any derivation tree output by our module are the ones
that should be ruled out. In other words, we can define the output of our
RTG-filtering module as the set of trees which should be the input to the next
generation phases.

In the following sections, we present the Prolog predicates which implement

4.2. IMPLEMENTATION 33

the parse forest generation module 2. We start by explaining the data structures.
We then go on to describe the implementation of the parsing algorithm and of
its main features.

4.2.1 Main data structures

RTG grammar rules

To translate the FB-TAG we use two tools within the open source tool set
Grammar Test Suite Generator (gtsg) implemented by [Schmitz and Le Roux, 2008,
Schmitz, 2008]. One of them is tag2rtg, a translation from TAG to RTG and
the other is rtg2pl that converts the RTG into a set of Prolog files, from this
set we use the one that contains the Prolog encoding of the grammar rules. In
this section, we describe the data structures produced by this translation tools
and which will be part of the input to our parsing module.

As has been said, Feature Based RTG rules have the following form (A, d) →
a((B1 , d1), ..., (Bn , dn)) where A,B1 , .., Bn are non-terminal symbols and
d, d1 , ..., dn their associated feature structures. In the FB-TAG mapping to
RTG rules, the non-terminal symbols are obtained after node labelling function
which assigns the label as a combination of two pieces of information: the type
of tree or node and the syntactic category. Regarding the feature structures,
there are two namely top and bottom which are obtained in the way described
in 3.3.1.

Those non-terminal symbols and its feature structures are represented, by
the translation tool, as variables which are a 4-tuple (as shown in Table 4.2).
They are represented by a compound term, var/4, where the first argument
(Type) represents the type of variable. In other words, these values, namely aux

or init are derived form the type of tree (auxiliary or initial) and the type of node
(adjunction or substitution site). More specifically, as we are producing the left-
corner encoding the type lc stands for those non-terminal symbols introduced by
rules coming from auxiliary trees that adjoin in root nodes. The other argument
(Cat) represents the syntactic category of the non-terminal symbol. The last
two arguments (Bot, Top) represent both bottom and top associated features
structures.

var/4
var(Type,Cat,Bot,Top)

Type Prolog Atom. Its possible atom values are init,lc or aux).
Cat Prolog Atom. Is a syntax category.
Top,Bot Prolog Term. The top and bottom feature structures fs/n.

Table 4.2: Variables (i.e. non-terminal symbols) in the RTG grammar, var/4

One important thing to point out is related to the data structure used to rep-
resent the Top and Bot features structures. As we can notice in the description

2In the description of some predicates we present a reduced version which includes the
outstanding major parts, i.e. the core predicates. In fact, we will sometimes omit some parts
including predicates that are related to secondary computation, such as write into text files
or auxiliary calculation, which do not contribute to the algorithm explanation. Indeed, the
included parts are the central ones required to explain the design and implementation. For
a detailed description of the module and the predicates, the sources are included in one final
appendix.

34 CHAPTER 4. GENERATION OF THE PARSE FOREST

given in Table 4.2, the predicate specification fs/n suggests n as the number of
arguments of predicate fs. This is because when using the tool (from the gtsg
tool set) to translate the TAG grammar into RTG rules, it is possible to choose
which features we want to keep in the resulting translation. This possibility
facilitates us the implementation of the different levels of filtering discussed in
Section 3.3.2.

Tree grammar rules are 5-tuples represented by the term rule/5 (Table 4.3).
The first argument is a rule number assigned by the encoding tool which will not
be used by our parse forest generation module. The second argument contains
the anchoring information. It is important to note that the translation from
TAG to RTG is applied off-line and over the input TAG which contains the
tree schematas. Therefore, this information contains the name of the tree fam-
ily, the bottom feature structure of the anchor node and the semantic schema.
Finally, the RHS argument represents the left-hand side non-terminal symbol
and its associated features structures, i.e. a variable or var/4. The RHS ar-
gument contains a list of all right-hand side variables. Again, each of them is
represented as argument of another term rhs/2 generated by the translation,
its first argument is a variable number not used in our implementation and the
second argument is, in fact, the var/4 structure.

rule/5
rule(RuleNumber,Tree,Anchor,LHS,RHS)

Tree Prolog Atom. Is the name of the TAG elementary tree.
Anchor Prolog Term. Denotes the anchoring constraints anchor/3.
LHS Prolog Term. Is a variable (var/4).
RHS Prolog Term. is a list of right-hand side variables of form rhs/2,

rhs(Num,Var), where Num identifies the variable and Var
provides its details.

Table 4.3: RTG grammar rules Prolog datastructure, rule/5

The parse forest generation module will take the RTG rules anchored with
the input semantics after the lexical selection. The anchored version is loaded
under the predicate rtgRule/5. This predicate is essentially the same as rule/5

it just differs in the Anchor argument. Specifically, as the rules are anchored
they keep the instantiated semantic formula, in contrast to the semantic schema
associated with the rule schema, and omits the anchor’s bottom feature struc-
ture.

Chart and agenda

The chart is represented as a Prolog knowledgebase under the term edge/3

(Table 4.4). This predicate just represents the items as introduced in Section
4.1.1, that is, consisting of two components the dotted rule DottedRule and
the semantic coverage (Semantics) plus a third argument for maintaining the
current derivation tree (DerivationTree). In turn, the dotted rule is represented
by the compound term dottedRule/3. The arguments in this predicate are the
left-hand side of the RTG rule (LHS), the already covered part of the input
semantics (CompletedTree) and the rest of the production that remains to be
analysed. Graphically, that is,

LHS → CompletedT ree • UnseeingT ree

4.2. IMPLEMENTATION 35

edge/5
edge(?Index, ?DottedIndex, ?DottedRule, ?Semantics, ?DerivationTree)
DottedRule= dottedRule(LHS,CompletedTree,UnseeingTree).

Index Prolog Atom. Is the distinguished semantic
indice associated to the tree’s lexical semantics.

DottedIndex Prolog Term. Is the distinguished
index associated to the active element in the edge.

LHS Prolog Term. Is a variable (var/4).
CompletedTree and UnseeingTree Prolog List of terms.

Lists of variables(var/4).
Semantics Prolog List of terms. Represents the current

semantic of the DottedRule, from the part of the
input semantics analysed until the dot.

DerivationTree Prolog Term. Contains the set of RTG

rules or trees used in the derivation of the current
edge represented by the predicate dvTree/2
where the first argument is the name of the tree, i.e.
RTG rule, and the second is a list of dvTree/2
predicates.

Table 4.4: Chart edge Prolog representation: edge/5

Similarly, the agenda is implemented as a Prolog knowledgebase but under
the predicate taskAgenda/1 (Table 4.5). The idea is that all the edges that
should be stored in the agenda will be stored as the sole data structure argument
of this predicate.

taskAgenda/1
taskAgenda(Edge)

Edge Prolog Term. The Prolog predicate edge/3 .

Table 4.5: Edges stored in the agenda are arguments of the Prolog predicate
taskAgenda/1

4.2.2 The algorithm

generateParseForest/1 is the driver predicate we use in our implementation
(Figure). It takes as input an input semantics formula. As the parse forest
generation module requires the RTGgrammar, the first step is to load the gram-
mar rules associated during the lexical selection phase with the input seman-
tics, this job is carried out by the predicate loadRTGGrammar/0. Then, both
chart and agenda structures are initialized by first removing data from previous
runs and afterwards by the addition of edges done by initializeAgenda/0 and
initializeChart. Next, the predicate processAgenda/0 is the core predicate
implementing the Early-style chart based algorithm described in Section 4.1.1.
when the processing of the agenda is finished the parsing results are extracted
from the chart successEdge/2.

loadRTGGrammar/0 loads the knowledge base composed by the lexical se-
lected and instantiated RTG rules, represented by rtgRule/5. This constitutes
the grammar with which the parsing algorithm works.

Before the application of the inference rules takes place, the agenda should

36 CHAPTER 4. GENERATION OF THE PARSE FOREST

%generateParseForest(+InputSemantics)

generateParseForest(IS):-

/*Load RTG grammar rules and create structures*/

loadRTGGrammar,

agenda:emptyAgenda,

cleanupChart,

/*Parse*/

initializeAgenda,

initializeChart,

processAgenda,

/*Extract results*/

successEdge(Complete,IS).

Figure 4.1: Parse forest generation module main predicate.

be initialized. Instead of initializing the agenda with the axiom [S
′

→ •SS , ∅]
we start one step forward. Specifically, we initialize the agenda with the items
[SS → •α((P 1 , d1), ..., (P n , dn)), ψ] where ψ is the semantic formula associated
to the RTG rule stemming from an initial tree. In Figure 4.2 we give the defi-
nition for the predicate initializeAgenda/0 which carries out this initialization
step. It goes through the grammar selects the rules with the axiom in the left-
hand side and builds the edge which further stores in the agenda by means of
storeInAgenda/1 which we will explain hereafter.

%initializeAgenda

initializeAgenda:-

rtgRule(Number,Tree,Anchor,var(lc,s,Bot,Top),RHS),

Anchor =.. [anchor,_,Semantics],

getDistinguishedIndex(Semantics,Index),

DottedRule =.. [dottedRule,var(lc,s,Bot,Top),[],RHS],

agenda:storeInAgenda(edge(Index,DottedRule,Semantics,dvTree(Tree,[]))),

fail.

initializeAgenda:-true.

Figure 4.2: Initialization of the agenda: adding the edges corresponding to the
grammar axiom.

The translation from TAG trees to RTG rules encompasses two grammar
rules which are called by [Schmitz and Le Roux, 2008] epsilon rules. The epsilon
rule εA with ranking 0 is mean to be used in adjunction nodes and meaning that
there would be no adjunction applied. In the prolog RTG rules knowledge base
it will be represented as the most general case. In addition, as a chart edge this
rule is a passive edge, which we also want to keep in the chart in the most general
form. As we observed that it will be often used in completion against active
edges, instead of letting the prediction step to add it, we directly incorporate
it into the chart. This is done by calling the predicate initializeChart/0 that
initializes the chart. The other epsilon rule εS with rank 1, which is mean to be
used in the left-corner transformation for inverting the order of the derivations,
is not explicitely translated as a chart edge. In contrast, it is implicitly applied
by the predicate that verifies whether two variables var/4 unify. This predicate
is taken from the gtsg tool set implementation [Schmitz, 2008] where is used
for matching the grammar variables. The predicate varmatch/2 is shown in

4.2. IMPLEMENTATION 37

Figure 4.3 and works as follows. In first place, we should consider that the
tool for building the TAG to left-corner RTG mapping would generate the
left-hand side of rules mapped from TAG initial trees and adjunction trees
which adjoin in root nodes, as a var/4 structure with the type lc and the
corresponding category. On the other hand, the tree nodes which constitute a
substitution site are translated also using the same structure but with type init.
Then, the second clause of the predicate varmatch/2 implements the εS rule
{XS [top : t] → εS (X [top : t; bot : t])|XS ∈ NS} under the translation formalism
in [Schmitz and Le Roux, 2008]. The first clause is meant for checking other
cases. We will see later that this predicate is used by the deduction rules wen
implementing the preconditions as described in Section 4.1.1.

varmatch(Var,Var) :- !.

varmatch(var(init,Cat,_,T),var(lc,Cat,T,T)) :- !.

Figure 4.3: Comparing RTG non-terminal symbols and their feature structures.

The agenda is manipulated by a set of operations defined over the data
structure. In Figure 4.4 we show the Prolog predicates that implement this
operations. The predicate storeInAgenda/1, which asserts the edge into the
agenda, as its first action carries out the redundancy check as explained in
Section 4.1.2. As the assertions are made with Prolog built-in predicate asserta

the agenda is implemented as a stack.

% storeInAgenda(+Item). Push

storeInAgenda(Item):-

((taskAgenda(Item)) -> fail ; asserta(taskAgenda(Item))).

% retrieveFromAgenda(-Item). Pop

retrieveFromAgenda(Item):- retract(taskAgenda(Item)).

%isEmptyAgenda.

isEmptyAgenda:-!, \+(taskAgenda(_)).

%topAgenda(+Item)

topAgenda(Item):- taskAgenda(Item),!.

%emptyAgenda

emptyAgenda:- retractall(taskAgenda(_)).

Figure 4.4: Agenda manipulation operations.

So far we have presented predicate’s implementations that contribute to the
working of the parse forest generation module. Hereafter, we describe the major
predicates that implement the Earley chart based algorithm discussed in Section
4.1.1.

The agenda based control of chart parsing is defined by the predicate pro-

cessAgenda/0 shown in Figure 4.5. As described before, it takes one edge from
the agenda (retrieveFromAgenda/1), process the edge by adding it into the
chart and applying the inference rules (enterEdge/1), and process the following
edge. These steps are repeated until there are no more edges in the agenda.

The predicate enterEdge/1 (Figure 4.6) determines whether and Edge should
be processed or not based on the subsumption check mechanism. This verifica-
tion is based on Prolog ’s unification mechanism and implements the following

38 CHAPTER 4. GENERATION OF THE PARSE FOREST

%processAgenda.

processAgenda:-

retrieveFromAgenda(Edge),

enterEdge(Edge),

processAgenda.

processAgenda:- true.

Figure 4.5: Checking before adding an item into the chart with subsumption
check.

criteria. Assuming that the edges already in the chart are the most general ones,
we said that there is already an edge in the chart that subsumes the current
Edge if no variable instantiation is required in this coming Edge.

enterEdge(Edge):-

term_variables(Edge, SVars),

Edge,

term_variables(SVars, SVars1),

SVars == SVars1, !, fail.

enterEdge(Edge):-

addToChart(Edge),

processEdge(Edge).

Figure 4.6: Checking before adding an item into the chart with subsumption
check.

In the first clause of enterEdge/1, the subsumption check is carried out. If
Edge is already in the chart, then the clause fails without trying the second
clause because of the “!” operator. Subsequently, the next edge in the agenda
is evaluated. If the Edge is not already in the chart, the second clause of en-

terEdge/1 is evaluated. What this second clause does is to call addToChart/1

and processEdge/1. The first one, addToChart/1, asserts the Edge that has
been taken from the agenda into the chart knowledge base.

The second predicate, processEdge/1 applies the inference rules. In Figure
4.7, we give the definition for this predicate. Its implementation is based on
[Blackburn and Striegnitz, 2002] and varies in that it applies prediction only
if no completion was carried out. The predicate is defined by two clauses,
one of them considers the case when the Edge is a passive edge, the other
when it is an active edge. This distinction derives from the inspection of the
dot position in the edge. More precisely, this is done by looking at the third
argument of the dottedRule/3 structure. As we have seen before, this argu-
ment represents the part of the derivation tree that remains to be analysed (i.e.
LHS → CompletedT ree • UnseeingT ree where UnseeingT ree corresponds to
the third argument of the data structure). If the value is the empty list, then,
this means that the entire right-hand side has been recognized and that the edge
is passive, otherwise, the edge is active.

When Edge is a passive edge, the predicate applyFundamentalRulePas-

sive/1 is called. This predicate, as defined in Figure 4.8, goes through the chart
by means of a fail driven loop. It looks for active edges whose active variable (i.e.
the non-terminal/feature structures tuple after the dot) unifies with the head of
the passive edge. Here, the preconditions described for the completion inference
rule described in Section 4.1.1, σ = mgu(di , d

′

), ϕ ∩ ψ = ∅, are implemented

4.2. IMPLEMENTATION 39

%We have a passive arc -> only step completion applies.

processEdge(Edge):-

%checks whether is passive

Edge = edge(_,dottedRule(_,_,[]),_,_),

applyFundamentalRulePassive(Edge).

%We have an active arc -> step completion and prediction applies.

processEdge(Edge):-

%checks whether is active

Edge = edge(_,dottedRule(_,_,[NextNonterminal|_]),Sem,Tree),

applyFundamentalRuleActive(Edge,Applied),

%Only predict if it was not possible to make any completion.

(Applied == 0 -> predictNewEdges(NextNonterminal,Sem); true).

Figure 4.7: Application of the inference rules, processEdge/1 predicate’s defini-
tion.

by calling to the predicate varmatch/2 and the Prolog built-in predicate inter-

section/3. If the precondition are applied successfully, that is both predicates
succeed, then a new edge is produced and stored in the agenda. On constructing
the new edge, the dot is moved one position forwards, the semantic coverage
of the edge is augmented with the semantics of the combined passive edge (i.e.
precondition in completion inference rule ϕ∪ψ = φ), and in the derivation tree
the rule applied is added. The incorporation of the new edge in the agenda is
done by calling the predicate storeInAgenda/1.

applyFundamentalRulePassive(edge(IndexPas,dottedRule(LHSPassive,CompletedTree,[]),

SemanticsPas,TreePas)):-

edge(IndexActive,dottedRule(LHSActive,CompletedTreeActive,

[rhs(_,ActiveSymbol)|UnseeingTree]),SemanticsAct,TreeAct),

once(varmatch(ActiveSymbol,LHSPassive)),

once(intersection(SemanticsPas,SemanticsAct,[])),

once(flatten([CompletedTreeActive|ActiveSymbol],NewCompletedTree)),

once(flatten([SemanticsPas|SemanticsAct],NewSemantics)),

TreePas = dvTree(Tname,_),

(Tname == epsilon -> NewTree = TreeAct ;

TreeAct = dvTree(TreeName,Descendants),

append(Descendants,[TreePas],NewDescendants),

NewTree = dvTree(TreeName,NewDescendants)

),

once(storeInAgenda(edge(IndexActive,dottedRule(LHSActive,NewCompletedTree,

UnseeingTree), NewSemantics,NewTree))),

fail.

applyFundamentalRulePassive(_):-true.

Figure 4.8: Completion inference rule for passive edges, predicate’s definition
applyFundamentalRulePassive/1.

When Edge is an active edge, the second clause of processEdge/1 is applied.
First, it applies the completion inference rule calling predicate applyFunda-

mentalRuleActive/2, then, the prediction inference rule calling predicate pre-

dictNewEdges/1. The predicate regarding the application of the completion
inference rule for active edges, works similarly to the one described previously
for passive completion. The main difference is that this time an active edge is

40 CHAPTER 4. GENERATION OF THE PARSE FOREST

taken as input. Therefore, to applied the completion rule the predicate goes
through the chart looking for passive edges. Again, for a passive edge to be
combined the inference rule preconditions are verified. As we can see, the infer-
ence rule preconditions are applied and the new edge is constructed and stored
into the agenda in the same way. A second difference is that the predicate out-
puts a kind of flag that indicates the number of successful combinations. The
definition of this predicate 3 is shown in Figure 4.9.

applyFundamentalRuleActive(edge(IndexAct,dottedRule(LHSActive,CompletedTree,

[rhs(N,ActiveSymbol)|UnseeingTree]),SemanticsAct,TreeAct),Applied):-

Counter = counter(0),

(edge(IndexPas,dottedRule(LHSPassive,CompletedTreePassive,[]),

SemanticsPas,TreePas),

once(varmatch(ActiveSymbol,LHSPassive)),

once(intersection(SemanticsPas,SemanticsAct,[])),

once(flatten([CompletedTree|ActiveSymbol],NewCompletedTree)),

once(flatten([SemanticsPas|SemanticsAct],NewSemantics)),

TreePas = dvTree(Tname,_),

(Tname == epsilon -> NewTree = TreeAct ;

TreeAct = dvTree(TreeName,Descendants),

append(Descendants,[TreePas],NewDescendants),

NewTree = dvTree(TreeName,NewDescendants)

),

once(storeInAgenda(edge(IndexAct,dottedRule(LHSActive,NewCompletedTree,

UnseeingTree), NewSemantics,NewTree))),

TreePas = dvTree(NamePas,_),

(NamePas == [epsilon] -> true ;

arg(1, Counter, N0),

Next is N0 + 1,

nb_setarg(1, Counter, Next)

),

fail

;

arg(1, Counter, Applied)

).

Figure 4.9: Completion inference rule for active edges, predicate’s definition
applyFundamentalRuleActive/2.

In both cases, either active or passive completion application, active and
passive edges are distinguished by the third argument of the data structure
dottedRule/3.

The second predicate called by processEdge/1 is predictNewEdges/2, shown
in Figure 4.10. This predicate takes two different arguments as input in order
to make the predictions. The first one corresponds to the symbol after the dot
in the current active edge, that is the variable structure var/4, and the semantic
covered by the current edge. To predict new edges, it goes through the grammar

3There is a second clause in the definition of this predicate. This clause accounts for some
non-terminal/feature structures present in the right-hand side of the RTG rules. Specifically,
they are mapped from nodes in the TAG trees which account for a lemmanchor. Therefore,
we give them a special treatment that is not part of the algorithm from the inference rule
application point of view.

4.2. IMPLEMENTATION 41

looking for a RTG rule whose head (or left-hand side) unifies with the current
active symbol and whose semantics do not overlap with the semantic coverage
of the current edge. In other words, applies the preconditions of the prediction
inference rule mentioned in Section 4.1.1. Again, for doing this the predicate
calls varmatch/2 and Prolog ’s intersection/3. Finally, the successfully predicted
edges are added into the agenda by calling storeInAgenda/1. One important
thing to notice, is that those rules which have the terminal symbol in the right-
hand side with ranking 0 are incorporated into the process as passive edges
whenever they are predicted.

predictNewEdges(rhs(_,NonTerminalSymbol),Sem):-

rtgRule(Number,Tree,Anchor,Var,RHS),

%epsilon edges should not be introduced in any turn as

the are already in the chart in its more general form.

\+(Tree == epsilon),

\+(\+ once(varmatch(NonTerminalSymbol,Var))),

Anchor =.. [anchor,_,Semantics],

getDistinguishedIndex(Semantics,Index),

DottedRule =.. [dottedRule,Var,[],RHS],

%Predict only those edges whose semantic coverage does not overlap

with the current active edge that need to be completed.

once(intersection(Semantics,Sem,[])),

%Add the edge into the agenda.

once(agenda:storeInAgenda(edge(Index,DottedRule,Semantics,dvTree(Tree,[])))),

fail.

predictNewEdges(_,_):-true.

Figure 4.10: Prediction inference rule, predicate’s definition predict-
NewEdges/2.

42 CHAPTER 4. GENERATION OF THE PARSE FOREST

Chapter 5

Results and evaluation

The RTGencoding of the grammar used for filtering encompasses almost all the
information present in the grammar used by the surface realisation algorithm.
Depending on how much of this information is included in RTG-filtering, differ-
ent levels of filtering can be tested. In this chapter, we present an evaluation of
the RTG-filtering introduced in Section 3.3.2 and implemented as described in
the previous chapter. We show how this approach permits reducing the initial
search space. Furthermore, we compare this approach with the polarity filtering
previously proposed in [Gardent and Kow, 2005].

The structure of the chapter is as follows. We start (Section 5.1) by intro-
ducing the methodology used for the evaluation. We discuss the grammar being
tested, the type of inputs we focus on and the evaluation metrics involved. In
5.2, we present the results obtained systematically comparing the RTG-filtering
with the polarity filtering approach. Section 5.2 also identifies some current lim-
itations and possibilities for further improvement.

5.1 Methodology

Grammar

As mentioned above, the TAG-based surface realiser takes as input a flat se-
mantic formula, a grammar and lexicon. The grammar used to test our filtering
approach is a wide-coverage FB-LTAGdeveloped in Nancy. Two such gram-
mars are in fact currently available, one for French [Gardent, 2008] and one
for English. However the grammar for English is still in its early development
stages and has not been thoroughly tested. On the other hand, the grammar
for French has already been used for several medium scale experiment. More-
over it comes with a test suite of semantic input derived from the “Test Suites
for Natural language Processing” (TSNLP) which is not available for English.
For these reasons, we decided to base our RTG-filtering experiments on the
grammar for French (called SemFraG).

Test cases

The test suite consists of a set of sentences encompassing various language phe-
nomena. Each sentence is associated with the flat semantic formulae assigned

43

44 CHAPTER 5. RESULTS AND EVALUATION

by the grammar to this sentence.

From this test suite, we selected some specific cases based on features that
are relevant for evaluating the impact of our RTG-filtering method. Those
features include the number of finite verbs present in the sentence verbalising
the input semantics and similarly, the presence or not of adjectives (because
they are modelled as auxiliary trees), the valency of the verbs (to vary the
number of substitution nodes involved) and the number of relative clauses (to
simultaneously increase the length of the input formula and the number of
auxiliary trees involved).

Comparison and evaluation metrics

To evaluate our approach, we systematically compare the results obtained by the
polarity filtering method on the input selected from the test suite with those ob-
tained by the polarity filtering technique implemented in GenI [Gardent and Kow, 2005].
The GenI surface realiser (described in Section 3.1.2) is implemented in Haskell
and incorporates the polarity filtering approach1. It includes a graphical inter-
face as well as a debugger which we use to obtain the respective results. We run
both tools with the same grammar and same test cases.

We compare both approaches with respect to different test cases and different
metrics.

At a first coarser granularity level, we examine the impact of both filtering
techniques on the total number of elementary trees involved in the processing
of a given input. More precisely, we compare the number of trees output by
the parse forest generation module, i.e. those trees that were involved in a
successful derivation, with the number of trees retrieved by the lexical selection
phase. We first show the amount of filtering done by the different levels in our
RTG-filtering approach. Following what has been suggested when we introduce
the approach, we filter at a first level considering only the category, at a second
level considering the category and the semantic indices, and at last, as third
level, we filter with a selection of features (i.e. linguistic information) present in
the feature structures. Further, we also contrast these results with the number
of trees left by the polarity filtering approach.

At a finer granularity level, we examine the impact of filtering on the number
of elementary trees per input literal. In this way, we get a more precise estima-
tion of the impact of filtering on the combinatorics of the initial search space.
Since the initial search space includes all the possible combinations of the trees
per input literal (Π1≤i≤nai with ai with ai the degree of lexical ambiguity of
the i-th literal and n the number of literals in the input semantics), counting the
number of elementary trees remaining after filtering and comparing it with the
same number before filtering, permits assessing the impact of filtering on the
initial combinatorics. Again, the RTG-filtering approach is compared against
the outputs of both the lexical selection phase (no filtering) and the polarity
filtering.

Additionally, we compare the results of the two filtering strategies with re-
gard to the following features:

• the number of initial and auxiliary trees ruled out

1The GenI surface realizer is available on: http://trac.loria.fr/~geni/

5.2. ANALYSIS OF THE RESULTS 45

• the number of trees ruled out due to feature structure unification failure,
i.e. top/bottom unification failure,

• the size of the input semantics (specifically in terms of verbal lexical
items),

• root constraints

5.2 Analysis of the results

To carry out the comparisons we have chosen the following representative exam-
ples (9) from the test suite and the three different levels of filtering considered
as shown in (10).

(9) a. test case: t20v
Semantics:{a:aimer(b),a:agent(b,c),a:patient(b,d),e:jean(c),f:marie(d)}

Sentence: Jean aime Marie

(Jean loves Marie)

b. test case: t290v
Semantics:{a:demander(b),a:agent(b,c),a:recipient(b,c),a:topic(b,d),

e:venir(d),e:agent(d,f), g:paul(f),h:jean(c)}

Sentence: Jean se demande si Paul viendra

(Jean asks himself whether Paul will come.)

c. test case: t50p
Semantics: {a:avoir(b),a:agent(b,c),a:patient(b,d),e:ingénieur(c),

f:le(c),g:décision(d),a:un(d),h:intelligent(d)}

Sentence: L’ingénieur a une décision intelligente

(The ingeneer has an intelligent desicion)

d. test case: t20rs2
Semantics:{a:partir(b),a:agent(b,c),d:homme(c),e:le(c),f:aimer(g),

f:agent(g,c),f:patient(g,h),i:marie(h)}

Sentence: L’homme qui aime Marie part

(The man who loves Marie leaves)

e. test case: t20rs3
Semantics:{a:partir(b),a:agent(b,c),d:jean(c),e:dire(f),e:agent(f,g),

e:patient(f,b),h:homme(g),i:le(g),j:aimer(k),j:agent(k,g),j:patient(k,l),

m:marie(l)}

Sentence: L’homme qui aime Marie dit que Jean part

(The man who loves Marie says that Jean leaves)

f. Some examples addapted from the test suit to compare with exam-
ples from [Gardent and Kow, 2005]:

i. test case: s7a
Semantics:{a:auditionne(b),a:agent(b,c),a:patient(b,d),e:directeur(c),

f:le(c), g:consultant(d),a:un(d),h:nouveau(d)}

Sentence: Le directeur auditionne un nouveau consultant

(The director auditions a new consultant)

ii. test case: s7b
Semantics:{a:auditionne(b),a:agent(b,c),a:patient(b,d),e:directeur(c),

f:le(c),g:consultant(d),a:un(d),h:nouveau(d),i:religieux(d),p:chinois(d)}

46 CHAPTER 5. RESULTS AND EVALUATION

Sentence: Le directeur auditionne un nouveau consultant religieux

d’origin chinois

(The director auditions a new religious consultant of chinese origin)

(10) a. rtg-Level1 : syntactic category, i.e. {feature cat }.

b. rtg-Level2 : syntactic category and semantic indice, i.e. features { cat and
idx }.

c. rtg-Level3 : a selection of linguistic features { aux, aux-pass, aux-refl,

case, cest, cleft, control-gen, control-num, control-pers, cop,

ctrl-gen, ctrl-num, ctrl-pers, def, det, func, gen, idx,

invertedCliticIdx, label, lemanchor, loc, neg-adv, neg-nom,

nomPropre, num, pp-gen, pp-num, princ, refl, wh, whIdx,

zeroObjectIdx, zeroSubjectIdx }.

Impact of filtering on the number of elementary trees in the initial
search space. Table (5.1) shows the impact of filtering on the number of ele-
mentary trees present in the search space before filtering (“LS output” column)
and after filtering using either polarity filtering or the RTG-based method.
As can be seen both filtering approaches have a strong impact on this num-
ber thereby drastically reducing the size of the search space. Some additional
comments are in order here.

Test case LS output rtg-Level1 rtg-Level2 rtg-Level3 Polarity filtering

t20v 9a 94 16 16 16 16
t290v 9b 178 48 21 14 48
t20rs2 9d 109 32 28 27 35

Table 5.1: Comparing the number of elementary trees left as input to the real-
isation phase by the different approaches.

First of all, we focus on the three columns regarding the RTG-filtering ap-
proach levels. We can see that the more linguistic information the filter includes
the better are the results in term of trees ruled out. By increasing the num-
bers of features translated into the RTG grammar, the advantage is twofold.
On one hand, because of the restrictions that the feature structures apply over
the grammatical categories the number of combinations among edges decreases,
and thus, the number of edges handled by the derivation process. On the other
hand, the final successful combinations output by the derivation process is more
precise, this means they are close to the set that the realisation phase might
generate.

Regarding the results obtained by the two filtering approaches, there are
some interesting differences. In the first place, we notice that for the rtg-Level1
and the polarity filtering columns, the results are almost the same. Indeed, as
we argue in Section 3.3.2, both consider only the syntactic categories.

Next, we look at the results obtained for each different test case (i.e. rows
in the table). We can observe that for the first example (9a) all the levels of
filtering have equal results to polarity filtering. From the experimentation we
have carried out, cases such as the first one, show almost the same results.
The reason is that these cases are quite simple cases, comprising only one tree
for each proper noun and the set of trees for the tree families associated to

5.2. ANALYSIS OF THE RESULTS 47

the main verb. For the other two cases (9b,9d) however, the filtering impact
increases together with the different levels of RTG-filtering. Specifically, rtg-
Level3 compares favourably to polarity filtering in both cases. On one hand,
the second test case (9b) increases the difficulty by including two verbs from
which one is di-transitive. Now, the combinations between the two sets of trees
is evaluated. The difference in the results obtained for this case is due to the
linguistic information included in rtg-Level3 which is not present in polarity
filtering. For instance, Figure (5.1) shows two edges extracted from the chart,
the active edge associated to the verb demander fails to unify its top/bottom
features structures with the passive edge for Jean viendra because of the feature
wh. In polarity filtering, as the charges in terms of categories of these trees
are balanced the trees are not filtered out. The third case (9d), on the other
hand, adds a relative clause and contains two verbs. The difference in the result
stems from the filtering of some auxiliary trees done by rtg-Level3 which are
not ruled out by polarity filtering. During the derivation process done by RTG-
filtering, the rules mapped from these auxiliary trees are even never predicted.
In contrast, as the polarities of auxiliary trees are neutralized (the foot and root
node of such trees being of the same category, they cancel out each other in
terms of resources and requirement i.e., polarity), they survive the filtering and
are not filtered out.

passive edge:

edge(d, dottedRule(var(lc, s, fs(..., idx:d, _, label:e, ..., wh:-, ...), _),

[], []), [g:literalSchema(paul, [f]), e:literalSchema(venir, [d]),

e:literalSchema(agent, [d, f])],

dvTree(Tn0V-1277d, [dvTree(Tpropername-6448f, [])]))

active edge:

edge(b, dottedRule(var(lc, s, fs(..., idx:b, ..., wh:-, ...), _),[],[rhs(26,

var(init,s,_,fs(..., princ:-, _, wh:+, zeroObjectIdx:d, _, zeroSubjectIdx:c)))]),

[h:literalSchema(jean, [c]), a:literalSchema(demander, [b]), a:literalSchema

(agent,[b,c]), a:literalSchema(topic,[b,d]), a:literalSchema(recipient,[b,c])],

dvTree(Tn0Vs1intan2-2267b, [dvTree(Tpropername-6448c, [])]))

Figure 5.1: Completion failure, top and bottom features structures do not unify.

Impact of filtering on the number of elementary trees per literal
present in the input semantics. So far, we compared the total number
of trees left by both approaches. We now examine how those numbers divide
per lexical item to gain a clearer view of how filtering affects the combinatorics
of the initial search space (not just the size).

In Table 5.2, we give the details of two test cases. For our analysis here, we
will focus only on those lexical items whose lexical ambiguity is greater than
1. This is because we are considering the combinatorics of the trees per lexical
item. Therefore, there are 162 × 14 = 2268 possible combinations for the first
example (9b) and 94 × 8 × 10 = 7520 for the other example (9c). Looking at
the last column in the tables, we can see the effect of both polarity filtering and
RTG-filtering. We see in particular, that RTG-filtering out-performs polarity
filtering by a factor of 8 in the first case (example t290v). This could be further
improved by adding a constraint that the GenI surface realiser imposes on the
root nodes of successful derived trees namely that successful derived trees should

48 CHAPTER 5. RESULTS AND EVALUATION

describe finite (indicative or subjunctive mode), non inverted, non questioned
sentences .

Literals t290v (9b) demander(b) venir(d) Π1≤i≤nai

Lexical selection output 162 14 2268
Polarity filtering 40 6 240
RTG filtering 7 5 35

Literals t50p (9c) avoir(b) ingénieur(c) intelligent(d) Π1≤i≤nai

Lexical selection output 94 8 10 7520
Polarity filtering 18 1 2 36
RTG filtering 14 1 2 28

Table 5.2: Comparing reduction per lexical item and the effect in the combina-
torics.

Impact of filtering on the number of auxiliary trees present in the
search space. In Table 5.3, we show two examples where the difference in
the results obtained by both approaches stems from the auxiliary tree filtering.
While RTG-filtering rules out 100% of the auxiliary trees output by the lexical
selection and not involved in derivations (i.e. 28 - 6), polarity filtering filter
out only 68% and 50% of the auxiliary trees for the two cases respectively. The
reason why polarity filtering filters out auxiliary trees at all is that some of these
are hybrid trees involving both a foot node and a substitution site. Contrary to
“pure” auxiliary trees i.e. trees not containing a substitution nodes, such trees
can be ruled out by polarity filtering. Hence the numbers.

LS Output In derivation RTG-filtering Polarity filtering

t20rs2 9d 28 6 22 15
t20rs3 9e 52 4 48 24

Table 5.3: Comparing filtering by auxiliary trees.
The first two columns indicate the number of auxiliary trees present in the initial
search space and in the successfully generated sentences. The last two columns
indicate the number of auxiliary trees filtered by the two filtering methods.

Impact of filtering on the number of initial trees present in the search
space. Table 5.4 shows two examples with the difference in the results ob-
tained by both approaches. But in this case, the difference stems from initial
tree filtering. RTG-filtering excludes the 100% of initial trees output by the
lexical selection and not involved in derivations (i.e. 148 - 13) whereas polarity
filtering filter out 68% and 54% of the initial trees for the two cases respectively.

Impact of filtering on the number of tree sets to be considered for
combination. Further, we examine the impact of filtering on the number of
tree sets that will be considered for combination. In polarity filtering, such tree

5.2. ANALYSIS OF THE RESULTS 49

LS Output In derivation RTG-filtering Polarity filtering

t290v 9b 148 13 134 101
t20rs3 9e 143 5 138 80

Table 5.4: Comparing filtering by initial trees.
The first two columns indicate the number of auxiliary trees present in the initial
search space and in the successfully generated sentences. The last two columns
indicate the number of auxiliary trees filtered by the two filtering methods.

sets are defined by the polarity automaton : it is the set of elementary trees that
label the transitions of a given path in the automaton. In the RTG-filtering
approach, tree sets are defined by the derivation trees produced by the filtering.
For the comparisons in Table 5.5, the grammar used for testing polarity filtering
[Gardent and Kow, 2005] was not exactly the same as the version we are using
for our testing. Therefore, we included their lexical selection results, that is,
the lexical item combinations actually explored according to their grammar.
Similarly, as our example for 9f-ii contains only 3 adjectives, we suppose the
existence of another adjective to obtain the fourth adjective used in their second
example. As adjectives will have the same set of associated trees, and adjectives
in our grammar have 10 trees, we multiply the result by 10 for the fourth
adjective. Accordingly, we estimate the reduction in 14 × 24 = 224 as we
observed that for two and three modifiers the number of trees left equals 2.

Test case LS output rtg-Level3 LS output∗ Polarity filtering∗

s7a 9f-i 850 28 856 55
s7b 9f-ii 9350 48 n/a n/a
s7b 9f-ii (3Adj) 93500 112 n/a n/a
s7b 9f-ii (4Adj) 935000 224 438272 232

Table 5.5: Comparing the number of trees left as input to the realisation phase
by the different approaches.

As can be seen the RTG-filtering out performs polarity filtering by decreas-
ing the number of tree sets to be considered for combination more markedly (28
tree sets left against 55 in the first case and 224 against 232 in the second).

Impact of filtering on the number of intermediate structures built.
Further, we analyse the effect of including more linguistic information in the
RTG grammar regarding the parse process and the corresponding chart and
agenda sizes. In Table 5.6, we can see that in rtg-Level1 the fact that no fea-
ture structure information is included results in over generation. In particular,
because of not including the semantic indices associated to the top/bottom fea-
tures structures of the nodes which guide the tree combination. The size of
the number of edges produced is much greater than for levels 2 and 3. Even
though many different alternations of the possible combination are produced,
the resulting set of succesfully combined trees correctly corresponds to the po-
larities over categories criteria. In the second level, rtg-Level2, we include the
idx (i.e. semantic indice feature). In addition to get some trees filtered out, the

50 CHAPTER 5. RESULTS AND EVALUATION

size of both chart and agenda decreases. Again, both filtering percentage and
chart agenda size decrease after the addition of a bigger set of features, that is,
rtg-Level3.

More specifically, we observe that the precondition in the prediction rule is
most effective when more that one verb is present in the semantics. Thus after
adding this precondition, the agenda number of edges processed through the
agenda was reduced from 56570 for the test case 9b to 4193.

Test case
rtg-Level1 rtg-Level2 rtg-Level3
chart agenda chart agenda chart agenda

t50p 9c 34914 35762 3388 3634 1576 1707
t20rs2 9d 9253 9457 2895 2959 1638 1682

Table 5.6: Comparing the chart and agenda size through the different levels of
RTG-filtering.

One important thing to note is that neither polarity filtering nor RTG-
filtering will generate false positives results. That is, they do not filter out trees
because of not finding a way to sucessfully combine them when they actually
could have been used into a complete derivation.

Chapter 6

Conclusion

6.1 Summary

The leading motive of the work in this thesis was surface realisation optimisa-
tion. In particular, optimisation within the context of reversible realisers based
on wide-coverage lexicalized grammar formalism and generation from flat se-
mantics. Our work addressess the lexical ambiguity problem and its negative
influence in the initial search space for a TAG-based surface realiser. We de-
scribe a global filtering approach based on [Schmitz and Le Roux, 2008]’s Fea-
ture Based RTG formalism which encodes TAG derivation trees as the language
of the grammar. To implement this filtering approach, we develop a parse forest
generation module. From the set of derivation trees obtained, we can identify
which are the elementary structures which lead to successful derivations and
which ones fail to be combined in any possible derivation. Then, those use-
less structures are ruled out reducing the initial search space for the realisation
phase, that is we prevent the realisation from dealing with spurious structures.

The algorithm that generates the parse forest is based on well known parsing
techniques: chart parsing, Earley algorithm and deductive parsing, but adapted
for generation in the way suggested by Kay. As a result, the algorithm in-
corporates some mechanims inherent to these approaches which are crucial in
our specific problem namely, tabulation of intermediate results, agenda-based
control, indexing, and semantic filter. Furthermore, we incorporated additional
mechanisms that were required by the specific type of grammar used namely,
unification for non-atomic grammar categories and subsumption based blocking
of new edges.

We have implemented in Prolog the parse forest generation module in the
context of the TAG-based surface realiser presented in Section 3.1.2. Both
the input grammar formalism and the Feature Based RTG formalism used
for filtering (Sections 3.1.1, 3.3.1) make heavy use of both feature structures
and unification variables shared across the semantic representations and the
feature structures labelling the nodes of the syntactic trees. In this context,
an advantage of a Prolog implementation is that it can take full advantage of
Prolog ’s built in unication mechanism.

Once the implementation was completed, we evaluated the impact of the fil-
tering approach by analysing different cases taken from the test suite developed

51

52 CHAPTER 6. CONCLUSION

for the surface realiser. As was expected, we found that filtering with different
levels of linguistic information yield different results whereby the more linguis-
tic information is included in the filter, the more precise the reduction of the
spurious trees and the more efficient the parse generation process.

Next, we compared the RTG-filtering approach with the polarity filtering
proposed for the same grammar and surface realiser by [Gardent and Kow, 2005].
For the simpler cases, the amount of filtering was found to be the same for both
strategies. For more complex cases (e.g., longer input formulae, cases involving
adjunctions) however, RTG-filtering consistently out performs polarity filter-
ing. This is explained by the following facts. First, while polarity filtering fails
to filter auxiliary trees, our approach applies to initial as well as to auxiliary
trees. Second, while our approach takes into account the syntactic categories,
semantic information and feature structures present in the grammar, polarity
filtering only considers polarity keys based on syntactic categories.

As explained in Chapter 3, the exponential complexity of surface realisation
can be traced back in particular, to the semantics of intersective modifiers,
lexical ambiguity and the lack of ordering in the input. Although the work
presented here focuses on reducing lexical ambiguity, a side effect of the RTG

filtering approach is that by not considering the information about the derivation
trees in the edges it also helps to reduce the number of intermediate structures
licensed by intersective modifiers as tabulation permits avoiding recomputing
two intermediate structures with identical semantics (e.g., small black cat and
black small cat).

6.2 Future work

Future work could investigate the following two main issues : (i) devising ad-
ditional mechanisms to make the parse forest generation as efficient as possible
from the design and implementation points of view; (ii) exploring strategies
about how to integrate the RTG-filtering filtering approach with the surface
realiser algorithm in oder to achieve an efficient surface realisation.

As for the mechanisms to incorporate in our parse forest generation algo-
rithm, we are planning to analyse the benefits of:

• Reorder the variables in the left hand-side in such a way that uninstanti-
ated variables are handled as late as possible thereby reducing non deter-
minism.

• More sophisticated indexing schemes for the chart.

• Off-line production of the derivations.

• Packing.

• Intersective modifiers.

• Reduce the right-hand side of RTG rules to generate less chart items.
For instance, processing sequences of right-hand side variables which are
closed by epsilon rules because there is no other possible combination.
The information that their features structures could provide is transfered
through unification to the unrecognized part of the rule and the number
of items would amount to those points where other combinations than
epsilon ones can be performed.

6.2. FUTURE WORK 53

Regarding Prolog ’s implementation, an obvious next step would be to incor-
porate built-in clauses indexing on given arguments, based for instance on the
semantic indices used to index chart edges. Another improvment would involve
implementing a bit vector representation of the items semantic coverage instead
of working with sets of literals represented as predicates literal/2

54 CHAPTER 6. CONCLUSION

Bibliography

[Benotti, 2009] Benotti, L. (2009). Frolog: an accommodating text-adventure
game. In Proceedings of the Demonstrations Session at EACL 2009, pages
1–4, Athens, Greece. Association for Computational Linguistics.

[Blackburn and Striegnitz, 2002] Blackburn, P. and Striegnitz, K. (2002). Nat-
ural language processing techniques in prolog. http://cs.union.edu/

~striegnk/courses/nlp-with-prolog/html/index.html.

[Brew, 1992] Brew, C. (1992). Letting the cat out of the bag: generation for
shake-and-bake mt. In Proceedings of the 14th conference on Computational
linguistics, pages 610–616, Morristown, NJ, USA. Association for Computa-
tional Linguistics.

[Carroll et al., 1999] Carroll, J., Copestake, A., Flickinger, D., and Paznański,
V. (1999). An efficient chart generator for (semi-)lexicalist grammars. In
Proceedings of EWNLG ’99.

[Carroll and Oepen, 2005] Carroll, J. and Oepen, S. (2005). High efficiency
realization for a wide-coverage unification grammar.

[Comon et al., 2007] Comon, H., Dauchet, M., Gilleron, R., Loding, C., Jacque-
mard, F., Lugiez, D., Tison, S., and Tommasi, M. (2007). Tree automata tech-
niques and applications. Available on: http://www.grappa.univ-lille3.

fr/tata. release October, 12th 2007.

[Copestake et al., 1999] Copestake, A., Flickinger, D., Sag, I. A., and Pollard,
C. (1999). Minimal recursion semantics: an introduction. Draft.

[Earley, 1970] Earley, J. (1970). An efficient context-free parsing algorithm.
Commun. ACM, 13(2):94–102.

[Gardent, 2008] Gardent, C. (2008). Integrating a unification-based semantics
in a large scale lexicalised tree adjoininig grammar for french. In COLING’08,
Manchester.

[Gardent and Kallmeyer, 2003] Gardent, C. and Kallmeyer, L. (2003). Seman-
tic construction in feature-based tag. In EACL ’03: Proceedings of the tenth
conference on European chapter of the Association for Computational Lin-
guistics, pages 123–130, Morristown, NJ, USA. Association for Computational
Linguistics.

55

56 BIBLIOGRAPHY

[Gardent and Kow, 2005] Gardent, C. and Kow, E. (2005). Generating and se-
lecting grammatical paraphrases. In Proceedings of the 10th European Work-
shop on Natural Language Generation, Aberdeen, Scotland.

[Gardent and Kow, 2006] Gardent, C. and Kow, E. (2006). Three reasons to
adopt tag-based surface realisation. In TAG06.

[Gardent and Kow, 2007a] Gardent, C. and Kow, E. (2007a). Spotting over-
generation suspects. In Proceedings of the 12th European Workshop on Nat-
ural Language Generation, Dagstuhl.

[Gardent and Kow, 2007b] Gardent, C. and Kow, E. (2007b). A symbolic ap-
proach to near-deterministic surface realisation using tree adjoining gram-
mars. In ACL07, Prague.

[Joshi and Schabes, 1997] Joshi, A. and Schabes, Y. (1997). Tree-adjoining
grammars.

[Kay, 1986] Kay, M. (1986). Algorithm schemata and data structures in syn-
tactic processing. pages 35–70.

[Kay, 1996] Kay, M. (1996). Chart generation. In Proceedings of the 34th an-
nual meeting on Association for Computational Linguistics, pages 200–204,
Morristown, NJ, USA. Association for Computational Linguistics.

[Koller and Striegnitz, 2002] Koller, A. and Striegnitz, K. (2002). Generation
as dependency parsing. In Proceedings of the 40th ACL, Philadelphia.

[Kow, 2007] Kow, E. (2007). Surface realisation: ambiguity and determinism.
PhD thesis, Université Henri Poincaré.

[Matthiessen et al., 1991] Matthiessen, C. M. I. M., Bateman, J. A., and Pat-
ten, T. (1991). Text generation and systemic-functional linguistics: Experi-
ences from english and japanese.

[Reiter and Dale, 2006] Reiter, E. and Dale, R. (2006). Building Natural Lan-
guage Generation Systems. Studies in Natural Language Processing. Cam-
bridge University Press, New York.

[Schmitz, 2008] Schmitz, S. (2008). Grammar test suite generator. Available
on: svn://scm.gforge.inria.fr/svn/paule/trunk/gtsg.

[Schmitz and Le Roux, 2008] Schmitz, S. and Le Roux, J. (2008). Feature uni-
fication in TAG derivation trees. In Gardent, C. and Sarkar, A., editors,
Proceedings of the 9th International Workshop on Tree Adjoining Grammars
and Related Formalisms (TAG+’08), pages 141–148, Tubingen, Germany.

[Shieber, 1988] Shieber, S. M. (1988). A uniform architecture for parsing and
generation. In Proceedings of the 12th conference on Computational linguis-
tics, pages 614–619, Morristown, NJ, USA. Association for Computational
Linguistics.

[Shieber et al., 1995] Shieber, S. M., Schabes, Y., and Pereira, F. C. N. (1995).
Principles and implementation of deductive parsing. J. Log. Program.,
24(1&2):3–36.

Appendix A

Surface realization input
resources

In this appendix we describe the format of the three major inputs to the realiser
persented in 3.1.2: the input semantics, the grammar and the lexicon.

The input semantics

The semantic formula input to the realiser represents the meaning to be verbal-
ized. As mentioned in Section 3.1.1, the surface realiser assumes a flat semantic
representation so that a semantic formula is a set of literals where each literal
consists of a predicate and some indices representing its arguments. More pre-
cisely, we refer to these indices as semantic parameters when the semantic index
value is missing and furthermore, they will be represented by unification vari-
ables. When unification variables are present in a literal we may refer to it as
literal schema or semantic schema. Notice here that there are no literals within
literals: the formulae are “flat’, this means non recursive.

We show for the sentence in (11) an example of a flat semantics input format:

(11) ”jean semble partir”

{partir(b), agent(b,c), jean(c), sembler(b)}

And in (11) we give an example semantic schema, a formula with variable
predicates:

(12) Semantics for intransitive verbs

{P(e), Theta(e,x))}

The grammar

As mentioned previously, the input grammar used for the evaluation is Sem-

FraG(Section 5.1). This grammar is compiled from a higher-level xmg (eXten-
sible MetaGrammar) specification (a so-called ”meta-grammar”). Briefly, the
xmg formalism permits specifying basic classes and then combining them (by in-
heritance, conjunction and disjunction) to produce SemFraG elementary trees

57

58 APPENDIX A. SURFACE REALIZATION INPUT RESOURCES

and their associated semantics [Gardent and Kallmeyer, 2003]. Then, a com-
piled TAG consists of a list of entries, each representing an unanchored tree
(tree schema) of the grammar (Figure A.1). More precisely, each entry contains
the following data:

• a unique name of the form TFamilyName-Id

• a family name determining to which tree-family it belongs,

• a trace, which corresponds to the list of the classes that have been accu-
mulated to produce this entry,

• a syntactic description, giving the structure of the tree (a tree schema for
TAG),

• a semantic description (possibly empty), expressed in flat semantics (set
of literals),

• an interface consisting of an attributes-values matrix whose features are
shared with features in the tree (used for anchoring).

S

NP↓ s VPr

〈 V 〉
Semantic schema
P(r), Theta1(r,s)

Interface
idx0=r, idx1=s, rel=P, theta1=θ1

Trace
CanonicalSubject, ActiveVerbForm

Figure A.1: tag tree entry associated to intranditive verbs (e.g. “courir”)

The lexicon

The lexicon, syntactic lexicon, associates semantic representations with lex-
ical items and trees. The lexicon associated to SemFraG contains the following
information:

*ENTRY: used to store the lexical item (i.e. lemma),

*CAT: syntactic category,

*SEM: semantic information (at this time of writing a macro call, note that these
macros are extracted automatically from the metagrammar by xmg),

*FAM: the family (that is, subcategorization frame)

*EQUATIONS: anchoring equations, of the form:
node → [top—bot.]feat = val

*COANCHORS: coanchor equations, of the form:
node → lemma / category

These equations are used to specify a lexical item that has to be added in
the tree. The format also includes two other fields which at the moment are
unused, they are: *ACC:verb acceptance (for word having several meanings
such as: parler, example: jean parle anglais ; jean parle à marie); and *EX: list
of exceptions (in tagml this is a features list having the value ”-”).

Appendix B

Scripts summary

Test suite -input test file format

For testing our lexical selection algorithm we will use use an already developed
test suite (as explained in Section 5.1). It consists of a set of sentences with
their associated semantic reprsentation. The testSuiteEntry/3 (Table B.1) fact
will represent the test suite entries within our Prolog knowledge base (gen.pl).
The facts listed below are taken from this knowledge base as example and in
correspondace with the examples used in Section 5.2.

testSuiteEntry/3
testSuiteEntry(identifier,semantics,sentence)

identifier atom.
semantics list of label:literal pairs.
label prolog term: atom.
literal prolog term: compound term, with atoms as arguments.
sentence atom.

Table B.1: Test suite knowledge base format.

testSuiteEntry(t20v,[a:aimer(b),a:agent(b,c),a:patient(b,d),e:jean(c),f:marie(d)],
’jean aime marie’).

testSuiteEntry(t290v,[a:demander(b),a:agent(b,c),a:recipient(b,c),a:topic(b,d),e:venir(d),
e:agent(d,f), g:paul(f),h:jean(c)],’jean se demande si paul viendra’).

testSuiteEntry(t50p,[a:avoir(b),a:agent(b,c),a:patient(b,d),e:ingnieur(c),f:le(c),
g:dcision(d),a:un(d), h:intelligent(d)],’l ingnieur a une dcision intelligente’).

testSuiteEntry(t20rs2,[a:partir(b),a:agent(b,c),d:homme(c),e:le(c),f:aimer(g),f:agent(g,c),

f:patient(g,h),i:marie(h)],’l homme qui aime marie part’).

testSuiteEntry(t20rs3,[a:partir(b),a:agent(b,c),d:jean(c),e:dire(f),e:agent(f,g),
e:patient(f,b),h:homme(g),i:le(g),j:aimer(k),j:agent(k,g),j:patient(k,l),m:marie(l)],
’l homme qui aime marie dit que jean part’).

testSuiteEntry(s7a,[a:auditionne(b),a:agent(b,c),a:patient(b,d),e:directeur(c),f:le(c),

g:consultant(d),a:un(d),h:nouveau(d)],’le directeur auditionne un nouveau consultant’).

testSuiteEntry(s7b,[a:auditionne(b),a:agent(b,c),a:patient(b,d),e:directeur(c),f:le(c),

g:consultant(d),a:un(d),h:nouveau(d),i:religieux(d),p:chinois(d)],’le directeur
auditionne un nouveau consultant religieux d’origin chinois’).

59

60 APPENDIX B. SCRIPTS SUMMARY

Agenda manipulation operations (agenda.pl)

:-module(’agenda’, [storeInAgenda/1,
retrieveFromAgenda/1,

isEmptyAgenda/0,
emptyAgenda/0,

topAgenda/1]).

:-use_module(’rtgFilter’,[edge/4]).

:- dynamic taskAgenda/1.

% storeInAgenda(+Item). Push

storeInAgenda(Item):-
((taskAgenda(Item)) -> fail
;

asserta(taskAgenda(Item)),
/*Dump agenda item*/

util:file(agendaHistory,_,_,Stream),
write(Stream,Item),
nl(Stream),nl(Stream)

/**/
).

% retrieveFromAgenda(-Item). Pop

retrieveFromAgenda(Item):-
retract(taskAgenda(Item)).

isEmptyAgenda:-!,
\+(taskAgenda(_)).

topAgenda(Item):-
taskAgenda(Item),!.

emptyAgenda:-
retractall(taskAgenda(_)).

Parse forest generation module (rtgFilteringWI.pl)

% Exported predicates:

:- module(rtgFilterWI,[generateParseForest/1]).

% Imported predicates:
:- use_module(’Tools/util’,[memo/1,

openFile/3,
closeFile/1,
file/4]).

:- use_module(’agenda’, [storeInAgenda/1,

retrieveFromAgenda/1,
isEmptyAgenda/0,
emptyAgenda/0,

topAgenda/1]).

:- dynamic edge/4.

/*===
generateParseForest(+InputSemantics)
Loads the rtg rules associated by the lexical selection with the input semantics,

initializes the chart and agenda data structures, starts the parsing process, and finally,
extracts the parsing results.

===*/
generateParseForest(IS):-

/*Load RTG grammar rules and create structures*/

loadRTGGrammar,
agenda:emptyAgenda,

61

cleanupChart,

util:openFile(chart,’chart.txt’,write),

util:openFile(agendaHistory,’agendaHistory.txt’,write),

/*Parse*/
initializeAgenda,

initializeChart,
processAgenda,

/*Extract results*/
util:openFile(derivationTrees,’derivationTrees.txt’,write),

util:openFile(incompleteDerivationTrees,’incompleteDerivationTrees.txt’,write),
util:file(derivationTrees,_,_,Complete),
util:file(incompleteDerivationTrees,_,_,Incomp),

util:file(chart,_,_,StreamChart),
successEdge(Complete,IS),

incompleteEdge(Incomp,IS),
util:file(agendaHistory,_,_,AgendaHistory),

util:closeFile(AgendaHistory),
util:closeFile(Complete),
util:closeFile(Incomp),

util:closeFile(StreamChart).

/*===
loadRTGGrammar
Loads the rtg rules associated by the lexical selection with the input semantics

===*/
loadRTGGrammar:-

retractall(rtgRule(_,_,_,_,_)),
/*Loads the RTG rules selected after the lexical selection phase according

to the input semantics*/
util:file(selectedTAGtreesAsRTG,FileName,Mode,Stream),
load_files(FileName, [if(changed)]),

clearFeaturesInfo,
setFeaturesInfo.

/*===
cleanup

Cleans the database of chart entries.
===*/

cleanupChart :-
retractall(edge(_,_,_,_)).

/*===
initializeChart

Cleans the database of chart entries.
===*/

initializeChart:-
DottedRule =.. [dottedRule,var(aux, _, FS, FS),[],[]],
addToChart(edge(Index,DottedRule,[],dvTree(epsilon,[]))).

/*===

initializeAgenda
Make initial agenda: i.e., an agenda that only contains those rules of the grammar whose

left non-terminal symbol is the grammar axiom S.
===*/
initializeAgenda:-

rtgRule(Number,Tree,Anchor,var(lc,s,Bot,Top),RHS),
Anchor =.. [anchor,_,Semantics],

getDistinguishedIndex(Semantics,Index),
DottedRule =.. [dottedRule,var(lc,s,Bot,Top),[],RHS],
concat(Tree,Index,IDTree),

agenda:storeInAgenda(edge(Index,DottedRule,Semantics,dvTree(IDTree,[]))),
fail.

initializeAgenda:-true.

/*===
processAgenda

Produces an empty chart: i.e., a chart that only contains those rules of the grammar
whose left is the axiom.

===*/
processAgenda:-

62 APPENDIX B. SCRIPTS SUMMARY

retrieveFromAgenda(Edge),
enterEdge(Edge),
processAgenda.

processAgenda:- true.
% aca probar en lugar tde true el predicado empty agenda para seguir la linea usando las

operaciones de agenda.

/*===
enterEdge(Edge)
Add the edge into the chart only if it does not yet exists.

===*/
enterEdge(Edge):-

term_variables(Edge, SVars),
Edge,
term_variables(SVars, SVars1),

SVars == SVars1, !, fail.

enterEdge(Edge):-
addToChart(Edge),

processEdge(Edge).

/*===

processEdge(Edge)
===*/

%We have a passive edge -> step completion applies.
processEdge(Edge):-

%checks whether is passive

Edge = edge(_,dottedRule(_,_,[]),_,_),
applyFundamentalRulePassive(Edge).

%We have an active edge -> step completion and prediction applies.

processEdge(Edge):-
%checks whether is active
Edge = edge(_,dottedRule(_,_,[NextNonterminal|_]),Sem,Tree),

applyFundamentalRuleActive(Edge,Applied),
%Only predict if it was not possible to make any completion.

(Applied == 0 ->predictNewEdges(NextNonterminal,Sem); true).

/*===

applyFundamentalRule(+arc)
Use the fundametal rule to combine this edge with edges from the chart.

Any newly edges obtained in this way should be added to the agenda.
===*/

%%% We have a passive edge; we are looking for an active one that precedes it.
applyFundamentalRulePassive(edge(IndexPas,dottedRule(LHSPassive,CompletedTree,[]),

SemanticsPas,TreePas)) :-
edge(IndexActive,dottedRule(LHSActive,CompletedTreeActive,

[rhs(_,ActiveSymbol)|UnseeingTree]),SemanticsAct,TreeAct),
once(varmatch(ActiveSymbol,LHSPassive)),
once(intersection(SemanticsPas,SemanticsAct,[])),

%The following rule should be not commented for debbuging and seen the whole
%edge information.

%once(flatten([CompletedTreeActive|ActiveSymbol],NewCompletedTree)),
NewCompletedTree=[],

once(flatten([SemanticsPas|SemanticsAct],NewSemantics)),

TreePas = dvTree(Tname,_),

(Tname == epsilon -> NewTree = TreeAct ;
TreeAct = dvTree(TreeName,Descendants),

append(Descendants,[TreePas],NewDescendants),
NewTree = dvTree(TreeName,NewDescendants)
),

once(storeInAgenda(edge(IndexActive,dottedRule(LHSActive,NewCompletedTree,UnseeingTree),

NewSemantics,NewTree))),
fail.

applyFundamentalRulePassive(_):-true.

%%% We have an active edge; we are looking for a passive one that follows it.
applyFundamentalRuleActive(edge(IndexAct,dottedRule(LHSActive,CompletedTree,

[rhs(_,ActiveSymbol)|UnseeingTree]),SemanticsAct,TreeAct),Applied) :-
ActiveSymbol =.. [var,Aux,Cat,Bot,Top],

63

%Skip lemanchor nodes! Do not use them for applaying the fundamental rule nor for
predicting new edges
\+var(Top),

isLemanchor(Top),
%The following rule should be not commented for debbuging and seen the whole edge

%information.
%once(flatten([CompletedTree|ActiveSymbol],NewCompletedTree)),

NewCompletedTree=[],
storeInAgenda(edge(IndexAct,dottedRule(LHSActive,NewCompletedTree,UnseeingTree),
SemanticsAct,TreeAct)),

Applied = 1.

/*Apply the fundamental rule when the edge is active*/
applyFundamentalRuleActive(edge(IndexAct,dottedRule(LHSActive,CompletedTree,
[rhs(N,ActiveSymbol)|UnseeingTree]),SemanticsAct,TreeAct),Applied) :-

Counter = counter(0),

(edge(IndexPas,dottedRule(LHSPassive,CompletedTreePassive,[]),SemanticsPas,TreePas),
once(varmatch(ActiveSymbol,LHSPassive)),

once(intersection(SemanticsPas,SemanticsAct,[])),
%The following rule should be not commented for debbuging and seen the whole
%edge information.

%once(flatten([CompletedTree|ActiveSymbol],NewCompletedTree)),
NewCompletedTree=[],

once(flatten([SemanticsPas|SemanticsAct],NewSemantics)),

TreePas = dvTree(Tname,_),

(Tname == epsilon -> NewTree = TreeAct ;
TreeAct = dvTree(TreeName,Descendants),

append(Descendants,[TreePas],NewDescendants),
NewTree = dvTree(TreeName,NewDescendants)

),

once(storeInAgenda(edge(IndexAct,dottedRule(LHSActive,NewCompletedTree,UnseeingTree),

NewSemantics,NewTree))),

TreePas = dvTree(NamePas,_),

(NamePas == [epsilon] -> true ;

arg(1, Counter, N0),
Next is N0 + 1,

nb_setarg(1, Counter, Next)
),

fail
;
arg(1, Counter, Applied)

).

/*===
predictNewEdges(+NonTerminalSymbol)
This predicate implements the prediction step:

2.d. Make hypotheses (i.e., active edges) about new constituents based on the arc
and the rules of the grammar.

Add these new arcs to the agenda.
===*/

predictNewEdges(rhs(_,NonTerminalSymbol),Sem):-

rtgRule(Number,Tree,Anchor,Var,RHS),

%epsilon edges should not be introduced in any turn as the are already in the chart

in its more general form.
\+(Tree == epsilon),

\+(\+ once(varmatch(NonTerminalSymbol,Var))),

% checking for semantic coverage in the way of Carroll as a kind of indexing
to reduce the number of predictions.

Anchor =.. [anchor,_,Semantics],
getDistinguishedIndex(Semantics,Index),
DottedRule =.. [dottedRule,Var,[],RHS],

%Predict only those edges whose semantic coverage does not overlap with the current

active edge that need to be completed.
once(intersection(Semantics,Sem,[])),

64 APPENDIX B. SCRIPTS SUMMARY

concat(Tree,Index,IDTree),

%Add the edge into the agenda.
once(agenda:storeInAgenda(edge(Index,DottedRule,Semantics,dvTree(IDTree,[])))),

fail.

predictNewEdges(_,_):-true.

/*===
addToChart

===*/
addToChart(Edge):-

assertz(Edge),

util:file(chart,_,_,StreamChart),
write(StreamChart,Edge),nl(StreamChart).

successEdge(Stream,InputSem):-

Counter = counter(0),
TreeSet = treeSet([]),
(

edge(Index,dottedRule(LHS,CompletedTree,[]),Semantics,Trees),
once(varmatch(LHS,var(lc,s,_,_))),

/*check whether Semantics is the input semantics*/
once(permutation(InputSem,Semantics)),

write(Stream,’% ’),write(Stream,Trees),nl(Stream),nl(Stream),

%Increment the number of trees
arg(1, Counter, N0),

Next is N0 + 1,
nb_setarg(1, Counter, Next),

%Add new trees to the set of successfully used trees.
extractTreeNames(Trees,TreeNames),

arg(1, TreeSet, S0),
union(S0,TreeNames,Set),
nb_setarg(1, TreeSet, Set),

fail
;

arg(1, Counter, Number), write(Stream,’-- Number of derivations: ’),
write(Stream,Number),nl(Stream),

arg(1, TreeSet, SuccessfulTrees), write(Stream,’-- Trees successfully used: ’),
write(Stream,SuccessfulTrees),nl(Stream),
length(SuccessfulTrees,Len), write(Stream,’-- Nr. successfully used trees: ’),

write(Stream,Len),nl(Stream)
).

incompleteEdge(Stream,InputSem):-
edge(Index,dottedRule(LHS,CompletedTree,RHS),Semantics,Tree),

(\+(RHS == []) ->
write(Stream,edge(Index,dottedRule(LHS,CompletedTree,RHS),Semantics,Tree)),

nl(Stream),nl(Stream)
;

%check if Semantics is not the input semantics
(\+ permutation(InputSem,Semantics) ->

write(Stream,edge(Index,dottedRule(LHS,CompletedTree,RHS),Semantics,Tree)),

nl(Stream),nl(Stream))
),

fail.

incompleteEdge(_,_):-true.

/*===

varmatch(+Variable,+Variable)
Verifies that the two variables match.

===*/
/*gtsg transformed grammar */
% Copyright 2008 INRIA

% contributors: Sylvain Schmitz <Sylvain.Schmitz@loria.fr>
varmatch(Var,Var) :- !.

varmatch(var(init,Cat,_,T),var(lc,Cat,T,T)) :- !.

65

/*===
getDistinguishedIndex(+SemanticFormula,-DistinguishedIndex)
Obtains the index from the distinguished semantic indice from the semantic formula

===*/
getDistinguishedIndex([],_).

getDistinguishedIndex([_:literalSchema(Pred,[IDX])|RestSemantics],IDX):-!.
getDistinguishedIndex([Literal|RestSemantics],Index):-

getDistinguishedIndex(RestSemantics,Index).

/*===

getActiveDistinguishedIndex(+ActiveSymbol,-DistinguishedIndex)
Obtains the index feature from the active category (the symbol after the dot)

from an active edge.
===*/
getActiveDistinguishedIndex(var(aux,Cat,Bot,Top),Idx):-

getActiveDistinguishedIndexFeature(Bot,Idx),!.

getActiveDistinguishedIndex(var(Type,Cat,Bot,Top),Idx):-
getActiveDistinguishedIndexFeature(Top,Idx),!.

/*gtsg transformed grammar*/
getActiveDistinguishedIndexFeature(FS,Idx):-

idxPos(IdxPos),
featuresCount(Nro),

functor(FS,fs,Nro),!, arg(IdxPos,FS,Idx).

/*===

isLemanchor - checks whether the node is subst but lemmanchor type
===*/

/*gtsg transformed grammar*/
isLemanchor(FS):-

lemanchorPos(LemanchorPos),
featuresCount(Nro),
functor(FS,fs,Nro),!, arg(LemanchorPos,FS,Value),term_variables(Value,SVars),SVars==[].

/*gtsg transformed grammar obtain features information*/
clearFeaturesInfo:-

retractall(idxPos(_)),

retractall(lemanchorPos(_)),
retractall(featuresCount(_)).

setFeaturesInfo:-

util:getFeatures(CompleteList),
eliminateLast(CompleteList,List),
write(’Features considered: ’),write(List),nl,

length(List,L),
write(’number of features: ’),write(L),nl,

assert(featuresCount(L)),
(nth1(IndexPos,List, ’idx’) -> write(’idx pos: ’),write(IndexPos),nl
;

IndexPos=0),
assert(idxPos(IndexPos)),

nth1(LemanchorPos,List, ’lemanchor’),write(’lemanchor pos: ’),write(LemanchorPos),nl,
assert(lemanchorPos(LemanchorPos)).

%Required because of the way the translation is done for feature structures.
Adding to the list of features one more element that is the variable unknown

of prolog ’_’. We eliminate it.
eliminateLast([_],[]).

eliminateLast([Elem|Rest],[Elem|NewList]):-
eliminateLast(Rest,NewList).

%From the derivation tree extructure, extract the list of names.
extractTreeNames(dvTree(Name,[]),[Name]).

extractTreeNames(dvTree(Name,Trees),[Name|NewNames]):-
extractTreeNamesDaughter(Trees,NewNames).

extractTreeNamesDaughter([],[]).
extractTreeNamesDaughter([FisrtTree|Sisters],NewListNames):-

extractTreeNames(FisrtTree,FisrtNames),
extractTreeNamesDaughter(Sisters,ListNames),

append(FisrtNames,ListNames,NewListNames).

66 APPENDIX B. SCRIPTS SUMMARY

RTG rules selection (rtgSelection.pl)

/*
Exported predicates:

*/
:- module(rtgSelection,[selectRTGRules/1]).

:- use_module(’Tools/util’,[literalSchemaFormat/2,getFeatures/1,memo/1]).

:- use_module(’Tools/unify’,[unify/3]).

:- use_module(’Tools/domain’,[domain/2]).

selectRTGRules(Type):-!,
style_check(-singleton),
getGrammarTranslation(Type,Context),

write(’Filtering level: ’),write(Type),nl,
selectRTGRulel(Context),

Context:features(List),
retractall(getFeatures(_)),

memo(getFeatures(List)).

selectRTGRulel(Context):-

util:file(selectedTAGtreesAsRTG,_,_,Stream),
write(Stream,’/*====================Substitution trees======================*/’),nl(Stream),

Counter = counter(0),
(

util:agenda(treeSchema(_,TreeName,Interface,_,_,Sem,_)),
Context:rule(Number,TreeName,anchor(FamilyName,FS,SemanticSchema),LHS,RHS),
once(util:literalSchemaFormat(SemanticSchema,SemanticSchemaFormated)),

once(replacePredicates(Interface,SemanticSchemaFormated,SemanticSchemaWithPred)),
once(unify_with_occurs_check(SemanticSchemaWithPred,Sem)), %swi-prolog

Anchor =.. [anchor,Family,SemanticSchemaWithPred],

format(Stream,’rtgRule(~w,’, [Number]),
format(Stream,’~q,’, [TreeName]),

write(Stream,’Anchor,LHS,RHS):-’),
nl(Stream),

format(Stream,’Anchor= ~w,’,[Anchor]),
nl(Stream),
format(Stream,’LHS= ~w,’, LHS),

nl(Stream),
format(Stream,’RHS= ~w. ’, [RHS]),

nl(Stream),nl(Stream),

arg(1, Counter, N0),
N is N0 + 1,

nb_setarg(1, Counter, N),

fail
;

arg(1, Counter, Times),

write(’Initial trees traduced into RTG rules: ’),write(Times),nl,fail
).

selectRTGRulel(Context):-
util:file(selectedTAGtreesAsRTG,_,_,Stream),

write(Stream,’/*====================Auxiliary trees======================*/’),nl(Stream),
Counter = counter(0),

(
util:auxiliaryAgenda(treeSchema(_,TreeName,Interface,_,_,Sem,_)),

Context:rule(Number,TreeName,anchor(FamilyName,FS,SemanticSchema),LHS,RHS),
once(util:literalSchemaFormat(SemanticSchema,SemanticSchemaFormated)),
once(replacePredicates(Interface,SemanticSchemaFormated,SemanticSchemaWithPred)),

once(unify_with_occurs_check(SemanticSchemaWithPred,Sem)), %swi-prolog

Anchor =.. [anchor,Family,SemanticSchemaWithPred],

format(Stream,’rtgRule(~w,’, [Number]),

format(Stream,’~q,’, [TreeName]),
write(Stream,’Anchor,LHS,RHS):-’),

67

nl(Stream),
format(Stream,’Anchor= ~w,’,[Anchor]),
nl(Stream),

format(Stream,’LHS= ~w,’, LHS),
nl(Stream),

format(Stream,’RHS= ~w. ’, [RHS]),
nl(Stream),nl(Stream),

arg(1, Counter, N0),
N is N0 + 1,

nb_setarg(1, Counter, N),

fail
;

arg(1, Counter, Times),

write(’Auxiliary trees traduced into RTG rules: ’),write(Times),nl,fail
).

selectRTGRulel(_):-

util:file(selectedTAGtreesAsRTG,_,_,Stream),
write(Stream,’rtgRule(0, epsilon, anchor(epsilon,[]), var(aux, _, FS, FS), []).’),
nl(Stream),

true.

%replacePredicates(+Interface,+SemanticSchema,-SemanticSchemaWithPred).
replacePredicates(_,[],[]).
replacePredicates(Interface,[L:literalSchema(J,G)|SemanticSchema],

[L:literalSchema(PredicateName,G)|SemanticSchemaWithPred]):-
obtainRelatedName(Interface,J,PredicateName),

replacePredicates(Interface,SemanticSchema,SemanticSchemaWithPred).

% obtainRelatedName(+Interface,+J,-PredicateName)
obtainRelatedName([],_,_).
obtainRelatedName([J:Value|Interface],J,Value).

obtainRelatedName([Feature:Value|Interface],J,PredicateName):-
obtainRelatedName(Interface,J,PredicateName).

%different translations of the grammar:
%Filtering Level1

getGrammarTranslation(1,File):-
File = rtgGrammar0,

load_files(File:[’LinguisticResources/Grammar/rtgGrammar1.pl’],[rule/5,features/1]).

%Filtering Level2
getGrammarTranslation(2,File):-

File = rtgGrammar2,

load_files(File:[’LinguisticResources/Grammar/rtgGrammar2.pl’],[rule/5,features/1]).

%Filtering Level3
getGrammarTranslation(3,File):-

File = rtgGrammarVAlt,

load_files(File:[’LinguisticResources/Grammar/rtgGrammar-vAlt’],[rule/5,features/1]).

