UNIVERSITE
DE LORRAINE

Ecole doctorale IAEM Lorraine

Génération automatique de phrases

pour 'apprentissage des langues

(Natural Language Generation for Language Learning)

THESE

présentée et soutenue publiquement le 19 avril 2013

pour I'obtention du

Doctorat de I’Université de Lorraine

(Mention Informatique)

par

Laura Haide PEREZ

Composition du jury

Rapporteurs : Karin HARBUSCH Professeur, Universitdt Koblenz-Landau, Allemagne
Richard POWER Professeur, Open University, Milton Keynes, R.U.

Ezxaminateurs : Claire GARDENT Directeur de Recherches CNRS, LORIA Nancy, France
Guy PERRIER Professeur, Université de Lorraine, Nancy, France

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

Lm ‘

Mis en page avec la classe thloria.

Acknowledgements

I would like to use this space to thank many people who have contributed to this
thesis work in one way or another.

First of all, I want to thank my supervisor Claire for giving me the opportunity
to work in this topic, for her constant support, for giving me space but at the same
time being always ready to give advice, and for correcting many papers, slides and
this manuscript as well. Thank you Claire for all T have learnt in the past three
years.

I am indebted to the Université de Lorraine for the financial support and the
doctoral school IAEM as well as LORIA for the necessary orchestration altogether
making my doctoral studies possible.

Many thanks also go to the members of the jury, Karin Harbusch, Guy Perrier
and Richard Power for their constructive comments and interesting feedback and
discussions about the research work in this thesis.

A special thank you to my Allegro colleagues Alex, Céline, German, Ingrid and
Marilisa for discussions about work and their collaboration as well as Elise and
Natalia for their help with the evaluations and Samuel and Nadia for facilitating the
use of IFLEG with French language students. Thanks also to Céline for reviewing
the French parts, Lina for agreeing to read some chapters and Shashi for the triangle
tree drawings. Many thanks to all the members of the Synalp/Talaris group for
the comfortable work environment. Thank you very much to Kristina Striegnitz for
kindly facilitating me the sources for the drawing of the dependency tree.

I would like to thank my friends and extended family, here and in Argentina, for
sharing with me recreation time, mails, visits, home-made scarves and many good
things and for enthusiastically encouraging me during these years.

I am infinitely grateful to my family for their unconditional support. I thank
my parents, Nilda and Ricardo, for being an unbeatable example. They are strong,
loving and intelligent; I feel very proud of them. Thanks to my brother Mariano for
his care and for pointing me out to those simple big things about life. I want to
thank Yann for staying by my side; his love and patience make me happy.

Thank you to those I have forgotten to mention.

I dedicate this thesis to Nilda, Ricardo, Mariano, Tata and Yann.

Laura

il

Résumé

Mots-clés: Grammaire d’Arbres Adjoints & Structures de Traits (FB-TAG), Réalisateur de
Surface (RS), Optimisation de la Reéalisation de Surface, Grammaire d’Arbres Réguliers a
Structure de Traits (FB-RTG), Représentations sémantiques plates et sous-spéciées, Généra-
tion Automatique de Langue Naturelle (GLN), Apprentissage Assisté par Ordinateur (CALL),
Création (Semi-)automatique d’exercices de grammaire.

Dans ces travaux, nous explorons comment les techniques de Générations Automatiques
de Langue Naturelle (GLN) peuvent étre utilisées pour aborder la tache de génération (semi-
Jautomatique de matériel et d’activités dans le contexte de 'apprentissage de langues assisté
par ordinateur. En particulier, nous montrons comment un Réalisateur de Surface (RS) basé
sur une grammaire peut étre exploité pour la création automatique d’exercices de grammaire.
Notre réalisateur de surface utilise une grammaire réversible étendue, & savoir SemTAG, qui
est une Grammaire d’Arbre Adjoints & Structure de Traits (FB-TAG) couplée avec une
sémantique compositionnelle basée sur l'unification. Plus précisément, la grammaire FB-
TAG intégre une représentation plate et sous-spécifiée des formules de Logique de Premier
Ordre (FOL).

Dans la premiére partie de la thése, nous étudions la tache de réalisation de surface
& partir de formules sémantiques plates et nous proposons un algorithme de réalisation de
surface basé sur la grammaire FB-TAG optimisé, qui supporte la génération de phrases
longues étant donné une grammaire et un lexique & large couverture. L’approche suivie
pour D'optimisation de la réalisation de surface basée sur FB-TAG & partir de sémantiques
plates repose sur le fait qu'une grammaire FB-TAG peut étre traduite en une Grammaire
d’Arbres Réguliers & Structure de Traits (FB-RTG) décrivant ses arbres de dérivation. Le
langage d’arbres de dérivation de la grammaire TAG constitue un langage plus simple que le
langage d’arbres dérivés, c’est pourquoi des approches de génération basées sur les arbres de
dérivation ont déja été proposées. Notre approche se distingue des précédentes par le fait que
notre encodage FB-RTG prend en compte les structures de traits présentes dans la gram-
maire FB-TAG originelle, ayant de ce fait des conséquences importantes par rapport & la
sur-génération et la préservation de 'interface syntaxe-sémantique. L’algorithme de généra-
tion d’arbres de dérivation que nous proposons est un algorithme de type Earley intégrant
un ensemble de techniques d’optimisation bien connues: tabulation, partage-compression
(sharing-packing) et indexation basée sur la sémantique.

Dans la seconde partie de la thése, nous explorons comment notre réalisateur de surface
basé sur SemTAG peut étre utilisé pour la génération (semi-)automatique d’exercices de
grammaire. Habituellement, les enseignants éditent manuellement les exercices et leurs
solutions et les classent au regard de leur degré de difficulté ou du niveau attendu de

Papprenant. Un courant de recherche dans le Traitement Automatique des Langues (TAL)

pour Papprentissage des langues assisté par ordinateur traite de la génération (semi-)automatique
d’exercices. Principalement, ces travaux s’appuient sur des textes extraits du Web, utilisent
des techniques d’apprentissage automatique et des techniques d’analyse de textes (par ex-
emple, analyse de phrases, POS tagging, etc.). Ces approches confrontent ’apprenant & des
phrases qui ont des syntaxes potentiellement complexes et du vocabulaire varié. En revanche,
Papproche que nous proposons dans cette thése aborde la génération (semi-)automatique
d’exercices du type rencontré dans les manuels pour 'apprentissage des langues. Il s’agit,
en d’autres termes, d’exercices dont la syntaxe et le vocabulaire sont faits sur mesure pour
des objectifs pédagogiques et des sujets donnés. Les approches de génération basées sur des
grammaires associent les phrases du langage naturel avec une représentation linguistique
fine de leur propriété morpho-syntaxiques et de leur sémantique grace & quoi il est possible
de définir un langage de contraintes syntaxiques et morpho-syntaxiques permettant la sélec-
tion de phrases souches en accord avec un objectif pédagogique donné. Cette représentation
permet en outre d’opérer un post-traitement des phrases sélectionées pour construire des ex-
ercices de grammaire. Nous montrons comment les exercices de grammaire de type & trous,
de reconstitution ou de reformulation de phrases peuvent étre automatiquement produits.
L’approche a été intégrée dans le jeux sérieux [-FLEG (Interactive French Learning Game,
Jeu interactif pour l’apprentissage du francais) et a été évaluée a la fois par 'analyse des

interactions avec des joueurs en ligne et en collaboration avec des enseignants.

Abstract

Keywords: Feature-Based Tree Adjoining Grammars (FB-TAG), Surface Realisation (SR),
Surface Realisation Optimisation, Featured-Based Regular Tree Grammar (FB-RTG), flat
and underspecified semantic representations, Natural Language Generation (NLG), Computer-
Assisted Language Learning (CALL), (Semi-)automatic authoring of grammar exercises.

In this work, we explore how Natural Language Generation (NLG) techniques can be
used to address the task of (semi-)automatically generating language learning material and
activities in Camputer-Assisted Language Learning (CALL). In particular, we show how a
grammar-based Surface Realiser (SR) can be usefully exploited for the automatic creation
of grammar exercises. Our surface realiser uses a wide-coverage reversible grammar namely
SemTAG, which is a Feature-Based Tree Adjoining Grammar (FB-TAG) equipped with a
unification-based compositional semantics. More precisely, the FB-TAG grammar integrates
a flat and underspecified representation of First Order Logic (FOL) formulae.

In the first part of the thesis, we study the task of surface realisation from flat se-
mantic formulae and we propose an optimised FB-TAG-based realisation algorithm that
supports the generation of longer sentences given a large scale grammar and lexicon. The
approach followed to optimise TAG-based surface realisation from flat semantics draws on
the fact that an FB-TAG can be translated into a Feature-Based Regular Tree Grammar
(FB-RTG) describing its derivation trees. The derivation tree language of TAG constitutes

a simpler language than the derived tree language, and thus, generation approaches based
on derivation trees have been already proposed. Our approach departs from previous ones
in that our FB-RTG encoding accounts for feature structures present in the original FB-
TAG having thus important consequences regarding over-generation and preservation of the
syntax-semantics interface. The concrete derivation tree generation algorithm that we pro-
pose is an Earley-style algorithm integrating a set of well-known optimisation techniques:
tabulation, sharing-packing, and semantic-based indexing.

In the second part of the thesis, we explore how our SemTAG-based surface realiser can
be put to work for the (semi-) automatic generation of grammar exercises. Usually, teachers
manually edit exercises and their solutions, and classify them according to the degree of
dificulty or expected learner level. A strand of research in (Natural Language Processing
(NLP) for CALL addresses the (semi-)automatic generation of exercises. Mostly, this work
draws on texts extracted from the Web, use machine learning and text analysis techniques
(e.g. parsing, POS tagging, etc.). These approaches expose the learner to sentences that
have a potentially complex syntax and diverse vocabulary. In contrast, the approach we
propose in this thesis addresses the (semi-) automatic generation of grammar exercises of
the type found in grammar textbooks. In other words, it deals with the generation of ex-
ercises whose syntax and vocabulary are tailored to specific pedagogical goals and topics.
Because the grammar-based generation approach associates natural language sentences with
a rich linguistic description, it permits defining a syntactic and morpho-syntactic constraints
specification language for the selection of stem sentences in compliance with a given peda-
gogical goal. Further, it allows for the post processing of the generated stem sentences to
build grammar exercise items. We show how Fill-in-the-blank, Shuffle and Reformulation
grammar exercises can be automatically produced. The approach has been integrated in
the Interactive French Learning Game (I-FLEG) serious game for learning French and has
been evaluated both based in the interactions with online players and in collaboration with

a language teacher.

Contents

Génération automatique de phrases pour 'apprentissage des langues ix

Introduction 1
Background and related work 11
2.1 Natural Language Generation 12
2.2 The SemTAG grammar 20
2.3 Computer Assisted Language Learning 34
Optimising surface realisation 43
3.1 Introduction L 44
3.2 RTGen surface realisation algorithm 61
3.3 Evaluationo 79
3.4 Related work on efficient surface realisation 88
3.5 Conclusions and perspectives 92
Natural language generation for language learning 95
4.1 Introduction 97
4.2 Generating exercise stems 98
4.3 Building Fill-in-the-blank and Shuffle exercises 105
4.4 Transformation-based grammar exercises 112

4.5 Comparison with previous work on (semi-)automatic grammar exer-

cises generation 125
4.6 Conclusions and perspectives L. 126
Conclusions 131
5.1 Summing up and concluding L. 131
5.2 Future work and research directions 133

vii

Contents

Appendices

A GramEx pedagogical goals and exercise items
A.1 Excerpt of pedagogical goals

A2 Excerpt of transformation-based grammar exercices

Bibliography

viii

139

141
141
153

161

Génération automatique de
phrases pour 'apprentissage des

langues

This chapter presents a summary of the thesis, in French.

Ce chapitre présente un résumé en frangais de la thése.

Sommaire
1 Optimisation du module de réalisation de surface xvii
2 Génération automatique de texte pour ’apprentissage
deslangues v v v i v it i i e e e e e e xviii
3 Conclusions xix

Cette thése aborde l'utilisation des techniques de génération automatique de
texte (NLG, Natural Language Generation) pour I'apprentissage des langues assisté
par ordinateur (CALL, Computer-Assisted Language Learning). Nous montrons,
en particulier, comment un réalisateur de surface (SR, Surface Realiser) basé sur
une grammaire d’arbres adjoints peut étre utilisé afin d’automatiser la génération
d’exercices de grammaire pour 'apprentissage des langues. Le réalisateur de surface
utilise une grammaire réversible a large couverture dénommeée SemTAG, une gram-
maire d’arbres adjoints & structures de traits (FB-TAG, Feature-Based Tree Adjoin-
ing Grammar) couplée avec une sémantique compositionnelle basée sur l'unification.

La présente thése se décompose en deux parties:

e Dans la premiére partie, nous examinons la tache de génération de phrases a
partir de formules sémantiques et proposons un algorithme optimisé qui permet
de générer des phrases longues & partir d’'une grammaire et d’un lexique a large

couverture.

e Dans la seconde partie, nous étudions comment notre réalisateur de surface

X

Génération automatique de phrases pour 'apprentissage des langues

basé sur SemTAG peut étre utilisé pour la génération d’exercices de gram-
maire dont la syntaxe et le vocabulaire peuvent étre contrélés. Nous proposons
une approche qui s’appuie sur les caractéristiques spécifiques aux structures
linguistiques produites par le réalisateur de surface. D’une part, la grammaire
constitue une ressource linguistique riche et précise décrivant les expressions
de la langue naturelle. Cela permet la génération de phrases qui satisfont &
certaines contraintes syntactiques et morpho-syntactiques comme par exemple,
les contraintes imposées par un but pédagogique comme [’apprentissage de la
voiz passive. En outre, les riches informations linguistiques associées au texte
généré par notre réalisateur de surface permettent un traitement fin permet-
tant de créer des items d’exercices de types textes & trous et de reconstitution
ou de reformulation de phrases. D’autre part, les entrées sous-spécifiées et par
conséquent les différentes phrases produites par notre réalisateur de surface
permettent la production automatique, a partir de peu d’entrées, d’une variété

d’exercices syntaxiquement et morpho-syntaxiquement variés.

L’objectif de la génération automatique de texte en langage naturel est de pro-
duire du texte compréhensible en langage humain & partir de données. Ce procédé est
guidé par un but communicatif, basé sur une source d’information (les données), et
comporte une série d’étapes ou de sous-taches. Traditionnellement, ces sous-taches
sont congues et organisées dans une séquence ou “pipeline”, permettant de gérer
des décisions stratégiques “quoi dire” et des décisions tactiques “comment le dire”.
Une fois que le contenu ou sens & exprimer en langage naturel a été déterminé, le
composant tactique effectuera différents choix comme par exemple les mots et les
constructions syntactiques & utiliser pour exprimer ce contenu en langage naturel.

En particulier, le module du réalisateur de surface d’un systéme de génération,
généralement le dernier module de ce pipeline, transforme une spécification linguis-
tique abstraite en une expression en langue naturelle. C’est & dire qu’il connait
le langage ciblé comme par exemple 'ordre des mots. Il existe différents niveaux
d’abstraction dans la spécification de ’entrée du réalisateur. Par exemple, 'entrée
peut étre un arbre de dépendance ou les roles syntactiques ainsi que les mots-outils
ont été spécifiés. En fonction du degré de spécification de son entrée, le réalisa-
teur de surface peut procéder de fagon (presque) déterministe ou au contraire, pro-
duire plusieurs réponses en prenant des décisions variables par rapport a la maniére
d’exprimer la représentation sémantique. Dans cette thése, nous supposons une
entrée sémantique (p.ex. une forme logique) et plus précisément, des formules de sé-
mantique & récursion minimale (MRS, Minimal Recursion Semantics). Etant donné

la MRS décrite en (1a), la tache du réalisateur de surface est de produire des phrases

telles que (1b-c).

(1) a. {lo: named(t, Tex), lo : indiv(t, m, sg), qeq(TR, ly), l1 : properq(t, TR, TS),
Iy :le(u, CR, CS), qeq(CR, l3), I3 : universite(u), ls : indiv(u, f, sg),
ly : travailler(e, t, u), ly : event(e, pres, indet, ind)}
b. Tez travaille a 'université. (Tex works at the university)

c. C’est Tex qui travaille & Puniversité. (It is Tex who works at the university)

La réalisation de surface a partir d’une formule sémantique plate (p.ex. un sac de
prédicats comme illustré dans 'exemple (1a)) est une tache de complexité exponen-
tielle. Brew (1992) et Koller and Striegnitz (2002) fournissent des preuves formelles
indiquant qu’elle appartient a la classe des problémes NP-complets. Plusieurs tech-
niques d’optimisation ont été proposées pour améliorer les temps d’exécution dans
la pratique. Notre objectif est I'optimisation du réalisateur de surface basé sur la
grammaire FB-TAG. A cette fin, nous suivons 'idée de Koller and Striegnitz (2002)
consistant a utiliser les arbres de dérivation de la grammaire TAG pour la génération.
Cependant, en nous appuyant sur une traduction bien définie de FB-TAG vers une
grammaire d’arbres réguliers basés sur les traits (FB-RTG ou Feature-Based Regu-
lar Tree Grammar, [Schmitz and Le Roux, 2008]) pour décrire le langage d’arbre de
dérivation de la grammaire FB-TAG, nous différons de cette approche.

Cette traduction conserve toute l'information sémantique, syntactique et morpho-
syntactique de la grammaire originelle ayant, de ce fait, d’importantes conséquences
qui distinguent notre approche des précédentes. En préservant toutes les informa-
tions linguistiques, ’encodage FB-RTG préserve 'interface syntaxe/sémantique et
fournit une grammaire exacte des arbres de dérivation FB-TAG. Nous développons
un algorithme de réalisation de surface basé sur la grammaire FB-RTG qui intégre
plusieurs techniques pour optimiser la réalisation de surface.

Traditionnellement, la génération de textes a été utilisée entre autres pour (i)
générer des rapports (par exemple pour générer des textes a partir de bases de
données contenant des données issues d’appareil de mesures), (ii) pour générer des
descriptions & partir d’'une base de connaissance et (iii) pour exprimer en langue
naturelle la sortie d’'un gestionnaire de dialogue (dialogue manager). Les domaines
d’application sont aussi variés: domaine médical, prévisions météorologiques, manuels
d’instructions, verbalisation d’instructions a l’intérieur de mondes virtuels, entre
autres. De plus, d’autres types d’applications de traitement automatique de langue
(NLP, Natural Language Processing) tels que le résumé automatique de texte, la
simplification de texte et la génération automatique de questions peuvent aussi im-

pliquer une étape finale de re-génération. Dans une moindre mesure, les techniques

xi

Génération automatique de phrases pour 'apprentissage des langues

de génération automatique de textes ont également été utilisées dans le contexte
de ’enseignement intelligent des langues assisté par ordinateur (ICALL, Intelligent

Computer-Assisted Language Learning).

Une grande variété de travaux dans le domaine du traitement automatique de
langue (NLP) et d’'ICALL ont été effectués au cours des derniéres années. Les tech-
niques NLP ont principalement été utilisées pour contribuer & la création de contenus
et d’activités d’apprentissage ou pour évaluer les résultats de 'apprenant et générer
un retour approprié. Par exemple, ALICE-chan ([Levin and Evans, 1995]) est un
tuteur intelligent de langage pour ’apprentissage du Japonais qui utilise la gram-
maire lexicale-fonctionnelle (LFG, Lexical Functional Grammar) pour ’analyse des
phrases. Il permet ainsi d’assister les instructeurs dans la création d’exercices et
offre la possibilité d’évaluer les réponses des apprenants & ces exercices. ALICE-
chan propose une interface pour la création d’exercices ou les instructeurs entrent
un texte correspondant au contexte, aux questions et aux réponses de ces exercices.
La réponse est analysée par le module NLP générant, a partir de celle-ci, une struc-
ture de traits synthétisant des traits syntactiques et morpho-syntactiques qui seront
utilisés plus tard pour évaluer les réponses de I’apprenant qui seront analysées d’une
fagon similaire. Il existe d’autres systémes de tutorat comme TAGARELA ([Amaral
and Meurers, 2011]). Celui-ci inclut des activités similaires a celles issues de livres
d’apprentissage de langues: lecture et compréhension orale, description d’images,
reformulations, textes a trous et exercices de vocabulaire. Différents outils de type
NLP (p.ex. segmenteur ou analyseur de phrases) sont déployés dans son architecture.
Celle-ci est centrée sur le traitement des réponses de I’apprenant et sur la production
de retours appropriés a partir des modeles experts (connaissance du langage naturel),

des modéles d’activités et des modeéles d’apprenants.

Parmi les différentes applications ICALL, il y a des systémes qui constituent des
aides a ’écriture tels qu’ICICLE ([Michaud et al., 2000]) ou des assistants pour la
lecture tels que CALLE (|Rypa and Feuerman, 1995]) qui utilisent des techniques
d’analyse de phrases. ICICLE utilise des techniques d’analyse de phrases pour anal-
yser les réponses de I'apprenant, tandis que CALLE utilise des techniques d’analyse
de phrases pour analyser des documents sélectionnés par I’apprenant et ainsi fournir
des informations relatives aux constructions linguistiques présentes dans ces docu-
ments. Chacune & leur maniére, ces deux applications ont pour but de mettre ’accent
sur la connaissance et ’apprentissage des constructions grammaticales de la langue
ciblee. WERTT (|[Meurers et al., 2010]) et VISL (|Bick, 2005]) sont deux autres ap-
plications ont dont le but principal est de promouvoir la sensibilisation linguistique.

WERTT est une application d’amélioration de texte, utilisant des outils NLP pour re-

xii

connaitre et mettre en valeur les différentes caractéristiques grammaticales dans des
documents sélectionnés sur le Web. VISL est un outil doté d’une interface graphique
interactive pour 'apprentissage de syntaxe, qui utilise des outils NLP pour I'analyse.

Certains travaux se sont concentrés sur 1’édition automatique d’exercices pour
lapprentissage des langues ([Mitkov et al., 2006; Heilman and Eskenazi, 2007; Karamanis
et al., 2006; Chao-Lin et al., 2005; Coniam, 1997; Sumita et al., 2005; Simon et al.,
2010; Lin et al., 2007; Lee and Seneff, 2007]). Plus particuliérement, certaines propo-
sitions ont pour objet la proposition d’exercices de grammaire (p.ex. [Aldabe et al.,
2006; Chen et al., 2006]). En général, ces approches reposent sur des techniques
d’apprentissage automatique et générent des activités pour I’apprentissage avancé.

Dans CALL, il existe des outils d’édition tels que Hot Potatoes' ([Winke and
MacGregor, 2001]) qui n’utilisent pas des techniques NLP. Ils sont également appelés
outils d’édition basés sur des modeéles parce qu’ils fournissent un ensemble d’activités
types que le professeur de langues peut utiliser pour créer des exercices. Cependant,
le contenu pour chaque exercice, c’est-a-dire le texte de I’exercice, la ou les réponse(s)
attendue(s) et le retour utilisateur doivent étre manuellement par le professeur de
langues.

En résumé, il existe des applications CALL ou les exercices pour ’apprentissage
sont édités & la main, ou des applications ICALL dans lesquelles la plupart des tech-
niques de TAL dédiées a la création (semi-)automatique de matériel pour 'apprentissage
sont basée sur ’analyse de texte. Dans le dernier cas, le contenu textuel utilisé pour
créer des activités d’apprentissage est soit fourni par le professeur de langues, soit
collecté automatiquement & partir du Web. Dans cette thése, nous montrons que la
génération automatique de texte est une approche rassemblant les caractéristiques
appropriées pour la génération (semi-)automatique d’exercices de grammaire pour
I’apprentissage des langues.

Nous exploitons la grammaire paraphrastique a large couverture FB-TAG qui
fournit une riche description linguistique du langage naturel en associant des expres-
sions du langage naturel avec des syntaxes et des représentations sémantiques. Le
fait que la grammaire capture les paraphrases en associant différentes expressions
de langage naturel ayant la méme signification noyau, est spécialement intéressant
dans le contexte de ’apprentissage des langues. Généralement, les professeurs édi-
tent manuellement des exercices et leurs solutions, puis les classent suivant leur degré
de difficulté et le niveau attendu de ’apprenant. L’approche que nous proposons,
appelée GramFEz, permet potentiellement la (semi-)automatisation de I’ensemble du

processus. Premiérement, en raison de la sous-spécification des entrées et de la

"http://hotpot.uvic.ca/

xiii

http://hotpot.uvic.ca/

Génération automatique de phrases pour 'apprentissage des langues

génération de paraphrases; plusieurs réalisations sont possibles & partir d’une seule
entrée. Comme nous le montrons dans le chapitre 4, & partir d’une signification
principale, plusieurs paraphrases sont générées et peuvent, & leur tour, chacune étre
utilisées pour construire plusieurs exercices différents. Dans ce sens, notre approche
décharge le professeur de langues d’écrire manuellement chaque alternative ou de
ré-écrire manuellement une phrase donnée & utiliser dans un autre type d’exercice.
Deuxiémement, les riches informations linguistiques associées au texte généré peu-
vent étre exploitées pour la génération automatique d’activités d’apprentissage. Ici,
nous montrons comment les exercices de grammaire de type & textes-a-trous, de
mots mélangés : reconstitution ou de reformulation de phrases peuvent étre automa-
tiquement créés. Troisiemement, la génération d’exercices a partir de la génération
automatique de phrases permet potentiellement la classification automatique des
exercices générés et leur ordonnancement dans une séquence pédagogique. Par ex-
emple, les constructions grammaticales pourraient étre élaborées suivant différents
degrés de difficulté. A cette fin, GramEz peut étre intégré dans une application telle
que I-FLEG (Interactive French Learning Game, [Amoia et al., 2012]) comme cela
va étre discuté dans la section 5.2. Dans [-FLEG, les interactions de ’apprenant
avec le jeu sont stockées dans une base de données et fournissent des informations
détaillées concernant, pour chaque exercice, les items résolus par l'apprenant. Ces
informations peuvent étre exploitées, par exemple, pour fournir automatiquement un

entrainement spécifique sur les points de grammaire que I’apprenant doit améliorer.

Les livres d’apprentissage de langues incluent en général des exercices de gram-
maire. Par exemple, le livre en ligne Tez’s French Grammar ? for instance, includes at
the end of each lecture, a set of grammar exercises which target a specific pedagogical
goal such as learning the plural form of nouns or learning the placement of adjectives
inclut, & la fin de chaque unité, un ensemble d’exercices de grammaire visant un
but pédagogique spécifique tel que I’apprentissage de la forme plurielle des noms ou
Uapprentissage de l'ordre des adjectifs. La Figure 1 montre les exercices se trouvant a
la fin de 'unité sur la formation du pluriel des noms. Comme on peut le voir sur cette
figure, ces exercices différent notablement des activités d’apprentissage avancées qui
cherchent & familiariser ’apprenant avec des phrases “couramment employées”. Pour

permettre 'apprentissage in situ, ce dernier type d’activité confronte 1’apprenant

2 Tex’s French Grammarhttp://www.laits.utexas.edu/tex/ is an online pedagogical reference
grammar that combines explanations with surreal dialogues and cartoon images. Tex’s French
Grammar is arranged like many other traditional reference grammars with the parts of speech
(nouns, verbs, etc.) used to categorize specific grammar items (gender of nouns, irregular verbs).
Individual grammar items are carefully explained in English, then exemplified in a dialogue, and
finally tested in self-correcting, Fill-In-the-Blank exercises.

Xiv

http://www.laits.utexas.edu/tex/

avec des phrases extraites du Web ou des documents existants, I’exposant ainsi a
des syntaxes potentiellement complexes et du vocabulaire varié. En revanche, les
livres d’apprentissage de langues ont généralement pour but de faciliter ’acquisition
d’un point de grammaire spécifique en confrontant ’apprenant avec des exercices

construits a partir de phrases courtes et de vocabulaire restreint.

Give the plural form of the noun indicated in parentheses. Pay attention to both the article and the noun.

1. Bette aime . (le bijou)

2. Fiona aime . (le cheval)

3. Joe-Bob aime américaines. (la biére)
4. Tex n'aime pas . (le choix)

5. Joe-Bob n’aime pas difficiles. (le cours)
6. Tammy n'aime pas . ('hopital)

7. Eduard aime . (le tableau)

8. Bette aime de Tex. (I'oeil)

9. Texaime francais. (le poéte)

10. Corey aime fraiches. (la boisson)

11. Tammy aime américains. (le campus)
12. Corey n'aime pas . (l'examen)

Figure 1: Exercices de grammaire issus du livre d’apprentissage de langues Tez’s French
Grammar.

Comme nous l'avons discuté dans les précédents paragraphes, la plupart des
travaux existants sur la génération d’exercices de grammaire s’est concentrée sur la
création automatique d’exercices du premier type, c’est & dire des exercices dans
lesquels les phrases sources sont extraites & partir de corpus existants. Dans cette
these, nous présentons une architecture qui vise les exercices de deuxiéme type, c’est
a dire les exercices de grammaire dans lesquels la syntaxe et le vocabulaire sont
fortement controlés.

Nous utilisons un réalisateur de surface utilisant une grammaire pour produire des
phrases qui, suite au processus de génération, sont associées & de riches informations
linguistiques. Nous définissons un mécanisme basé sur les informations linguistiques
pour sélectionner les phrases appropriées. Plus précisément, nous nous intéressons
aux exercices de deux types : d'une part, des exercices générés a partir d’une seule
phrase tels que les exercices de type textes-a-trous ou mots mélangés, .d’autre part,
des exercices de reformulation ou transformations de phrases qui requiérent un couple
de phrases.

La production (semi-)automatique d’activités a partir du Web ou de documents
existants a contribué a la création & grande échelle d’exercices tels que les exercices de
type questionnaires a choix multiples ou textes-a-trous. En majorité, ces approches
associent des annotations syntactiques et morpho-syntactiques avec les phrases col-
lectées grace a l'utilisation des techniques d’analyse de phrases, d’étiquetage, d’étiquetage

morpho-syntactique et de segmentation de phrases . Cependant, la génération au-

XV

Génération automatique de phrases pour 'apprentissage des langues

tomatique d’exercices basés sur la transformation de phrases requiert des techniques
d’analyse linguistique plus profondes et a recu peu ou pas d’attention.
Considérons, par exemple, le cas de la production automatique de paires question

(Q) et réponse (S) pour 'exercice suivant:

(2) Reé-écrire les phrases suivantes en utilisant la voix passive.

1. (Q) C’est Tex qui donne le livre a Tammy.
It is Tex who gives the book to Tammy
2. (S) C’est par Tex que le livre est donné a Tammy.

It is by Tex that the book is given to Tammy

Pour produire automatiquement la solution (S), nous avons besoin de générer
une phrase qui contient le méme sens et qui est exprimée en voix passive. En outre,
il est également nécessaire que les autres caractéristiques syntactiques et morpho-
syntactiques (par exemple le temps du verbe et la thématisation) soient maintenues
le plus proche possible de la phrase originelle dans la question (Q). Notre grammaire
F-TAG fournit des informations linguistiques détaillées (contenu sémantique, syntac-
tique et morpho-syntactique) nécessaires pour identifier les paires de phrases qui sont
liées par une transformation syntactique. En particulier, les arbres de dérivation de
la grammaire FB-TAG constituent un bon niveau de représentation pour 'analyse de
transformation syntactique parce qu’ils capturent & la fois les contraintes formelles
et de contenus gouvernant les transformations syntactiques. Les mots pleins et les
fonctions grammaticales étiquetant les nceuds des arbres permettent de vérifier que
deux phrases se trouvent dans la relation sémantique appropriée (p.ex. contenu com-
plétement identique ou contenu identique modulo des changements locaux). De plus,
les propriétés syntactiques étiquetant ces nceuds (les noms des arbres élémentaires
FBL-TAG mais également les informations linguistiques additionnelles fournis par
le générateur) permettent d’assurer qu’elles se trouvent dans la relation syntactique

appropriée.

Contributions principales

Les contributions de cette thése sont les suivantes:

e Un nouvel algorithme pour la réalisation de surface basée sur une grammaire
FB-TAG. Cet algorithme repose sur un encodage FB-RTG des arbres de déri-

vation de la grammaire FB-LTAG et incorpore des techniques d’optimisation

xXvi

1. Optimisation du module de réalisation de surface

variées: partage et compression des structures intermédiaires, indexation basée

sur les indices sémantiques et filtrage des structures intermédiaires incomplétes

e Une approche basée sur la génération automatique de langage naturel pour la
génération automatique d’exercices similaires & ceux présents dans les livres
d’apprentissage des langues. Nous exploitons les représentations sémantiques
d’entrée sous-spécifiée ainsi que le pouvoir paraphrastique de la grammaire

SemTAG pour produire des exercices grammaticaux. Les riches informations

linguistiques associées aux phrases générées permettent la création (semi-)automatique

d’exercices de grammaire.

e Une nouvelle approche pour la génération d’exercices de reformulation. Nous
utilisons 'information contenue dans les arbres de dérivation de FB-LTAG pour

identifier les paires de phrases qui sont liées par une transformation syntactique.

Structure de la thése

Dans ce chapitre, nous introduisons les problématiques de recherche dont traite la
présente thése. Dans ce qui suit, nous résumons le contenu des chapitres restant de

la thése.

Chapter 2: Background and related work. Dans ce chapitre, nous passons
briévement en revue les concepts majeurs pour les deux thématiques couvertes par les
travaux de cette these, a savoir la génération de phrases (Section 2.1) et ’apprentissage
des langues assisté par ordinateur (Section 2.3), le but de cette démarche étant de
situer nos travaux dans ces larges domaines. Pour la génération automatique de
phrases, nous discutons des problémes de complexité dans la réalisation de surface a
partir de sémantiques plates. Pour CALL, nous discutons des travaux connexes qui
motivent nos travaux sur I’application des techniques de génération automatique de
phrases pour la génération d’exercices grammaticaux. FEnfin, nous décrivons Sem-
TAG, la grammaire utilisée par notre générateur, dans la Section 2.2 et mettons en
avant les définitions et caractéristiques de cette grammaire qui sont pertinentes pour

son utilisation dans le cadre de cette thése.

1 Optimisation du module de réalisation de surface

La réalisation de surface & partir de sémantiques plates est exponentielle par rapport

a la taille de lentrée (nombre de prédicats) dans le pire cas, Les causes majeures

xvii

Génération automatique de phrases pour 'apprentissage des langues

de cette complexité sont le manque d’ordre des informations et I’ambiguité lexicale
(cf Chapitre 2). Pour optimiser la réalisation de surface basée sur les grammaire
d’arbres adjoints (TAG), nous proposons une approche, basée sur un encodage dans
une grammaire d’arbres réguliers (FB-RTG, [Schmitz and Le Roux, 2008]) des arbres
de dérivation de la grammaire FB-TAG, qui est inspirée de [Koller and Striegnitz,
2002].

Notre hypothése repose sur le fait que 'utilisation de cet encodage permet de
simplifier et d’optimiser la réalisation de surface basée sur la grammaire TAG. Nous
commengons par décrire 'approche de Koller et Striegnitz, nous donnons ensuite les
principes de notre approche et enfin nous présentons la traduction de FB-TAG vers
FB-RTG de Schmitz et Le Roux dans la Section 3.1. Nous présentons un nouvel
algorithme pour la réalisation de surface TAG basé sur ’encodage [Gardent and
Perez-Beltrachini, 2010; Gardent et al., 2011a|, appelé RTGen, dans la Section 3.2.
Nous réalisons une évaluation comparative en utilisant des cas de suites de tests
graduées. [Gardent et al., 2010; Gardent et al., 2011a]. Nous discutons les résultats
dans la Section 3.3. Dans la Section 3.4, nous comparons notre approche avec les
travaux en lien avec ’optimisation de la réalisation de surface. Nous présentons nos

conclusions dans la Section 3.5.

2 Génération automatique de texte pour ’apprentissage

des langues

La génération automatique de matériel et d’activités pour I’apprentissage des langues
a été abordée par les techniques d’analyse de phrases. Dans ce Chapitre, nous ex-
plorons une autre alternative basée sur les techniques NLG. Nous exploitons un
concept clé de la génération a partir de représentations sémantiques sous-spécifiées
avec une grammaire paraphrastique, & savoir la génération de paraphrases alterna-
tives permise par la grammaire et la possibilité de choisir parmi celles-ci. En outre,
notre approche de génération basée sur une grammaire produit du texte et, dans le
méme temps, ce texte est associé avec une représentation linguistique détaillée. Nous
développons un logiciel appelée GramFEz, pour la génération d’exercices de gram-
maire. Dans la Section 4.1, nous décrivons le type d’activité pour I'apprentissage
que nous générons. La Section 4.2.1 décrit 'approche pour I'obtention de textes
qui intégre les contraintes liées aux objectifs pédagogiques donnés ainsi et aux con-
naissances de apprenant. Une fois que le texte approprié a été produit, il peut
étre exploité pour construire des exercices de grammaire de plusieurs types. Dans la

Section 4.3, Nous montrons comment les exercices de grammaire de type & textes-

xviil

3. Conclusions

a-trous, de mots mélangés dérivés a partir du texte généré [Perez-Beltrachini et al.,
2012|. Nous effectuons une évaluation qui montre I'utilité de ’approche au regard de
la production d’exercices. En premier lieu, nous mesurons la variabilité, c’est & dire
comment le degré de variation de phrases issues du processus de génération permet
la création d’exercices variés. Deuxiémement, nous mesurons la productivité, c’est a
dire, dans quelle mesure le la méme phrase générée peut-elle étre utilisée pour créer
différent types d’exercices et combien d’exercices sont créés a partir d’une entrée
donnée. Nous évaluons également 1’ezactitude qui permet de vérifier si les exerci-
ces générés son corrects et significatifs. Dans la Section 4.4, nous démontrons que
I’approche permet la génération automatique d’exercices de reformulation de phrases
(|Gardent and Perez-Beltrachini, 2012]). Nous résumons les travaux conduits et con-

cluons dans la Section 4.6.

3 Conclusions

Nous dressons nos conclusions sur notre thématique basée sur notre propre réalisateur
de surface et ses applications dans le cadre de apprentissage des langues (Section
5.1). Dans la Section 5.2, nous approfondissons les pistes de travail futur sur cette

thématique.

xXix

Génération automatique de phrases pour 'apprentissage des langues

XX

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10

2.11

2.12

2.13

2.14

List of Figures

Grammar exercises from the Tex’s French Grammar textbook 6
NLG pipeline architecture 12
Tree for the semantic representation in (8b). 16
Tree for the semantic representation in (8¢). 17
Disconnected tree representation with labelled predicates. 17
Example of substitution operation in TAG 21
Example of adjunction operationin TAG 21
Substitution operation in an FB-LTAG 24
Adjunction operation in an FB-LTAG 24
Example feature-based tree adjoining grammar. 25

Example feature-based tree adjoining grammar illustrating the imple-
mentation of SA with feature structures. 26
Parse trees for La tatou parle fort (The armadillo speaks loudly) using the
grammar of Figure 2.9. oL L. 26
An FB-TAG augmented with an unification-based compositional se-
mantics. For the sake of clarity, feature structures are abbreviated,
feature percolation has been simplified precluding the possibility that
adjunction modifies feature values and only the semantic feature val-
ues relevant for semantic construction are indicated. C%! /Cgz, ab-
breviate a node with category C and a top/bottom feature structure
including the feature-value pairs { index : z, label : [}. 28
Derived tree and semantics for Une tatou voit souvent Tex chanter (An
armadillo often sees Tex sing). 29
An FB-LTAG augmented with a unification-based compositional se-
mantics that produces the sentence Tammy wvoit souvent Tex chanter
(Tammy often sees Tex sing) from the given semantic representation

Jzo.(tammy(xa) Asouvent(es) A\voit(es, o, e7) Atex(xg) Achanter(e7, x¢)). 30

Xx1

List of Figures

2.15 Elementary tree schema for a transitive verb (left) and the tree schema
anchored by the lemma faire (bake) (right). 31

2.16 Some tree schemas within the transitive verb family. (Note: feature

structures and semantics are not shown for the sake of clarity). . .. 32
2.17 Simplified XMG metagrammar example. 33
3.1 Example of TDG parse tree and lexicon. 45

3.2 An example of TAG grammar variant used in Koller and Striegnitz
for the French version of the sentence Tex achéte une voiture rouge (Tex

buys a red car), with semantics { tex(t), achéte(e, t, v), voiture(v),

rouge(v) F..o. 47
3.3 Dependency treeo 47
3.4 FExample RTG describing the derivation trees of a toy TAG. 52

3.5 Anexample SemTAG sub-grammar selected for the input {l; : une(v, hy, hs), geq(hy,12), 1 :

voiture(v),ly : rouge(v),ls : achete(e,t,v),lg : tex(t)} corresponding

to the sentence Tex achéte une voiture rouge (Tex buys a red car). Note:

capital letters represent variable values (underspecified feature values). 53
3.6 FB-RTG translation of the SemTAG sub-grammar shown in Figure 3.5 54
3.7 FB-RTG derivation. 57
3.8 FB-RTG derivation tree (a.) and left-corner FB-RTG derivation tree

(b.) for the sentence One of the cats has caught a fish. Node labels

of the derivation trees start with as and fs indicating whether they

correspond to an initial or auxiliary tree respectively. 58
3.9 Example of left-corner transformed RTG describing the derivation

trees of a toy TAG (the same as that of Figure 3.4). 59
3.10 Recall of elementary trees for une, voiture, rouge from the grammar in

Figure 3.5 60
3.11 Left-corner FB-RTG translation of the trees voiture, rouge une of the

SemTAG grammar fragment shown in Figure 3.10. 60
3.12 The lexical item in the left is selected given the input semantics in

(25), {L : regard(E,X,Y)} C 1. Note that es,x1,zo are constants.

Thus, in the generation process, ;1 would never be instantiated with

x9 or any other constant.o 62
313 . e 65
3.14 Example of items in a chart (excerpt) and generation forest for the

generation from ¢ of the sentences Tex achéte une voiture rouge and Une

voiture rouge est achétée par Tex. 66

xxil

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22
3.23

3.24

4.1
4.2
4.3

4.4

4.5

4.6

Al

A2

A3

Derivation tree with an NP containing two pre-modifiers and a rela-
tive clause. Sentence La gentille petite tatou qui dort chante (The kind
small armadillo that sleeps sings). 71
One-to-one correspondence between nodes in a derivation tree of a
lexicalised grammar and words of the generated string. 72
A children-ordered tree (a.) and the dependency structure induced
by a pre-order traversal (b.) and a treelet-ordered tree (c.) and the
dependency structure obtained by treelet-order traversal. 74
Term for the treelet-ordered tree of Figure 3.17c. 74
(a) Dependency structure, (b) tree, (c¢) block-ordered tree and (d) term. 76
Toy TAG grammar 7
(a.) FB-RTG derivation tree and (b.) derivation tree with order
annotations using the grammar in Figure 3.20 for the string aabbcedd. 79
Selected lexical items with assigned polarities. 81
Performance of realisation approaches on the MODIFIERS benchmark,
average unpacked chart size as a function of the number of modifiers. 86
Performance of realisation approaches on the COMPLEXITY bench-

mark, average unpacked chart size as a function of the ISS complexity. 86

Linguistic information associated by GraDe with the sentence Tammy

a un voix douce (Tammy has a soft voice). 99
GramFEx architecture. 104
Grammar exercises from the Tex’s French GrammarTextbook 108

Grammar, Derivation Tree and Example Tree Property (Bottom right) for
the sentence C’est Tammy qui fait la tarte (It is Tammy who bakes the pie) 115
Derived (top) and Derivation (bottom) Trees for the active voiced
sentence C’est Tex qui a fait la tarte (It is Tex who baked the pie) and its
passive variant Lo 117
Tree filter types (tree schemas on the left depict source sentence deriva-

tion trees and those to their right their transform). 118

An example of exercise of the “(15) Preposition - Fill in the blank

-missing word” pedagogical goal given to the learner. 154
Answer entered by the learner and feedback given by I-FLEG to the
learner for the preposition exercise question in Figure A.1. 154

An example of exercise of the “(52) Adjective order - Syntax Scramble”

pedagogical goal given to the learner. 155

xxiil

List of Figures

A4 Answer entered by the learner and feedback given by I-FLEG to the

learner for the adjectives exercise question in Figure A.3. 155

XX1v

3.1
3.2
3.3

3.4

3.5

3.6
3.7

4.1

4.2

4.3

4.4

List of Tables

Encoding of the grammar in Figure 3.2
RTGen derivation tree generation algorithm (deductive system). . . .

Average results on 610 test cases from the MODIFIERS benchmark.
Each test case has 3 modifications, distributed in various ways be-
tween adjectival and adverbial modifications. The second column,
Generation Forest (GF), is the number of derivation trees present in
the generated parse forest. The third and fourth columns show the
chart and unpacked chart sizes, respectively. The last column shows

the runtime in seconds. Lo

Average results on 335 cases with 10000 < I.5S < 100000, from the
CoMPLEXITY benchmark. The columns show the same performance
metrics asin Table 3.3.o
Summary of the number of predictions running the generation algo-
rithms (Sections 3.2.1 and Section 3.2.2) for the generation of the
sentence (and its licensed paraphrases) using the SemXTAG English
GAMIMAT. .« . o v o v v e et e e e e e e e e e

Summary of RT'Gen run on 3 sample sentences.

Extract of the results reported in Carroll and Oepen (2005).

Some grammatical and morpho-syntactic properties that can be used
to specify pedagogical goals.
Exercise Correctness tested on 10 randomly selected (pedagogical goal,
EXETCISE PAITS) & o v v v v v v e e e e e e e e
Variability: Distribution of the number of distinct sentential patterns
that can be produced for a given pedagogical goal from a given input

semantiCs. e e e e e e e e e

63

110

Number and Types of Exercises Produced from the 28 input semantics 111

XXV

List of Tables

4.5

4.6

4.7

Al

XXV1

Exercise Productivity: Number of exercises produced per input se-
mantiCs.
Pedagogical Productivity: Number of Teaching Goals the source sen-
tence produced from a given semantics can be used for..
Source Sentences (S), Transformations of Source Sentences (T), Num-

ber of Filters (F) and Precision (Ratio of correct transformations) . .

List of activity types implemented in GramFEz.

Chapter 1

Introduction

This thesis is about using Natural Language Generation (NLG) techniques in Computer-
Assisted Language Learning (CALL). We show in particular how a grammar-based
Surface Realiser (SR) can be usefully exploited to automate the generation of gram-
mar exercises for language learning. The surface realiser uses a wide-coverage re-
versible grammar namely SemTAG, a Feature-Based Tree Adjoining Grammar (FB-
TAG) equipped with a unification-based compositional semantics.

The thesis falls into two parts:

e In the first part, we examine the task of generating sentences from semantic
formulae and propose an optimised algorithm that supports the generation of

longer sentences given a large scale grammar and lexicon.

e In the second part, we explore how our SemTAG-based surface realiser can be
exploited for the generation of grammar exercices whose syntax and vocabu-
lary can be controlled. We propose an approach that takes advantage of the
particular features of the underlying grammatical framework and the realiser.
First, the grammar constitutes a precise and rich linguistic resource describ-
ing natural language expressions. This permits the generation of text material
that satisfies certain syntactic and morpho-syntactic constraints (for instance,
those imposed by a pedagogical goal of learning passive voice). Moreover, the
rich linguistic information associated with the generated text by our realiser
permits further processing it to create exercise items of the type Fill-in-the-
blank, Shuffle and Reformulation. Second, the underspecified input and thus
the several output produced by our surface realiser make it possible to auto-
matically obtain syntactic and morpho-syntactic varied text material, and in

turn exercise items, from few input.

surface realisation
optimisation

Chapter 1. Introduction

The goal of the NLG task is to produce understandable text in human language.
This process is governed by a given communicative intention, based on some informa-
tion source, and involves a series of steps or subtasks. Traditionally, these subtasks
are thought to be organised in a sequence or pipeline and to deal with strategic
decisions (“what to say”) and tactical decisions (“how to say it”). Once the content
or meaning to be expressed in natural language has been determined, the tactical
component needs to make several choices such as the words and syntactic structures
to be used to express that meaning in natural language. In particular, the surface
realisation component of an NLG system, usually the last component in the pipeline,
maps an abstract linguistic specification into a natural language expression. That
is, it knows about the target language, for instance, its word order. There can be
different levels of abstractions in the specification of the input to the realiser. For
instance, the input could be a dependency tree where syntactic roles have been spec-
ified as well as function words. Depending on the degree of specification of its input,
the realiser could be deterministic or produce several output taking various decisions
about how to say things. In this thesis, we assume a semantic input (e.g a logical
form), and more specifically, a Minimal Recursion Semantic (MRS?) semantic for-
mula. Given the MRS shown in (3a), the task of the surface realiser is to output

sentences such as (3b-c).

(3) a. {lo : named(t, Tex), ly : indiv(t, m, sg), qeq(TR, ly), l1 : properq(t, TR, TS),
Iy : le(u, CR, CS), qeq(CR, l3), I3 : universite(u), ls : indiv(u, f, sg),
ly : travailler(e, t, u), ly : event(e, pres, indet, ind)}
b. Tex travaille o université. (Tex works at the university)

c. C’est Tex qui travaille & Puniversité. (It is Tex who works at the university)

Surface realisation from flat semantics (i.e. a bag of predications as illustrated
in example (3a)) is a computationally expensive task (Brew (1992) and Koller and
Striegnitz (2002) provide NP-completeness proofs). Various optimisation techniques
have been proposed to help improving runtimes in practice. Our goal is the optimi-
sation of FB-TAG based surface realisation. To this end, we follow the idea of using
TAG derivation trees for generation from [Koller and Striegnitz, 2002]. We depart
from this approach however in that we rely on a well defined translation from FB-
TAG to an FB-RTG (Feature-Based Regular Tree Grammar, [Schmitz and Le Roux,
2008]) to describe the derivation tree language of the FB-TAG. This translation car-

ries over all semantic, syntactic and morpho-syntactic information from the original

SMRS are flat underspecified semantic representations ([Copestake et al., 2005]), i.e. they are
flattened and scope underspecified representations of First Oder Logic (FOL) formulae. We discuss
this type of semantic representations in detail in sections 2.1.1 and 2.2.4

grammar having, thus, important consequences that distinguish our approach from
previous ones. By preserving all linguistic information, the FB-RTG encoding pre-
serves the syntax/semantics interface and provides an exact grammar of FB-TAG
derivation trees. We provide an FB-RTG based surface realisation algorithm, namely

RTGen, which integrates various techniques to improve surface realisation.

NLG technology has been used inter alia to generate reports (for instance, to
generate text from a database of measurements from some measuring device), to
generate descriptions from an underlying knowledge base and to map the output of a
dialogue manager to a natural language expression. The domains of application have
widely varied too: medical, weather forecasting, instructional leaflets, verbalizing
instructions in virtual environments, among others. Moreover, other types of Natural
Language Processing (NLP) tasks such as text summarization or simplification and
question generation may also involve a final re-generation step. To a lesser extent,
NLG techniques have also been used within the context of Intelligent Computer-
Assisted Language Learning (ICALL).

A variety of work in NLP and ICALL has been carried out along the past years.
Mostly, NLP techniques have been used to support the authoring of learning content
and learning activities or to evaluate learner input and generate appropriate feedback.
For instance, ALICE-chan (|Levin and Evans, 1995|) is an intelligent language tutor
for Japanese instruction that uses Lexical Functional Grammar (LFG) based parsing
to assist instructors in creating exercises and to evaluate learner answers to those
exercices. It provides an interface for exercise authoring where instructors can create
exercises by entering text corresponding to the background, the question and the
answer of the exercises. The answer is analysed by the NLP modules which produce
a feature structure summarizing morpho-syntactic and syntactic features that will be
used later on to evaluate learner input (which is analysed in a similar way). Another
tutoring system is TAGARELA (|Amaral and Meurers, 2011]). It includes workbook
style activities: reading and listening comprehension, picture description, rephrasing,
Fill-in-the-blank and vocabulary exercises. Different NLP tools (e.g. tokenizer and
parser) are deployed in its architecture. TAGARELA focuses on processing learner
input and providing appropriate feedback making use of expert models (knowledge
about the language), activity models and learner models.

Within the range of ICALL applications, there are some systems that embody
writing aids such as ICICLE ([Michaud et al., 2000]) or reading assistants such as
CALLE (|Rypa and Feuerman, 1995]) which rely on parsing techniques. ICICLE
uses parsing to analyse learners’ input, whereas CALLE uses parsing to analyse

documents selected by the learner to provide information about the linguistic con-

Chapter 1. Introduction

structions present in the text. In different ways, both aim at emphasizing awareness
and learning of the grammatical constructions in the target language. Two other
systems whose major aim is to promote linguistic awareness are WERTT ([Meurers
et al., 2010]), a so-called text enhancement application, using NLP tools to recognise
and highlight different grammatical features in selected Web documents; and VISL
(|Bick, 2005]), a visual interactive syntax learning tool, using also NLP tools for
analysis.

Some work has specially concentrated on the automatic authoring of language
learning exercise and test items ([Mitkov et al., 2006; Heilman and Eskenazi, 2007;
Karamanis et al., 2006; Chao-Lin et al., 2005; Coniam, 1997; Sumita et al., 2005;
Simon et al., 2010; Lin et al., 2007; Lee and Seneff, 2007]). In particular, some
proposals target the production of grammar exercices (e.g. [Aldabe et al., 2006;
Chen et al., 2006]). In general, these approaches rely on machine learning techniques
and generate advanced learning activities.

Within CALL there exist authoring tools such as Hot Potatoes* (|[Winke and
MacGregor, 2001]) which do not use NLP techniques. They are called template based
authoring tools because they provide a set of template activities that the language
teacher can use to create exercises. However, the content for each exercise, that is,
the source text, the expected solution(s) and the feedback, is manually entered by
the language teacher.

In sum, there exist CALL applications where the language learning material is
edited by hand or ICALL applications in which most of the work on NLP devoted to
the (semi-)automatic creation of learning material is based on text analysis. In the
latter case, the textual content used to create learning activities is either provided
by the language teachers or gathered automatically from the Web.

In this thesis, we argue that NLG is a natural candidate for the (semi-)automatic
generation of language learning material. We exploit an FB-TAG wide-coverage
paraphrastic grammar which provides a rich linguistic description of natural lan-
guage associating natural language expressions with syntax and semantics. The fact
that the grammar captures paraphrases by associating different natural language
expressions with the same underlying core meaning is specially attractive in the
context of language learning. Usually, teachers manually edit exercises and their
solutions, and classify them according to the degree of difficulty or the expected
learner level. The approach we propose, called GramFEz, potentially supports the
(semi-)automation of the whole process. First, due to input underspecification and

paraphrase generation, from one input several realisations are possible. As we show

*http://hotpot.uvic.ca/

http://hotpot.uvic.ca/

in Chapter 4, from a given core meaning several paraphrases are generated which, in
turn, might be used to build several different exercices. In this way, our approach re-
leases the language teacher from manually writing each alternative or from manually
re-writing a given sentence to be used in another exercise type. Second, the rich lin-
guistic information associated with the generated text material can be exploited for
the automatic generation of learning activities. Here, we show how Fill-in-the-blank,
Shuffle and Reformulation grammar exercises can be automatically created. In this
way, the language teacher does not need to manually modify the text or to enter the
solutions. Third, the NLG-based exercise generation approach potentially enables
the automatic classification of the generated exercices for instructional sequencing.
For instance, the grammar constructions could be mapped to different levels of diffi-
culty. Further, as will be discussed in the future work section 5.2, GramEz has been
integrated in the I-FLEG application (Interactive French Learning Game, [Amoia et
al., 2012]), a serious game for practicing grammar exercices in French. In I-FLEG,
the learner interactions are stored in a database and provide detailed information
about each exercise item solved by the learner. This information could be exploited,
for instance, to automatically provide training in the grammar points that a given

learner needs to reinforce.

Textbooks for language learning generally include grammar exercises. Tex’s
French Grammar ° for instance, includes at the end of each lecture, a set of gram-
mar exercises which target a specific pedagogical goal such as learning the plural
form of nouns or learning the placement of adjectives. Figure 1.1 shows the exercises
provided by this book at the end of the lecture on the plural formation of nouns.
As exemplified in this figure, these exercises markedly differ from more advanced
learning activities which seek to familiarise the learner with “real world sentences”.
To support in situ learning, this latter type of activity presents the learner with
sentences drawn from the Web or from existing documents thereby exposing her to
a potentially complex syntax and to a diverse vocabulary. In contrast, textbook
grammar exercises usually aim to facilitate the acquisition of a specific grammar
point by presenting the learner with exercises made up of short sentences involving

a restricted vocabulary.

As we argued in previous paragraphs, most existing work on the generation of

% Tez’s French Grammarhttp://www.laits.utexas.edu/tex/ is an online pedagogical reference
grammar that combines explanations with surreal dialogues and cartoon images. Tex’s French
Grammar is arranged like many other traditional reference grammars with the parts of speech
(nouns, verbs, etc.) used to categorise specific grammar items (gender of nouns, irregular verbs).
Individual grammar items are carefully explained in English, then exemplified in a dialogue, and
finally tested in self-correcting, Fill-In-the-Blank exercises.

textbook-style
exercises

http://www.laits.utexas.edu/tex/

Chapter 1. Introduction

Give the plural form of the noun indicated in parentheses. Pay attention to both the article and the noun.

1. Bette aime . (le bijou)

2. Fiona aime . (le cheval)

3. Joe-Bob aime américaines. (la biére)
4. Tex n'aime pas . (le choix)

5. Joe-Bob n’aime pas difficiles. (le cours)
6. Tammy n'aime pas . ('hopital)

7. Eduard aime . (le tableau)

8. Betteaime de Tex. (I'oeil)

9. Texaime francais. (le poéte)

10. Corey aime fraiches. (la boisson)

11. Tammy aime américains. (le campus)

12. Corey n'aime pas . ('examen)

Figure 1.1: Grammar exercises from the Tez’s French Grammar textbook

grammar exercises has concentrated on the automatic creation of the first type of
exercises i.e., exercises whose source sentences are extracted from an existing corpus.
Here, we present a framework which addresses the generation of the second type of
grammar exercises used for language learning i.e., grammar exercises whose syntax
and vocabulary are strongly controlled.

We use our grammar-based surface realiser to produce sentences which, as a result
of the generation process, are associated with rich linguistic information. We define
a mechanism to select appropriate sentences based on this linguistic information. We
show how these sentences can be further processed to generate grammar exercises.
More precisely, we focus on exercises of two types. The first type, includes those
exercises that are generated from a single selected sentence such as the Fill-in-the-
blank and Shuffle exercises. The second type, is the Reformulation or transformation
exercise type which requires a pair of sentences.

The (semi-)automatic production of activities from the Web or existing docu-

gansgormation- ments has contributed to the large scale creation of exercises such as multiple-
ased grammar
exercises choice or Fill-in-the-blank. Mostly, these approaches associate syntactic and morpho-

syntactic annotations with the collected sentences using parsing, part-of-speech tag-
ging and chunking techniques. However, the automatic generation of transformation-
based exercise types requires deeper linguistic processing and has received little or
no attention. Consider, for instance, the case of automatically producing question
(Q) and expected answer (S) pairs for the following active/passive Reformulation

exercise:
(4) Rewrite the sentences using passive voice.

1. (Q) C’est Tex qui donne le livre a Tammy.

It is Tex who gives the book to Tammy

2. (S) C’est par Tex que le livre est donné a Tammy.

It is by Tex that the book is given to Tammy

To automatically produce the solution (S), we need to generate a sentence that
bears the same core meaning and is in the passive voice, but also the other syntactic
and morpho-syntactic features (e.g. topicalization and tense) should be maintained
as close as possible to the original sentence in the question (Q). Our FB-TAG gram-
mar provides the detailed linguistic information (i.e. semantic content and syntactic
and morpho-syntactic information) necessary to identify sentence pairs that are re-
lated by a syntactic transformation. In particular, the derivation trees of the FB-TAG
grammar provide a good level of representation for analysing syntactic transforma-
tions as they capture both the formal and the content constraints governing transfor-
mations. The content words and the grammatical functions labelling the tree nodes
permit checking that the two sentences stand in the appropriate semantic relation
(i.e., fully identical content or identical content modulo some local change). Further,
the syntactic properties labelling these nodes (FB-LTAG elementary tree names but
also some additional information provided by our generator) permit ensuring that

they stand in the appropriate syntactic relation.

Main contributions

The contributions of this thesis are the following.

e A new algorithm for FB-TAG based surface realisation. This algorithm relies
on an FB-RTG encoding of FB-TAG derivation trees and incorporates var-
ious optimisation techniques: packing, sharing, indexing based on semantic

arguments and filtering of intermediate incomplete structures.

e An NLG-based approach for the automatic generation of textbook-style exer-
cises. We exploit the underspecified input semantic representations and the
paraphrastic power of the SemTAG grammar to produce text material. The
rich linguistic information associated with the generated sentences permits the

(semi-)automatic creation of grammar exercises.

e A novel approach for the generation of transformation-based grammar exer-
cises. We use FB-TAG derivational information to identify pairs of sentences

that are related by a syntactic transformation.

Chapter 1. Introduction

Road map of the thesis

In this chapter, we introduced the research issues this thesis addresses. In what

follows, we summarise the content of the remaining chapters of the thesis.

Chapter 2: Background and related work. In this chapter, we briefly sur-
vey the major concepts underlying the two research trends adressed in this thesis,
namely natural language generation (Section 2.1) and computer-assisted language
learning (Section 2.3) and we situate our work within these broad areas. For NLG,
we discuss the complexity issues in surface realisation from flat semantics that moti-
vate our research on surface realisation optimisation. For CALL, we discuss related
work that motivates our research on applying NLG techniques for the generation of
language learning material. Finally, we describe SemTAG, our underlying grammar
framework, in (Section 2.2). In doing this, we aim at emphasizing those definitions
or features of the underlying grammatical formalism and our specific grammar im-

plementation that are needed for the discussion of the presented approaches.

Chapter 3: Optimising surface realisation. Surface realisation from flat se-
mantic is exponential in the size of the input (number of predications) in the worst
case. The major causes for this complexity are the lack of ordering information and
the lexical ambiguity (cf. Chapter 2). To optimise TAG-based surface realisation, we
propose an approach based on an FB-RTG (|Schmitz and Le Roux, 2008]) encoding
of FB-TAG derivation trees that is inspired from [Koller and Striegnitz, 2002]. Our
hypothesis is that using this encoding permits simplifying and optimising FB-TAG-
based surface realisation. We begin by describing Koller and Striegnitz’s approach,
giving the intuitions about our approach, and presenting Schmitz and Le Roux’s
FB-TAG to FB-RTG translation in Section 3.1. We present a new algorithm for
FB-TAG-based surface realisation based on this encoding (|Gardent and Perez-Bel-
trachini, 2010; Gardent et al., 2011a]), namely RT'Gen, in Section 3.2. We carried out
a comparative evaluation using automatically built graduated test-suites ([Gardent
et al., 2010; Gardent et al., 2011a]). We discuss the results in Section 3.3. In Section
3.4, we compare our approach with related work on surface realisation optimisation.

We conclude in Section 3.5.

Chapter 4: Natural language generation for language learning. The au-
tomatic generation of learning content and learning activities has mostly been ad-
dressed by using text analysis and machine learning techniques. In this chapter,

we explore an alternative approach which uses NLG techniques. We exploit a key

concept of the generation from underspecified input semantics with a paraphras-
tic grammar, that is, the generation of all alternative paraphrases licensed by the
grammar and the possibility of choosing among them. Moreover, our grammar-
based generation approach generates sentences and XFthe generated sentences are
associated with rich linguistic information produced by the generation process. We
develop a framework, namely GramkFEz, for the generation of grammar exercises. In
Section 4.1, we describe the type of learning activities we generate. Section 4.2.1
describes the approach for the generation of text material that supports pedagogical
goals and learner knowledge constraints. Once the appropriate text material has
been selected, we can exploit it to build different types of grammar exercises. In
Section 4.3, we show how Fill-in-the-blank and Shuffle exercises can be derived from
generated text (|Perez-Beltrachini et al., 2012]). We carried out an evaluation that
shows the usefulness of the approach in terms of exercise production. First, we mea-
sure variability, that is, to what extent the degree of variation in the output of the
generation process permits the generation of varied exercises. Second, we measure
productivity, that is, to what extent the same generated sentence serves to create
different exercises as well as how many exercises can be produced from a given input.
We also evaluate correctness, that is, whether the generated exercises are most of the
time meaningful and correct. In Section 4.4, we show that the generation approach
nicely supports the automatic creation of sentence reformulation type of exercises
(|Gardent and Perez-Beltrachini, 2012]). We summarise the work carried out and

conclude in Section 4.6.

Chapter 5: Conclusions. We draw our conclusions on our particular surface
realisation task and its application to language learning (Section 5.1). In Section

5.2, we give pointers for further research.

Chapter 1. Introduction

10

Chapter 2

Background and related work

Contents
2.1 Natural Language Generation 12
2.1.1 Surface realisation from flat semantics: complexity issues . 15
2.2 The SemTAG grammaro v v v v 20
2.2.1 Tree Adjoining Grammar 20
2.2.2 Feature Structures Based Lexicalised TAG 22
2.2.3 TAG derivations 25
2.2.4 FB-LTAG with semantics 27
2.2.5 SemTAGo 30
2.3 Computer Assisted Language Learning 34
2.3.1 Automatic authoring of learning material 36
2.3.2 Natural Language Generation in CALL 40

As we discussed in Chapter 1, one of our driving research question is “how sentence
generation from underspecified logical for can optimised” and the other is “how NLG
techniques can be exploited for the generation of language learning material”. In
this chapter, we introduce those concepts that we will use throughout the rest of the
thesis and describe related work on computer assisted language learning motivating

the research in this thesis.

First, we summarise the natural language generation task and describe the com-
plexity issues related to surface realisation from flat semantics (Section 2.1). In
Section 2.2, we describe the SemTAG grammatical framework in which our surface
realiser is based on. Then, in Section 2.3, we briefly give an overview of the ICALL

to situate our work and proceed to discuss related work.

11

Chapter 2. Background and related work

Communicative

Goal
Content . Domain
Selection [Knowledge
Linguistic # '
Knowledge :
To.y ¢ P

Content Realisation

v

Output Text

Figure 2.1: NLG pipeline architecture

2.1 Natural Language Generation

The tasks carried out by a natural language generator divide in (i) the selection of
the content to be communicated and (ii) decisions about how that content should
be expressed in the target natural language ([McKeown, 1992]). Traditionally, these
tasks are thought to be organised in a pipeline architecture (|[Reiter, 1994]). A picture
of this pipeline is shown in Figure 2.1.

In the first stage, the content selection module selects the content to be com-
municated. In the second stage, content realisation, decisions regarding the text
structure (text planning) and the sentence plan (microplanning) are taken. Sentence
planning involves decisions about how the content is structured into sentences (ag-
gregation), the selection of words and syntactic constructions (lexicalization) and
how to refer to entities (referring expression generation). The last module, the sur-
face realiser, based on linguistic knowledge about the target language (e.g. grammar
and lexicon) transforms an abstract representation into a syntactically and morpho-
logically correct text. However, in some NLG approaches, these tasks are carried
out together rather than one after the other (for instance, Koller and Stone’s (2007)
approach interleaves the generation of referring expressions and surface realisation)
or in a different order (e.g. in [Banik et al., 2012] the referring expression generation
task is carried out after surface realisation).

The type of input the surface realiser receives also marks a different distribution

12

2.1. Natural Language Generation

of labour between the surface realiser and previous tasks (if we think of a pipeline
architecture). For instance, if lexicalization decisions have not been taken by the
microplanner it will be up to the surface realiser to make lexical choices. While a
fully specified input determines the output sentence, with an underspecified input
the surface realiser can either output all possible realisations or make the choice of
the most appropriate realisation (or set of realisations).

Our work in this thesis focuses on the content realisation stage. More precisely,
it focuses on a surface realiser which, given an underspecified input, produces all
possible realisations licensed by a grammar. We exploit this feature for the gen-
eration of language learning exercises. We define a selection mechanism on top of
the realisation step for choosing appropriate sentences for exercise generation (e.g.
sentences satisfying a set of syntactic and morpho-syntactic constraints for a specific
pedagogical goal).

In what follows, we give a brief overview of surface realisation and discuss the

issues that arise in the type of realiser we work with.

Surface realisation

The surface realiser maps a text specification into a natural language expression,
hence, it requires linguistic knowledge about the target language. There are differ-
ent linguistic theories and grammatical formalisms which have been used to provide
a realiser with the required linguistic knowledge. Examples of functional theories of
grammar include Systemic Functional Grammar (SFG, [Halliday, 1985]) and Func-
tional Unification Grammar (SURGE, [Elhadad et al., 1997]). Among the grammat-
ical formalisms following the generative grammar approach to the study of syntax
are Head-driven Phrase Structure Grammar (HPSG, [Pollard and Sag, 1988]), Com-
binatory categorial grammar (CCG, [Steedman, 2000a; Steedman, 2000b]), Lexical-
Functional Grammar (LFG, [Kaplan and Bresnan, 1981]) and TAG (the grammatical
formalism our generator is based on, cf. Section 2.2), all of them providing phrase
structure constituency descriptions. Meaning-Text Theory (MTT, [Melcuk, 1988]) is
another linguistic framework used in generation which describes language at differ-
ent levels, from semantics to phonetics, providing a representational model for each
level and a map from one level to the next; the syntactic level (Syntactic Structure
(SyntS)) relies on a dependency grammar. Finally, Performance Grammar (PG,
[Kempen and Harbusch, 2002]) is a psycho-linguistically motivated formalism de-
scribing natural language syntax in terms of phrase structure but at the same time
modelling the syntactic processing phenomena encountered during language produc-

tion (e.g. incrementality).

13

generation-

oriented
grammar

reversible
grammar

Chapter 2. Background and related work

In parsing, the surface form is known and the goal is to build a syntactic struc-
ture. In generation, it is a meaning representation that has to be mapped into a
surface form, and in doing this other questions arise, for instance, in which con-
text is this meaning used? which possible constructions does the language offer to
express this meaning? ([Reiter and Dale, 1997]). Therefore, surface realisers have
been proposed which are based on generation-oriented grammars which allow for
linguistic descriptions in linguistic dimensions (e.g. functional) other than form.
For instance, KPLM/Nigel ([Matthiessen and Bateman, 1991]) relies on Systemic
Functional Grammar (SFG, [Halliday, 1985]) focusing on characterising language in
terms of function rather than structure. General purpose well known surface realisers
which rely on a generation-oriented linguistic resources are (in addition to KPML)
RealPRO (based on MTT), FUF/SURGE, NITROGEN and HALOGEN.

However, the idea of using the same grammar both for parsing and generation
emerges with the hope of economising resources development efforts ([Reiter and
Dale, 1997]). Reusing wide-coverage grammars developed for parsing is an attrac-
tive alternative. These grammars used both for parsing and generation, namely
reversible grammars, are equipped with a compositional semantics and describe re-
lations between meaning and form. With a reversible grammar, a parser constructs
meaning representations for a given sentence, whereas a generator takes as input a
meaning representation and builds those sentences that are associated by the gram-
mar with the given meaning. A surface realiser using such reversible grammars is
called a reversible realiser. The input to this type of realiser is, in general, less spec-
ified than the input for those realisers geared towards a unique result discussed in
previous paragraphs. For instance, given an input meaning such as that in (5a) ©,
among many others, the sentences in (5b-g) would be produced.

(5) offer(tex, tammy, watch)
Tezx offers a watch to Tammy.
Tammy is offered a watch by Tex.
A watch is offered by Tex to Tammy.
A watch is offered to Tammy by Tex.

- o T

It is Tex that offers a watch to Tammy.

For our particular application of NLG for language learning, we draw on a sur-
face realiser of the second type (i.e. one using a reversible grammar equipped with

compositional semantics). A priori, these surface realisers are not outfitted with a

®In the form of “skeletal propositions” (cf. [Reiter and Dale, 1997])

14

2.1. Natural Language Generation

mechanism for specifying choices among different natural language expressions (e.g.
different surface forms for a given meaning representation). However, as we will see
in Chapter 4 the grammatical framework (cf. Section 2.2.5) in which our surface
realiser builds on permits specifying form choices.

In what follows, we turn to the discussion of a particular type of meaning rep-
resentation, “flat semantic formula”, and discuss the complexity issues arising for
surface realisation from this representation. Our surface realiser is based on this

semantic representation.

2.1.1 Surface realisation from flat semantics: complexity issues

Lexicalist grammars (i.e. grammars assuming that the information necessary to build
sentence structure and meaning comes from lexical items) are typically associated
with a semantic representation that can be seen as a bag of lexical predicates. Such
grammatical frameworks consist of a set of lexical rules and simple operations which
do not introduce meaning to combine them (|[Whitelock, 1992]). Examples of such
frameworks are Head-driven Phrase Structure Grammar (HPSG, [Pollard and Sag,
1988]) and the grammatical formalism we use in this thesis, namely Tree Adjoining
Grammar ([Joshi et al., 1975; Joshi, 1987]).

Two concrete flat semantic frameworks are Minimal Recursion Semantics (MRS,
[Copestake et al., 2001; Copestake et al., 2005]) and Ly —underspecified logic—
(|Gardent and Kallmeyer, 2003]). The latter builds on MRS (|Copestake et al.,
2001]) and the language proposed by Bos (1995) for underspecified semantic repre-
sentations; and it is the semantic framework that we use in this thesis (in Section
2.2.4 we present it and describe how it is integrated in the TAG grammar).

The motivation behind using flat semantics is discussed in detail in [Copestake et
al., 2001; Gardent and Kallmeyer, 2003]. In brief, there are two main motives. One
concerns the problem of logical form equivalence of Shieber (1993), that is, which
of the syntactic variants of a logical form does the grammar is associated with?
For instance”, (6a) and (6b) are syntactically different formulae but equivalent in
meaning. The second motive concerns the problem of determining a particular scope
reading of a given sentence. For instance, (7b) and (7c¢) are two different readings
for the sentence in (7a).

(6) a. \x[fierce(x) A (black(x) A cat(x)))
b. Az[cat(x) A (black(x) A fierce(x))]

(7) a. Every dog chases a cat.

"Example taken from [Copestake et al., 2005].

15

Chapter 2. Background and related work

3t
|
//\\
named dpe
\ |
t A
bake pie

——— \
e t p D

Figure 2.2: Tree for the semantic representation in (8b).

b. Va(dog(z) = Jy(cat(y) N chases(z,y)))
c. Fy(eat(y) A Va(dog(x) = chases(x,y)))

Conventional first-order representations of natural language meaning use recur-
sion (or hierarchical structure) to model the meaning of some natural language ex-
pression as the meaning built from its sub-expressions. The example (8b) shows a
meaning representation in first-order logic of the sentence in (8a). The subformula
corresponding to the VP phrase bakes a pie (i.e. Ipe(bake(e, t, p) A pie(p))) models
the fact that the VP is composed of a transitive verb and a direct object NP. The

semantic representation in (8b) can be represented as a tree (see Figure 2.2).

(8) Tex fait une tarte. (Tex bakes a pie)
Jt(named(t, Tex) A Ipe(bake(e, t, p) A pie(p)))

properq(t, named(t, Tex), exists(p, pie(p), bake(e, t, p)))

o op

{li : named(t, Tex), ly : properq(t, 11, l2), la : exists(p, I3, l4),
I3 : pie(p), la: bake(e, t, p)}

Furthermore, in linguistics the semantics of a quantifying determiner, i.e. une, ac-
cording to the generalised quantifiers theory, is that of establishing a relation between
the its nominal argument (restriction of the quantifier) and an external property or
verb (scope). A propernoun expresses determination. Following Copestake et al.’s
(2005) three-arguments syntax for generalised quantifiers, we can express the mean-
ing of the sentence in (8a) as the semantic formula in (8c). The first argument of the
quantifying determiner corresponds to the quantified variable, the second and third
arguments correspond to its restriction and scope, respectively. We can give a tree
representation of this formula as shown in Figure 2.3. The restriction and scope are
represented as two daughters of the node corresponding to the determiner.

This tree structure can be flattened if the predicate (or set of predicates) at each
node is identified with a “label”, and then, the labels are used to refer to subformulae

occurring as arguments of other predicates. For instance, in Figure 2.4, the labels

16

2.1. Natural Language Generation

properq(te)
named(t, Tex) exists(p)
pie(p) bake(e, t, p)

Figure 2.3: Tree for the semantic representation in (8c).
lo : properq(t, 11, l2)
1 : named(t, Tex) Iy : exists(p, I3, l4)

I3 : pie(p) ly : bake(e, t, p)

Figure 2.4: Disconnected tree representation with labelled predicates.

[y and [o label the predications corresponding to the restriction and scope of the
generalised quantifier properq respectively (|Copestake et al., 2005]). Furthermore,
the obtained labelled predicates stand in an n-ary commutative and associative con-
junction. As a result, they are considered as a set (or bag if there exist repeated
elements) of predications. The formula in (8d) shows a flat semantic representation,

more precisely, a MRS representation, of the sentence in (8a).

As is well-known, surface realisation from flat semantics is a computationally
expensive task ([Brew, 1992; Kay, 1996; Koller and Striegnitz, 2002|). Proofs of its
NP-completeness are given by Brew (1992) and Koller and Striegnitz (2002).

One first reason for the exponential complexity of surface realisation is the lack !ﬁ;latof order in the
of ordering information. Contrary to parsing, in generation from flat semantics there
are no string positions to guide the process (e.g. in chart parsing only adjacent edges
are considered for combination). Supposing that each literal in the input semantics
selects exactly one grammatical structure and that there are n literals, in a worst case
configuration, there would be 2" possible combinations among the selected structures.
In practice, there are possible restrictions on structure combination. Flat semantic
formulae can be used for “indexing”, that is, for imposing some constraints on the
combinations of selected structures. Most existing realisers impose the constraint
that only constituents with non overlapping semantics and compatible indices can
be combined (for instance in [Kay, 1996; Carroll et al., 1999; Carroll and Oepen, 2005;

White, 2004]).

Because of these constraints, the exponential complexity manifests in modifica-

tion ([Brew, 1992; Kay, 1996]). Given a set of k modifiers all modifying the same modification

17

modifiers
ordering

proliferation of
intermediate
incomplete
structures

lexical ambiguity

Chapter 2. Background and related work

structure, all possible intermediate structures will be constructed, i.e. 2¥. For in-

stance, there are 22 = 8 possible subsets of modifiers in fierce little black cat:

(9) cat,

fierce cat,

little cat,

black cat,

fierce little cat,
fierce black cat,
little black cat,
fierce little black cat

To this, it should be added that the order among modifiers is underspecified
in flat semantic representations. Therefore, for each 2¥ set of modifiers we have to
consider the k! possible orderings.

As Kay pointed out, the situation is serious if we consider that these 2* inter-
mediate incomplete structures might be further combined into larger phrases. For
instance, towards building the sentence The fierce little black cat sleeps, the following
incomplete sentences will be build: The cat sleeps, The little cat sleeps, and so on.

A second reason for the exponential complexity of surface realisation is lexical
ambiguity. In surface realisation from flat semantics, the literals in the input will
probably select more than one grammatical structure (or lexical entry). Lexical

ambiguity can come from different sources:

e Synonyms might be given the same semantic representation (e.g. (10)).
(10) the case of fast and quickly

e Different uses of verbs: transitive and intransitive or the same lexical item
with different functions: noun or verb (e.g. (11) and (12)) which might have
overlapping semantic representations.

(11) the case of love that is transitive and intransitive
(12) the case of place that is a noun and a transitive verb

e [f the grammar is paraphrastic i.e., associates several syntactic structures with
the same semantics (e.g. (13)).
(13) John destroyed the castle quickly
The destruction of the castle by John was quick

So, given an input flat semantics with n literals, if Lex; is the number of lexical
entries associated with each literal /; in the input semantics, then, the number of

sets of lexical items covering the input semantics is: Héz’fLexi. The two sources of

18

2.1. Natural Language Generation

complexity (lexical ambiguity and lack of input ordering) interact by multiplying out

so that the potential number of combinations of selected grammatical structures is:

INPUT

b, lteral GRAMMAR
ADJUNCTION nb. [iterals nb. lexical
L in the input :
nb. modifications semantics entries associated
to the same entity \ to each literal
/ i=n /
ok X H Lex;
i=
‘-u—..w—/

lack of ordering -modifiers lexical ambiguity

Different solutions have been proposed to cope with the task complexity. Related
work addressing modification includes: verifying inaccessible semantic indices ([Kay,
1996; Carroll and Oepen, 2005]), delayed insertion of modifiers ([Carroll et al., 1999;
Gardent and Kow, 2005]), chunking the input logical form ([White, 2004]), among
others. Our approach relies on ambiguity packing and a mechanism to control pro-
liferation of intermediate structures based on ideas from Kay (1996) and Carroll and
Oepen (2005).

Carroll and Oepen’s (2005) approach relies on local ambiguity packing to deal
with lexical ambiguity, whereas the approaches proposed in [Gardent and Kow, 2006;
Koller and Striegnitz, 2002; Bangalore and Rambow, 2000a] aim at reducing the
initial search space by filtering out pointless constituent combinations.

In particular, unlike generating from a bag of predicates, Kanazawa (2007) shows
that for generation from hierarchical and ordered input meaning representations (as
well as for parsing from an input string) there exists a polynomial runtime algorithm.
The particular generation task in [Kanazawa, 2007] concerns “exact generation”, i.e.
the input logical form is expected to exactly match that of the grammar. However,
Kanazawa (2011) proposes a way to apply the framework to generation from under-
specified input in which the different scope readings might be compactly represented
in the input to the generation algorithm.

It is thus important to observe that flat semantic representations such as MRS
([Copestake et al., 2005]) maintain hierarchical information, e.g. quantifiers’ restric-
tion or scope, as we have seen at the beginning of this section. That is, hierarchical
information is merely represented in different way. For instance, Copestake (2009)
shows that MRSs can be translated into semantic dependency graphs. These struc-
tural information contained in MRS representations could be exploited to guide the
combination of grammar constituents during generation.

We will discuss related work on optimisation of surface realisation from flat se-

mantics in more detail in Chapter 3.

19

Chapter 2. Background and related work

2.2 The SemTAG grammar

In this section, we describe SemTAG the specific grammatical framework that we
use for sentence generation, SemFraG the French version and SemXTAG the English
one. SemTAG is a Feature Structures Based Lexicalised Tree Adjoining Grammar
(FB-LTAG) augmented with a unification-based compositional semantics.

First, we will review the underlying grammatical formalism, FB-LTAG, and the
integrated semantic representation language, Ly, and recap on those concepts (e.g.
derivation trees) which are central in our approaches to surface realisation (Chapter
3) and also used in the generation of transformation-based grammar exercises (Chap-

ter 4). Next, we discuss particular features related to our grammar implementation.

2.2.1 Tree Adjoining Grammar

Tree Adjoining Grammar (TAG, [Joshi and Schabes, 1997] —originally introduced in
[Joshi et al., 1975; Joshi, 1985]) is a grammatical formalism designed to describe
natural languages.

Grammars describing natural languages structure need to account for linguistic
dependencies, such as subcategorisation (eg. verb subcategorisation) and filler-gap
dependencies (e.g. wh-movement). These dependencies can be at an unbounded
distance, nested or crossed. As it is well known, natural languages can not be
described by context free grammars. Some languages, e.g. Swiss-German ([Shieber,
1985]) and Dutch ([Bresnan et al., 1982]), contain cross-serial dependencies.

TAG models these dependencies within a bounded structure, namely a tree, i.e.
dependencies can be defined between nodes of a tree. Recursion is factorised from
the basic unit describing dependencies and is implemented through a composition
operation, namely adjunction, which permits rewriting a node of one tree with an-
other tree. As corollary of this adjunction operation, locally defined dependencies
might be “stretched” making them arbitrarily distant (unboundedness) and certain
types of cross-dependencies can be accounted for (cf. [Joshi, 1985]). The latter is one
of the formal properties that makes TAG fall in the class of mildly-context sensitive

grammars.

Definition

Formally, a tree adjoining grammar is a quintuple (X, N, I, A, S) with ¥ a set of
terminals, NV a set of non-terminals, I a finite set of initial trees, A a finite set of
auxiliary trees, and S a distinguished non-terminal (S € N). Initial trees are trees

whose leaves are labelled with substitution nodes (marked with a downarrow: |) or

20

2.2. The SemTAG grammar

S S
’ P T~
VP NP VP
| \ = \ |
Tammy Y Tammy Y
parle parle

Figure 2.5: Example of substitution operation in TAG

S
A ND VP
| > Adv = Tammy VP Adv
Tammy AN | ‘ ‘
‘ fort \Y fort
parle ‘
parle

Figure 2.6: Example of adjunction operation in TAG

terminal categories. Auxiliary trees are distinguished by a foot node (marked with a
star: %) whose category must be the same as that of the root node. In both, initial
and auxiliary trees, internal nodes are labelled by non-terminal symbols. Trees in
the set I U A are called elementary trees. The tree obtained by composition of
two elementary trees is called derived tree.

Two tree-composition operations are used to combine trees: substitution and
adjunction. Substitution (Figure 2.5) replaces a leave non-terminal node X of an
initial tree with another tree with root node X. The substituted tree should be
derived from an initial tree. A tree with no substitution node is called a complete
tree. Adjunction (Figure 2.6) inserts an X-type auxiliary tree into an initial or
derived tree at a non-terminal node labelled by X (the non-terminal node should

not be substitution node).

Adjunction constraints. The definition of the tree-composition operations given
above states two constraints: the nodes where the operations take place should be
labelled with the same non-terminal symbol and adjunction cannot take place at a
substitution node. In addition, adjunction constraints allow to specify (linguistically
motivated) restrictions stating, for instance, which auxiliary trees can adjoin into a
given node. Thus, nodes in TAG elementary trees can be marked with a (i) selective
adjunction constraint, SA(T'), stipulating that only trees in the set T, with T' C A,
can adjoin (note: adjunction is not compulsory), (ii) a null adjunction constraint,

N A, disallowing any adjunction, or (iii) an obligatory adjunction constraint, OA(T),

21

Chapter 2. Background and related work

requiring that an auxiliary tree member of T' C A adjoins into the node.

In the next section, we introduce Lexicalised TAG (LTAG) and describe TAG’s
embedding in a feature structures based unification framework (Feature Based TAG
(FB-TAG or FTAG)).

2.2.2 Feature Structures Based Lexicalised TAG
Lexicalised TAG

According to Schabes et al. (1988), a grammar is lexicalised if it consists of: (i)
a finite set of structures each associated with a lexical item, called the anchor of
the corresponding structure, and (ii) an operation or operations for composing these
structures.

Lexicalised grammars associate lexical items with elementary structures describ-
ing their possible syntactic configurations. In practice, as shown in [Schabes et al.,
1988], parsing algorithms benefit from lexicalised grammars. The parsing process
can be divided in two stages. In a first stage, the parser selects only those elemen-
tary structures that correspond to lexical items in the input string, viz. sub-grammar
selection. In a second stage, the parser combines the selected structures. The com-
bination step takes advantage of the fact that an elementary structure corresponds
to a token in the input string® and therefore it can be used only once in a given
parse. Moreover, since the sub-grammar used for parsing is selected according to the
input string, non-local information might be used to guide the combination. These
advantages also exist in generation with lexicalised grammars, as illustrated by the
generation algorithm proposed in [Gardent and Kow, 2006] and the algorithm we
will discuss in Chapter 3.

In Lezicalised TAG (LTAG), at least one terminal symbol, namely the anchor,
must appear at the frontier of all initial or auxiliary tree. That is, the anchor is a leaf
node of the elementary tree (for instance, fort in the auxiliary tree in Figure 2.6). El-
ementary trees serve as a complex descriptions (e.g. subcategorization and argument

realization information) of the anchor.

Two linguistically relevant formal properties of (L)TAG

Extended domain of locality. In a grammar formalism the domain of locality refers
to the domain where specifications about different grammatical aspects can be stated

together. These grammatical aspects are constituency, constraints, (e.g. agreement),

8Either because it corresponds to exactly one or because the commitment to one structure among
several has been made.

22

2.2. The SemTAG grammar

syntactic and semantic dependencies, word-order and unifications ([Joshi, 1987]). In
context-free grammars (CFG) and CFG-based grammar formalisms, the domain of
locality is the one level tree corresponding to a rule. Therefore, for instance, the
dependency between a verb and its subject and object arguments cannot be specified
within the same rule. In contrast, because TAG elementary trees can have arbitrary
depth, these dependencies can be specified within the same tree (i.e. domain). The
fact that an elementary tree contains the lexical anchor arguments its known as
predicate argument co-occurrence.

Factorise recursion from the domain of dependencies. In contrast to CFG(-based)
that writes recursion into the phrase structure rules, TAG defines a finite set of
simple sentence elementary structures and uses adjunction to produce more complex
constructions. Elementary trees are minimal structures where dependencies (e.g.
subcategorization and filler-gap) are specified. That is, dependencies are defined

locally and made distant through the adjunction operation.

Feature Structures Based LTAG

In brief, a Feature Structure is a set of attribute-value pairs, where a value may be
either atomic or another feature structure. Feature structures can be ordered based
on the information they contain (i.e. carrying less information or more information).
This ordering is known as subsumption ordering. Unification is a (partial) operation
on feature structures. Informally, that is, if the information contained in two feature
structures is consistent (unification is possible) they can be combined into a new one
containing the information of the two original ones.

Feature structures are used for expressing constraints. Different grammatical
frameworks for natural languages incorporate on top of a CFG skeleton a feature uni-
fication system to specify certain constraints relative to some linguistic phenomena
(e.g. subject-verb agreement). The TAG extension with a feature base unification
framework (FB-TAG) was proposed by Vijay-Shanker and Joshi (1988). The objec-
tive was to improve the descriptive capacity of TAG. By adding feature structures to
elementary trees, it is possible, for instance, to state constraints between dependent
nodes within the same elementary tree.

In a FB-TAG, of which an example is given in Figure 2.9, the tree nodes are
decorated with two feature structures (called top and bottom). The operations of
substitution and adjunction are then reformulated in terms of unification of appropri-
ate feature structures, thus allowing the constraints on substitution and adjunction
to be modelled by the success or failure of unifications. On substitution, the top

of the substitution node is unified with the top of the root node of the tree being

23

Chapter 2. Background and related work

X

Figure 2.7: Substitution operation in an FB-LTAG

X
Ay X
=
t
A*bfc A
A\
Figure 2.8: Adjunction operation in an FB-LTAG

substituted in. On adjunction, the top of the root of the auxiliary tree is unified with
the top of the node where adjunction takes place; and the bottom features of the foot
node are unified with the bottom features of this node. Figures 2.7 and 2.8 illustrate
this. At the end of a derivation, the top and bottom of all nodes in the derived
tree are unified. FB-TAG feature structures are non-recursive and consist of sets of
feature/value pairs where the value is either a constant, a disjunction of constants,
or a unification variable. Unification variables can furthermore be co-referenced with
any other value occurring in the same elementary tree.

Following the example in Figure 2.9, on substitution, the top feature structure
of the root node of agt0, Will unify on substitution with the NP node of apgre (i-e.
[nb : sg]U[nb : B]). On adjunction, the top feature structure of the root NP node
of B, will unify with the NP node of apgrie (i-€. [nb : sg]U[nb : N]). Furthermore,
the initial tree g, enforces a subject-verb agreement constraint between the verb
node and the subject NP node through the feature structures decorating these nodes
with the co-referenced variable B.

Besides describing dependencies among nodes within elementary trees, features
structures associated with nodes can express other constraints about how trees can
combine (or not) with other trees. That is, we can express adjoining constraints
(discussed above). Given that adjunction is successful if the unification succeeds,

we can state selective constraints (SA) by specifying features values that will cause

24

2.2. The SemTAG grammar

«
parle 3
Bla , . “atou S /_»\]\‘ort
NPM/M N] \\4 /\ ‘/ AN
NPt sl NPLUCEL VP, Pl
Det NP*,,. . 7 | A T VP Adv
\ tatou v l
la ‘ fort

parle

Figure 2.9: Example feature-based tree adjoining grammar (N and B are a unification
variables, sg is a constant, and [f : wv] is a feature structure with feature f and feature
value v).

unification to succeed with desired combinations or fail otherwise. Similarly, given
that at the end of the derivation top and bottom features structures are unified, we
can model obligatory adjunction (OA) by stating contradicting features in the top
and bottom of a node where we want compulsory adjunction.

The small grammar in Figure 2.10 illustrates the implementation of SA with
states that the

mode of the subordinate clause is equal to infinitive (md : inf). Therefore, the

feature structures. The bottom feature structure of the tree a . 4nter
auxiliary tree ayeqt-2, which takes an infinitive clause as argument, will successfully
adjoin into o p4nter- That is, the bottom feature of the root node in o p,4p e Unifies
with the bottom feature of foot node in «ayeqt-2. This is graphically shown by the
dotted line arrows from ovyeyt-2 t0 @ ppanter From the resulting derived tree we read
the sentence Tammy veut chanter (Tammy wants to sing). However, the tree ayeq-1
will be discarded as unifications during adjunction into «.p,4nter Will fail, preventing
the generation of the ungrammatical sentence *Tammy veut que chanter (*Tammy

wants that to sing).

2.2.3 TAG derivations

TAG is a tree-generating system: in the derivation process, non-terminals of a tree
are rewritten by complete trees. As a result of a derivation a phrase-structure tree
is produced which is the derived tree. The set of derived trees constitutes the object
language. The structure that records information about the derivation process, i.e.
how the elementary trees were combined into a phrase-structure tree is the derivation
tree. Figure 2.11 shows an example of derived and derivation trees.

In a derivation tree, nodes are labelled with the names of TAG elementary trees.
In addition, if the grammar is lexicalised, the nodes would also be named with the

lexical items anchoring the elementary trees. Edges are labelled with a description

25

Chapter 2. Background and related work

Q@
Ypeut-1 e chanter Ypeut-2
- 4
- S
S[md :ind|subj] < ‘ S[md :ind|subj]
m // L %\
NP, VP sN4 VP NP, VP sf‘V A
Tarr‘lm \‘/' m: subj] / [md‘: inf] T&II‘IHI \‘/' Gylmd s inf]
y ‘ q [md : subj) § // \% y ‘ [md : inf]
veut ‘ veut
chanter

Figure 2.10: Example feature-based tree adjoining grammar illustrating the implemen-
tation of SA with feature structures ([f : v] is a feature structure with feature f and
feature value v, md is the mode feature, and in f|ind|subj are constant values describing the
different mode types).

S Uparle
A 1 ///\2
NP VP
PN N Utatou 5fort
Det NP V‘P ADV 0
v i
la tatou parle fort
(a) Derived tree (b) Derivation tree

Figure 2.11: Parse trees for La tatou parle fort (The armadillo speaks loudly) using the
grammar of Figure 2.9. In the derivation tree, plain lines indicate adjunction and dotted
ones substitution. For simplicity, tree names are replaced with the lemmas anchoring each
elementary tree. The number on the upper right of each tree name gives the Gorn address
of the node onto which the tree was inserted.

of the operation used to combine the TAG trees whose names label the edge vertices.
The edge labels inform the operation type, i.e. substitution or adjunction, and an
identification of the node in the target tree where the operation took place, i.e.

a Gorn address?

. When a tree ~ is substituted or adjoined into a tree 7, in the
derivation tree, the node for « is said to be a dependent of the node for 7.

LTAG derivation trees are of particular interest due to two key facts: (i) lexi-
calisation of elementary trees and (ii) encapsulation within elementary trees of the

syntactic/semantic arguments of the lexical anchor. In the derivation process, the

%A Gorn address (Gorn, 1967) is a method of identifying and addressing any interior node within
a tree data structure from a phrase structure rule description or parse tree. The Gorn address is a
string made up of a series of one or more integers separated by dots, e.g., 0 or 0.0.1. The j-th child
of the i-th node has an address i.j. 7 (http://en.wikipedia.org/wiki/Gorn_address)

26

http://en.wikipedia.org/wiki/Gorn_address

2.2. The SemTAG grammar

substitution and adjunction operations establish links or “dependencies” between
lexical items anchoring the composed trees (JAbeille and Rambow, 2000]). The de-
pendency structures shown by TAG derivation trees have been analyzed in different
works. In order to transfer formal properties from TAG to Meaning-Text Theory
(MTT, [Melcuk, 1988]), Rambow and Joshi (1994) compare derivation trees with
deep syntactic dependency structures, namely DSyntS for MTT. On the other hand,
Candito and Kahane (1998) compare derivation trees with semantic dependency
graphs, namely SemS in MTT. Although, in both cases, several points of similar-
ities are enumerated, differences between the dependency structures in MTT and
derivation trees are reported. Below, we repeat some of the derivation tree features
described in these comparisons which underlie the ideas of our approach to semantic-
based chart indexing (Section 3.2.2) and syntactic transformations described (Section
4.4.2):

e Function words required by the lexical anchor’s subcategorization frame are
included in elementary trees and thus not present in the derivation trees (e.g.
prepositions).

e Because elementary trees correspond to a semantic unit, nodes in the derivation
tree correspond to semantic units (e.g. idioms). As Candito and Kahane
(1998) claimed, we can see them as semantic units associated with linguistic
information.

e There is one daughter node for each verb argument (due to single substitution
steps) while there might be any number of daughter nodes for adjuncts (ad-
junctions). Though, for predicative auxiliary trees, the direction is inverted:

they appear as daughters of the node representing their argument.

2.2.4 FB-LTAG with semantics

To associate semantic representations with natural language expressions, the FB-
LTAG is modified as proposed by Gardent and Kallmeyer (2003). Each elementary
tree is associated with a flat semantic representation. For instance, in Figure 2.12,
the trees for Tex and chanter are associated with the semantics lg : tex(zg) and Iy :
chanter(ez,x7), respectively. Importantly, the arguments of a semantic functor are
represented by unification variables which occur both in the semantic representation
of this functor and on some nodes of the associated syntactic tree. For instance,
in Figure 2.12, the semantic index z7 occurring in the semantic representation of
chanter also occurs on the subject substitution node of the associated elementary

tree. The value of semantic arguments is determined by the unifications resulting

27

Chapter 2. Background and related work

Ses,ls
Y S
-y NPi’zg,lg, VPes,lg, G*ee
D‘et NP*mlJn NszJz !
‘ yesls
une tatou |
l1: 3(551; he, hs)a vort

lo : tatou(x)
he 2o hs 2 1o l5 : voit(es, 3, q)

Vpesils /Sl\
Vp*m v NPTG»% NP #7ir VPors;
som‘)ent Tex VTM
lg : tex(zs) chanter

I3 : souvent(es)

l7 : chanter(e7, x7)
Figure 2.12: An FB-TAG augmented with an unification-based compositional semantics.
For the sake of clarity, feature structures are abbreviated, feature percolation has been
simplified precluding the possibility that adjunction modifies feature values and only the
semantic feature values relevant for semantic construction are indicated. C*+!/ Cy, abbrevi-

ate a node with category C and a top/bottom feature structure including the feature-value
pairs { index : z, label : [}.

from adjunction and substitution. For instance, the semantic index x7 in the tree
for chanter is unified during substitution with the semantic index labelling the root
node of the tree for Tex. As a result, the semantics of Tex chante is {ls : tex(xg),l7 :

chanter(e7,x)}.

As explained in [Gardent and Kallmeyer, 2003|, the semantic representation lan-
guage used (Ly —underspecified logic) (based on the formalisms defined in [Copestake
et al., 2001] and [Bos, 1995]) is a unification-based language which describes first or-
der formulae in the sense that the model of a given Ly formula is a set of first order

formulae. For instance, the formula in Figure 2.13 describes the first order formula

Jz1.(tatou(x1) A souvent(es) A voit(es, x1,e7) A tex(xg) A chanter(er,xg))

More generally, L;; formulae are flat, underspecified FOL formulae. They are flat
in that the tree structure of a FOL formulae is transformed into a conjunction of
labelled formulae whereby the label of each formula is used to indicate its position
in the initial tree structure. Ly formulae are furthermore underspecified in that the

scope of scope bearing operators (quantifiers, modal, negation) is specified by under-

28

2.2. The SemTAG grammar

Ses,ls
NPI1715 VPe5,l5 Se7yl7
Det NP.,;, VP ADV NP, VPe .
Ve5,l5 Ve77l7
une tatou voit souvent Tex chanter

Iy : (@1, hry hs), by > 1o, hg > 15, 1o 2 tatou(zy),
I3 : souvent(es),ls : voit(es, x1,er),ls : tex(xg),l7 : chanter(er, xg)

Figure 2.13: Derived tree and semantics for Une tatou wvoit souvent Tex chanter (An
armadillo often sees Tex sing).

constrained scoping constraints between so-called holes (written h,h;) and labels
(written [,[;). Thus, the formulae of Ly consist of labelled elementary predications
(I : R™(i1,...,1,) with R an n-ary relation and ¢; variables over individuals and/or
labels/hole constants), scoping constraints (h > [with h a hole constant and [a label
constant) and conjunctions (¢, with 1, ¢ formulae of Lyy). The models described
by Ly formulae are defined by the set of possible “pluggings” i.e., injections from the
holes of a formula to the labels of this formula. The following example illustrates

this. Suppose the sentence in (14) is assigned the Ly formula (15).
(14) Every dog chases a cat

(15) ly = V(x,h1,he),h1 > 11,11 : D(z),ha > lo,la : Ch(x,y),ls : I(z, hs, ha), hs >
l4,l4 : C(y),h4 Z l2

Only two pluggings are possible for this formula in (15) namely {h; — l1,ho —
lg,h3 — l4,h4 — lg} and {hl — ll,hg — l27h3 — l4,h4 — lo}. They yield the

following (16) meaning representations for (14):
(16) a. lO : V(x’lla l3)a ll : D(x)’l2 : Ch(x,y)a l3 : 3($,l4, l2)a l4 : C(y)
b. lO : V(x’lla l2)a ll : D(x)’l2 : Ch(x,y)a l3 : 3($,l4, lO)a l4 : C(y)
For more details on the interpretation of Ly and on the semantic representations it
permits associating with a grammar of natural language, see [Gardent and Kallmeyer,
2003].
The example in Figure 2.12 shows how a semantic representation is constructed,

i.e. how a semantic formula is build for a natural language expression (parsing).

However, the FB-TAG equipped with a unification-based compositional semantics

29

Chapter 2. Background and related work

Sest
NP =2l VP, S*7
NPy, 1, \
| vesils
tammy ‘
V01t

Iy : tammy(x2)
l5 : voit(es, X2, e7)

VP Ser tz

es,la

/\
VP*.. 1, ADV

| er,l7
souvent Tex v ‘

/\
NP@sle NP|=olr VP,
|

I3 : souvent(es) le : tex(we) chanter

l7 : chanter(er, xg)
Figure 2.14: An FB-LTAG augmented with a unification-based compositional semantics
that produces the sentence Tammy voit souvent Tex chanter (Tammy often sees Tex sing)

from the given semantic representation Jzs.(tammy(z2) A souvent(es) A voit(es, T2, e7) A
tex(xg) A chanter(ez, zg)).

is a reversible grammar and thus it is possible to go the other way around, i.e.
build a natural language expression for a semantic formula (generation). In the
latter case, the semantic formula is given. Therefore, as shown in Figure 2.14, the
arguments of the semantic functor 7 : chante(er,zg) are constants values and so
are the semantic indices labeling the nodes of its associated syntactic tree (idem for
l5 : voit(es, z2,e7)). During tree combination, the constant values of the semantic
indices labeling tree nodes either permit or avoid certain combination of trees. For
instance, the substitution of the tree for Tammy into the NP node of chanter will
fail due to the index feature-values that do not unify. Preventing in this way the
generation of the sentence Tex voit souvent Tammy chanter (Tex often sees Tammy
sing). Therefore, as a result of tree combination the correct sentence —according to
the given meaning representation— Tammy voit souvent Tex chanter (Tammy often sees

Tex sing) is obtained.

2.2.5 SemTAG

The specific FB-LTAG equipped with unification-based compositional semantics that
we use, i.e. SemTAG, is not written tree by tree but instead is compiled from a

metagrammar specification. More precisely, the grammar is written and compiled

30

2.2. The SemTAG grammar

Se.L /\Ses’lz
— 1 NP|#ulz VP2
NP XL VP —
— vessl2 NP/ ®2
VoB:L NPY \
faire

L:PREDF, XY .
() Iy : faire(es, x1,x2)

Figure 2.15: Elementary tree schema for a transitive verb (left) and the tree schema
anchored by the lemma faire (bake) (right).

using the XMG grammar development framework ([Crabbé et al., 2012]).

In a lexicalised TAG, the lexicon consists of a set of elementary structures associ-
ated with lexical items (i.e. there is no distinction made between lexicon and gram-
mar). However, concrete TAG implementations (following the approach in XTAG
[XTAG Research Group, 2001]) represent this in a factorised way. That is, for in-
stance, instead of repeating exactly the same tree for each verb in the lexicon: manger
(eat) and préparer (to do), they factor out the lexical item and leave the tree as a tree
schema. The place (node) where the lexical item used to be is called anchor node
(marked with a ¢), and each time that a tree schema is instantiated with a given
lexical item, it is said that the tree schema is anchored by the lexical item. Figure
2.15 shows an example of tree plus semantic schema.

SemTAG is implemented following this representation and consists of (i) a set of
tree schemas, (ii) a syntactic lexicon associating lexical items with tree schemas (a
set of tree schemas grouped into a tree family —as defined in the next paragraph),
and (iii) a morphological lexicon associating lemmas with words.

In TAG, an elementary tree is the maximal syntactic projection of a lexical item,
i.e. a maximal linguistic representation reflecting the subcategorisation properties of
the lexical item. Furthermore, lexical items, for instance, verbs, need to be associated
to different elementary trees according to their different voice alternations (e.g. active
and passive), the different realisation of their arguments (e.g. cleft and clitic), and
the different type of clause they can anchor (e.g. relative clause and interrogative
clause). Therefore, in TAG, there might be several elementary trees associated with a
lexical item with a given subcategorization frame. All these elementary trees sharing
the same subcategorisation frame are grouped together into so-called tree families.
Figure 2.16 shows some of the trees contained in the family of trees for transitive
verbs, e.g. manger (eat).

Besides the redundancy eliminated by the factorization into tree schemas and

31

Chapter 2. Background and related work

a b. c d
S S S S
NP| VP NP, VP CL] VP CL], VP
Vo NPJ CL]l Vo Vo NPJ CLL Vo
e f. g
NP S S
A /’\
NPx S VP NP|] S NP] VP P

C VP NPl CL V C VP NP} V V P NPJ

que Vo ce étre qui Vo étre Vo par

Figure 2.16: Some tree schemas within the transitive verb family. (Note: feature structures
and semantics are not shown for the sake of clarity).

syntactic lexicon, XMG permits to take advantage of the fact that there might be
several tree schemas per family, and in general in the whole grammar, which share
common sub-trees (or tree fragments). The idea is that in an XMG metagrammar
these shared structures are described only once and then combined to produce com-
plete tree structures. The tree schemas in SemTAG are compiled from an XMG
factorised metagrammar.

Succinctly!?, in XMG, the (meta)grammar designer defines (minimal) linguistic
descriptions, e.g. phrase-structure tree fragments, which are given a name. Next,
these named tree descriptions can be combined by conjunction or disjunction. Some
of the trees listed in Figure 2.16 share subtrees corresponding, for example, to a
nominal subject noun phrase or share the verb phrase structure. Therefore, these
shared tree fragments are defined as a linguistic unit, i.e. a tree description, and given
a linguistically meaningful name. This name permits referring to the tree description
as a whole, then we say that the tree description is abstracted by that name. Figure
2.17 shows the tree descriptions used by the XMG rule:

ActiveTlransitiveVerb — CanonicalSubject A Active A CanonicalObject (2.1)

This rule produces the tree (a.) in Figure 2.16. However, it is possible to define

%For a complete description of grammar development in XMG we refer the reader to [Crabbé et
al., 2012].

32

2.2. The SemTAG grammar

S
S
/? V‘P V’P\ NH/‘VP
’\

NP, VP Vo NP

Vo = Vo NPJ
Canonical Subject CanonicalObject Canonical Subject
Active Active ’
Canonical Object

Figure 2.17: Simplified XMG metagrammar example.

more abstract rules. (2.2) below describes the trees (a.), (c.) and (g.) (and the

clitic-passive one not shown) in Figure 2.16.

Subject — (Canonical Subject V CliticSubject) (2.2)
ActiveTransitiveVerb — Subject A Active A CanonicalObject (2.3)
PassiveTransitiveVerb — Subject A Passive A CanonicalObject (2.4)

As can be seen in Figure 2.17, the compiled tree is associated with the names
of the tree descriptions from which it was built. These tree description names are
called tree properties. As these tree properties summarise (or abstract) syntactic
tree descriptions, it is not needed to analyze the phrase-structure of a given tree « to
know whether it contains a cleft or clitic subject. Instead, the set P(v) of tree prop-
erties associated to v can be used to check whether the tree property CleftSubject
or CliticSubject is a member of the set. We will see in Chapter 4 how tree proper-
ties associated to elementary trees are used (i) to specify syntactic constraints over
sentences and (ii) to describe syntactically related sentences to generate grammar
exercises for language learning.

The two grammar implementations we work with are:

SemFraG. An FB-LTAG for French implemented by Crabbé (2005) and extend
with semantics by Gardent (2008).

SemXTAG. An FB-LTAG for English which is a reconstruction of the XTAG
grammar ([XTAG Research Group, 2001|) implemented by Alahverdzhieva (2008)
and extended with unification-based compositional semantics as described in [Gardent
and Kallmeyer, 2003].

33

CALL

interdisciplinary
field

tutor, tool, medium
view

activity types

ICALL

Chapter 2. Background and related work

2.3 Computer Assisted Language Learning

Computer-Assisted Language Learning (CALL) is the field concerned with the study,
development and use of computer applications in language teaching and language
learning (|Levy, 1997; Levy and Hubbard, 2005]). CALL is an interdisciplinary field.
Levy’s (1997) work reports on its relation to applied linguistics, computer science
and psychology. Later on, Kern (2006) and Amaral (2011) stress the importance of
CALL research taking into account CALL practitioners (teachers and learners), Sec-
ond Language Acquisition (SLA) researchers, linguists and computer scientists. In
particular, Zock (1996), Nerbonne (2003), and Meurers (2012) highlight the opportu-
nities for and challenges of integrating technology from Natural Language Processing
(NLP) research in CALL applications.

According to Kern (2006) (in turn extending from Levy (1997)), CALL technol-
ogy can be seeing to play different roles. Providing (i) instruction, evaluation and
feedback in different language areas and skills (e.g. grammar, vocabulary, writing,
etc) as a tutor, (ii) access to visual, audio or any material useful for language learn-
ing, as well as resources and tools such as dictionaries, grammar and style checkers,
and concordances for corpus analysis as a tool, and (iii) the technological means
within which language learning can take place, for instance, sites for interpersonal

communication (e.g. multi-user virtual environments), as a medium.

Learning activities in CALL vary from workbook-style exercises, such as Fill-in-
the-blank, multiple-choice and matching, to more interactive activities that promote
contextualised, language-in-use and culturally informed language learning. For in-
stance, Li and Topolewski (2002) and Amoia et al. (2012) embed grammar exercises
within a game in a virtual environment, the Croquelandia adventure game ([Sykes
et al., 2008]) focuses on pragmatics by teaching how to make request and to apolo-
gise in Spanish, and Zip&Terry ([Li and Topolewski, 2002]) and Thethis ([Segond et
al., 2005]) provide dialogues in simulated situations. Interactive or situated learning
activities provide settings that favor “unconscious” processes involved in second lan-
guage acquisition (|[Krashen, 1982]). Nevertheless, learner “awareness” of linguistic
phenomena in the target language has been shown to be important to foster learning
(|[Long, 1991; Schmidt, 1995; Long, 1996]).

Not all of the existing CALL applications make use of NLP techniques. For
instance, Hot Potatoes (http://hotpot.uvic.ca/) provides a set of tools which
facilitate the manual edition of exercises: the exercise question, the expected solution
and adequate feedback. However, these tasks can be automated. In the search for

automation, Intelligent CALL (ICALL) applications incorporate techniques from

34

http://hotpot.uvic.ca/

2.3. Computer Assisted Language Learning

NLP and expert systems. Current NLP research for language learning focuses on
providing support for (i) the creation of learning material and (ii) the detection and

evaluation of learner errors and generation of personalised feedback.

Most of the learning material created by ICALL applications consists of so-called %ﬁir\géyrt%%if and
objective test items. That is, test items such as multiple-choice questions, Fill-in-the-
blank and cloze exercise items, whose answer is strongly constrained (the range of objective testitems
possible answers is very small or fixed) and can therefore be predicted and checked
with high accuracy. There also exist less constrained activity types, such as Fill-
in-the-blank without hints other than the sentence wherein the blank appears or
make-a-sentence exercises from a given set of words, which expect a larger set of
correct answers. Bachman and Palmer (1996) name the first type of activities selected
response and the latter limited production. According to Bachman and Palmer, the
relation between a test item of a given activity type (input given to the learner) and
the criteria for correctness (the set of expected correct answers) is an important point
in the evaluation of usefulness in test development. Moreover, the learner’s input is,
in general, evaluated through string matching against a target correct answer (or a set
thereof) and the type of feedback is restricted to "correct/incorrect®. Automatically
providing detailed feedback is a difficult task which involves interpreting the, often

ill-formed, learner input, determining errors and proposing a correction.

The motivations for designing activities that constrain the learner input are dis-
cussed in [Amaral and Meurers, 2011]. First, parsers cannot rely on the lexical and fﬁ;&ignput
syntactic properties of the language to reduce the search space. Because these regu-
larities might not be followed in the learner language. In addition, techniques such
as mal-rules (augmenting the grammar with rules that describe learner errors) or
relaxation (eliminate certain constraints from the grammar) increases the parsing
complexity. Second, a possibly more difficult task than the evaluation of form is
meaning evaluation (e.g. determining whether the answer given by the learner to
a reading comprehension question is correct). ICALL systems generally evaluate
meaning based on surface form; therefore, as there are many ways in human lan-
guages to express the same meaning ICALL systems should be able to deal with

significant variation in learner input.

To provide detailed and personalised feedback, an ICALL system needs not only fge:r?etizglgn
to model the target language and be able to analyze learner input. It might also
need to represent the learner knowledge about the target language as well as the
instructional scheme that the system might enforce; i.e. a learner model and an
instructional model. For instance, Michaud and McCoy (2000) propose a multi-

component model where the representation of the learner grammar proficiency is

35

Chapter 2. Background and related work

used both to evaluate learner input and to automatically deliver instruction that is,
as they said, "at the frontier” of learner competence (cf. [Krashen, 1982; Vygotsky,
1986]).

Our NLG-based approach aims at the creation of grammar textbook style of ex-
ercises items. It can be thought as a component part of a language tutoring system.
That is, it could be embedded into a system that implements a learner model, evalu-
ates learner input and assesses learner language skills, provides detailed feedback and
proposes an instructional model. Furthermore, our exercise generation approach can
be integrated with 3D environments resulting in more interactive activity (JAmoia
et al., 2012]). On one hand, it is more meaningful as the content of the exercise goes
with the virtual environment. On the other hand, it might be more engaging as it is
combined with gaming elements. We show how the NLG-based approach supports
the creation of exercises with a selected answer (e.g. Fill-in-the-blank giving enough
information so as to reduce the possible answers to one) as well as limited production
exercise types (e.g. Shuffle or rewrite-a-sentence type of exercises where there might
be different correct alternative answers). In the next section, we review related work

on the generation of learning content and learning activities.

2.3.1 Automatic authoring of learning material

As aforementioned, much of research works in ICALL address the creation of learning
material relying on NLP techniques. Two major subtasks are in focus. One is
concerned with the search of appropriate text material and the other one with the

creation of learning activities and test items.

Text retrieval

Some research work in CALL has focused on the readability-based retrieval of text.
The main goal is to develop CALL tools that facilitate reading and vocabulary prac-
tice. This work aims at selecting text that is appropriate to the learner comprehen-
sion capabilities (i.e. comprehensible learner input [Krashen, 1982]) and in corre-
spondence with a given learning stage (|Pienemann, 1998]). To this end, most of the
proposed approaches rely on readability measures computed on documents selected
from large corpora or the web.

Heilman et al. (2008) describe a search system, namely REAP Search. A cus-
tomised search interface permits the specification of pedagogical constraints: reading
level and text length, in addition to topic and a set of target words. This interface

accesses a database of documents that is created by crawling the web based on a

36

2.3. Computer Assisted Language Learning

set of target words and further annotating and filtering the retrieved documents by
different criteria. Some of the used criteria are date of the document, size, reading
level and text quality. They use a language model that predicts reading level. While
in the current approach predictions are based on lexicon models, a new approach is
being explored which also includes syntactic features. The objective behind this is
to extend the available criteria for selecting text allowing the teachers to focus on
grammatical features, e.g. choose a text with simple grammar constructions.

The LAWSE prototype ([Ott et al., 2010]) develops a specialised search engine
which allows teachers to look for texts that satisfy content and relevant language
properties requirements. This approach associates to each document a set of sum-
mary properties (i.e. a set of property-value pairs). These properties could sum-
marise any relevant feature which could be associated to the text and that admits a
unique value. For instance, the number of words in the text, the ratio of gerunds to
all verb forms or, any readability measure. In addition to the regular query terms
specified by users, queries contain a set of constraints based on these properties which
specify the desire range of values for each property.

Heilman et al. (2008) show that a great deal of document filtering is needed (1% of
the originally downloaded documents remain in the database of selected documents)
as well as the final teacher judgment on the select text. While they are valuable
tools providing teachers and intermediate or advanced learners with “real life” texts
for reading and vocabulary training, it is not clear how much they would help in
producing learning material for beginners or that targets training of specific grammar
points. Both projects agree that the web might not provide enough reading material
for beginners. As a solution to this issue, Ott et al. (2010) propose the use of text

simplification techniques.

Automatic generation of exercise and test items

Developing exercise and test items manually is a time-consuming task. Mitkov et al.
(2006) evaluate the efficiency gain in using a computer-aided environment to generate
test items and the quality of the generated items. The efficiency is measured by
comparing against manual edition of test items, they found that when using the
system the teacher spends in average 1 minute and 36 seconds against 6 minutes
and 55 seconds in average per item by doing it manually'!. To evaluate the quality
of the items, they run two experiments in which students were tested using a set of

both (semi-)automatically and manually generated test items. They also found that

"'This numbers are related to the “first post-editing experiment” (see [Mitkov et al., 2006]), similar
results are reported for a second one.

37

Chapter 2. Background and related work

the quality of the (semi-)automatically generated items is acceptable and compares
favourably with hat of manually produced exercices.

Thus, an important strand of research in ICALL addresses the automation of
exercise specifications relying on NLP techniques ([Mitkov et al., 2006; Heilman and
Eskenazi, 2007; Karamanis et al., 2006; Chao-Lin et al., 2005; Coniam, 1997; Sumita,
et al., 2005; Simon et al., 2010; Lin et al., 2007; Lee and Seneff, 2007]). Mostly, this
work targets the automatic generation of objective test items. These approaches use
large corpora and machine learning techniques to automatically obtain the stems
(sentences from which the exercise is built), questions (exercise question), the keys
(correct answers) and the distractors (incorrect answers) that are required by such
test items. Example (17) shows a multiple-choice exercise item illustrating this
terminology, i.e. the parts we identified in the process of generating an exercise

item. 12

(17) (Q): Do you have a dictionary? Yes, I have a good

a. some b. one c. another d. it e. mine

stem: Do you have a dictionary? Yes, I have a good one.
question: Do you have a dictionary? Yes, I have a good
keys: one

distractors: some, another, it, mine

Mitkov et al. (2006) generate multiple-choice questions to test factual knowledge
conveyed in a given source text. To do this, the question generator identifies a term
in the given text, then, by using simple rules transforms the sentence containing
the term into a wh-question sentence, finally, it chooses a set of distractors. To
extract terms, they identify nouns and NPs after parsing the input text, and then use
various criteria (e.g. most frequent term and NP following certain regular expression
patterns) to select the candidate terms. An example of test item from [Mitkov et al.,
2006] is shown in (18).

(18)
stem (source clause): Transitive verbs require objects.
question: Which kind of verbs require objects?
keys: transitive verbs
distractors: modal verbs, phrasal verbs, active verbs

Heilman and Eskenazi (2007) generate “related words” questions using an auto-
matically extracted thesaurus. Their generated items target vocabulary practice and

assessment, given a word the learner should point to the appropriate set of related

12Example extracted from http://adesl.org/.

38

http://a4esl.org/

2.3. Computer Assisted Language Learning

words (e.g. words that are near match or opposites). An example of generated item
from [Heilman and Eskenazi, 2007] is shown in (19).

(19)
question: Which set of words are most related in meaning to “reject”?
keys: {accept, oppose, approve}
distractors: {pray, forget, remember}, {invest, total, owe}, {persuad, convince,

anger }

Simon et al. (2010) generate multiple-choice questions that aim at assessing vo-
cabulary in context. They rely on a distributional thesaurus and collocations to
build the items. Given a key word, they produce an item where the distractors are
the set of words related to the key word, according to a thesaurus, but which do
not occur with a key’s collocation. Then, a sentence is retrieved from a corpus that
contains the key word and the collocation. Chao-Lin et al. (2005) also target the
generation of multiple-choice items targeting the evaluation of vocabulary in context.
That is, given a word and its intended meaning, they use word sense disambiguation
techniques to find sentences in which the word is uses with the intended meaning.

Lin et al. (2007) design multiple-choice questions that aim at understanding the
meaning of adjectives in a given text. Lee and Seneff (2007) generate multiple-choice
items focusing on prepositions.

All these approaches to the computer-aided generation of test (and exercise) items
have shown to be useful in reducing the time spent by language instructors while
still providing items of quality comparable to those manually produced. Nevertheless,
these approaches focus mainly on reading comprehension and vocabulary, perhaps
with the exception of Lee and Seneff (2007) who focus on prepositions. Further, the
type of items are mostly intended for testing intermediate or advanced learners.

There is some work, however, that targets the generation of grammar ezercises.
By grammar exercises, we mean those exercises that aim at practicing specific lin-
guistic phenomena of the targeted language, for instance, prepositions, pronouns,
verb voice, verb forms, etc. Thus, Chen et al. (2006) describe a system called FAST
which supports the semi-automatic generation of multiple-choice and error detec-
tion exercises while Aldabe et al. (2006) present the ArikiTurri automatic question
generator for constructing Fill-in-the-blank, Word Formation, multiple-choice and
error detection exercises. These approaches are similar to the approach we propose
in Chapter 4. First, a bank of sentences is built which are automatically annotated
with syntactic and morpho-syntactic information. Second, sentences are retrieved
from this bank based on their annotation and on the linguistic phenomena the ex-

ercise is meant to illustrate. Third, the exercise question is constructed from the

39

grammar exe rcises

Chapter 2. Background and related work

retrieved sentences. There are important differences however.

First, in these approaches, the source sentences used for building the test items
are selected from corpora. As a result, they can be very complex and most of the
generated test items are targeted for intermediate or advanced learners. In addition,
some of the linguistic phenomena included in the language schools curricula may
be absent or insufficiently present in the source corpus ([Aldabe et al., 2006]). In
contrast, our generation based approach permits controlling both the syntax and the
lexicon of the generated exercises.

Second, while, in these approaches, the syntactic and morpho-syntactic annota-
tions associated with the bank sentences are obtained using part-of-speech tagging
and chunking, in our approach, these are obtained by a grammar-based generation
process. As we shall see in Chapter 4, the information thus associated with sen-
tences is richer than that obtained by chunking. In particular, it contains detailed
linguistic information about the syntactic constructs (e.g., cleft subject) contained
in the sentences in the generation bank. This permits a larger coverage of the lin-
guistic phenomena that can be handled. For instance, we can retrieve sentences
which contain a relativised cleft object (e.g., This is the man whom Mary likes who
sleeps) by simply stipulating that the retrieved sentences must be associated with
the information Cleft Object).

To sum up, our approach differs from most existing work in that it targets the
production of syntactically and lexically controlled grammar exercises rather than

producing grammar exercises based on sentences extracted from an existing corpus.

2.3.2 Natural Language Generation in CALL

As we suggested in Chapter 1, NLG techniques have been little explored within the
context of ICALL. Here, we discuss four NLG-based approaches. They are different
to ours in terms of goals and generation frameworks though in some cases, ideas
overlap.

One of the systems is a writing tutor called COMPASS-II ([Harbusch et al., 2008b;
Harbusch et al., 2009; Harbusch and Kempen, 2010]). COMPASS-II provides a writ-
ing environment for second language learning of German which markedly differs from
others. Instead of letting the learner produce a text and then parsing it to check
grammaticality and provide feedback, their approach uses a generator to assist the
learner in an incremental (“scaffolded”) sentence production providing in this way
accurate feedback. The system relies on a grammar-based (Performance Grammar
(PG, [Kempen and Harbusch, 2002]|)) generator. Grammatical information is en-

coded in lexical entries, called elementary treelets. In its graphical interface, the

40

2.3. Computer Assisted Language Learning

learner can select words from a lexicon, anchoring a treelet, and compose them into
a sentence (or phrase). The system (i) monitors the structure (i.e. treelet) combina-
tion and (ii) verifies, on demand by the learner, the final word order assigned to the
sentence. In both cases, it provides feedback based on the information provided by
the generator. What COMPASS-II and our approach have in common is that both
rely on a same concept: paraphrases. In their case, it is exploited to (a.) evaluate
the final phrase tree structure created by the learner comparing against all possible
structures licensed by the grammar for the chosen lexical items and (b.) on demand
show to the learner of all possible realisations for the chosen set of words. In our

case, it is exploited to generate controlled and varied grammar exercises.

The “Sentence Fairy” ([Harbusch et al., 2007; Harbusch et al., 2008a]), based on
the same paraphrase generator, is a tutor system to teach essay writing to elementary-
school children (indeed German as first language). The tutor simulates a “writing

conference’!?

scenario. Three exercise types are available: story reconstruction, sen-
tence combining, and word order. Exercise items of these type are automatically
generated based on a story abstract representation. The system provides an in-
terface, the “teacher mode”, where the instructor can enter simple clauses making
up a story and specifies rethorical relations thereof ([Harbusch et al., 2012]). The
clauses are parsed (using the same grammatical framework) and stored in a kind of
MRS representation (cf. Section 2.1). Rethorical relations between clauses are also
stored as predications. For instance, when producing a sentence combining exercise,
the generator will produce a set of possible syntactic realisations for each of two
sentences together with verbalisations of the rethorical relations. The task of the
learner is to choose an adequate combination of them. The Sentence Fairy system
exploits sentence generation in a similar manner we do. The underlying idea being

to generate varied exercises from few simple input (this will be discussed in 4.3.1).

Both COMPASS-IT and Sentence Fairy systems show how NLG can be used to
provide limited production type of activities getting around the issues of evaluating
ill-formed input from the learner.

Focused on error detection and providing relevant feedback, Zamorano-Mansilla
(2004) describes an approach based on the KPLM sentence generator. Concretely,
he focused on detecting errors in Fill-in-the-blank exercises and providing relevant
feedback. The exercise items (i.e. question and correct answer) are build automat-

ically from stored sentences. To evaluate whether the word provided for the blank

13The text of a story is read and understood, and modified to get a better coherent and fluent ver-
sion discussing alternative syntactic constructions and lexical choices in groups under the direction
of a tutor (a teacher).

41

Chapter 2. Background and related work

by the learner is correct, the system compute the paths through systemic-grammar
(SFG, [Halliday, 1985]) for both solutions (the expected answer and the answer pro-
vided by the learner) and compiles a set of grammatical features for each. Feedback
on the origins of learner errors is given based on these sets of features, explaining
the difference between the learner and correct solution. For instance, in Zamorano-
Mansilla’s example, for the given exercise item Don’t put your feet the table, if the
learner answer is the preposition with, the system will provide feedback using the set
of features collected for her answer, i.e. {accompaniment-process}, and those for the
correct answer, i.e. {spatio—temporal—process}.

Zock and Quint (2004) focus on the generation of exercises based on templates
and entries from a dictionary. Their approach is goal-driven as each syntactic tem-
plate is associated with a goal (e.g. comparison or definition) and the learner chooses
the sentence to be generated based on intention (goal) rather than on the syntactic
form (template) itself. Our exercise generation approach, by relying on a grammar-
based generator, focuses on providing varied and syntax-controlled exercise types. It
would be interesting to integrate in our grammar a pragmatic or functional dimension
as proposed in [Zock and Quint, 2004].

In this chapter, we have situated our generation approach and highlighted the
complexity issues that we will address in Chapter 3. We have described in detail
the grammatical framework, namely SemTAG, in which our generator builds upon.
We will make use of the definitions, properties and features discussed in this chapter
about SemTAG in the remaining of the thesis. In Chapter 4, we will put to work
the SemTAG-based generation approach for the generation of grammar exercises for

language learning.

42

Chapter 3

Optimising surface realisation

Contents
3.1 Imtroduction 44
3.1.1 On the generation of derivation trees 45
3.1.2 Using the RTG encoding of TAG derivation trees: RTGen . 49
3.1.3 Converting SemTAG to FB-RTG 50
3.2 RTGen surface realisation algorithm 61
3.2.1 RTGen’s base algorithm 62
3.2.2 Extensions to the base algorithm 68
3.2.3 String extraction from derivation trees 72
3.3 Evaluation 0 o e 79
3.3.1 Surface realisers: Genl and RTGen configurations 80
3.3.2 Constructing benchmarks for sentence generation 83
3.3.3 Comparative results on GENSEM’s benchmarks 85
3.4 Related work on efficient surface realisation 88
3.4.1 Comparison with results in previous work 88
3.4.2 Encoding into another grammatical formalism. 91
3.4.3 Chart generation algorithm optimisations 91
3.4.4 Statistical pruning oL 92
3.5 Conclusions and perspectives 92

Each sentence derivation in a TAG ([Joshi and Schabes, 1997]) yields both a
derived tree representing the phrase structure of the sentence and a derivation tree
specifying how the elementary TAG trees used to build this derived tree were com-
bined (cf. Section 2.2). Interestingly, the derivation trees generated by TAG form
a regular tree language ([Vijay-Shanker et al., 1987]). Furthermore, TAG deriva-
tion trees have been shown to provide an intermediate representation from which

both a sentence and its semantic representation can be derived (|[De Groote, 2002;

43

Chapter 3. Optimising surface realisation

Pogodalla, 2004; Kanazawa, 2007; Shieber, 2006]). They also have been shown to fa-
cilitate the reformulation of sentence generation with TAG into a constraint problem
([Koller and Striegnitz, 2002]) or a planning problem ([Koller and Stone, 2007]) for
which optimisation techniques exists. In other words, TAG derivation trees provide
a pivot language which supports both parsing (going from a sentence to its possi-
ble syntactic structures and semantic representations) and generation (going from
a semantic representation to one or more sentences). Moreover, derivation trees
constitute a simpler language keeping the necessary information from the derived
language (e.g. how elementary trees are combined) and leaving aside details about
phrase structure.

In this chapter, we propose a sentence realisation approach for FB-TAG equipped
with a compositional unification-based semantics which makes use of a feature-based
Regular Tree Grammar of TAG derivation trees (FB- RTG, [Schmitz and Le Roux,
2008]) translation. We show how the use of this FB-RT'G based approach, while pro-
viding an exact grammar of TAG derivation trees (the FB-TAG-toFB-RTG transla-

tion preserves all feature information) permits optimising surface realisation.

3.1 Introduction

The high worst-case complexity of surface realisation from flat semantics stems from
the interaction between the lack of ordering constraints in the input and lexical
ambiguity (cf. Section 2.1). Contrary to parsing where the input is a string, i.e. an
ordered list of words, the input to surface realisation is a bag of literals. This lack of
constraints on the input potentially results in an unguided exploration of all possible
combinations which in effect is exponential in the number of literals present in the
input semantics. Moreover, in a lexicalist grammar, such as SemTAG, a given literal
is associated with many different grammatical structures, the number of possibilities
to be explored is very high.

Various techniques have been proposed to cope with this combinatorics and help
improving practical run-times. To restrict the combinations tried during generation,
Kay (1996) and Carroll and Oepen (2005) propose a chart-based generation algorithm
in which only constituents with non overlapping semantics and compatible indices
are considered for combination. Kay (1996), Carroll et al. (1999) and Gardent and
Kow (2006) propose various techniques to restrict the combinatorics induced by
intersective modifiers all applying to the same structure. To lessen the effect of
lexical ambiguity, Koller and Striegnitz (2002) and Gardent and Kow (2007) describe

two alternative techniques for reducing the initial search space. Carroll and Oepen

44

3.1. Introduction

v E .
o™ % word labels valency
peter likes mary likes 0 { subj,obj,adv* }
Peter | { subj,obj }]
Mary | { subj,obj } 0

Figure 3.1: Example of TDG parse tree and lexicon.

(2005) use “packing” to reduce the number of structures built during generation by
grouping equivalent ones. We will discuss related work on efficient surface realisation
in Section 3.4. However, first, we present Koller and Striegnitz’s (2002) proposal from

which ours is inspired.

3.1.1 On the generation of derivation trees

Koller and Striegnitz’s (2002) proposal arises from the observation that surface re-
alisation from flat semantics has combinatorial properties similar to the problem of
parsing free word order languages. A natural question then is whether it is possible to
make use of existing tools for parsing free word order languages for generation from
flat semantics. They propose to encode generation with TAG as dependency parsing
with Topological Dependency Grammar (TDG, [Duchier and Debusmann, 2001]),
which together with its parser, is developed considering the problem of parsing free
word order languages.

In a TDG grammar, the parse tree is an unordered tree whose nodes are in one-
to-one correspondence with the words in the sentence and whose edges are labelled
with syntactic relations. Word order in TDG is initially free but there is a separate
mechanism to specify constraints on linear precedence. The lexicon associates words
with a set of lexical entries each of them specifying different dependency constraints.
Each lexical entry specifies two sets of labels: labels is the set of allowed labels as
incoming edges and valency the set of allowed outgoing edge labels. See Figure 3.1
for an example of TDG parse tree and TDG lexicon corresponding to the sentence
Peter likes Mary. In this example, the lexical entry for likes specifies that it does not
accept any incoming edge, thus it could only be used to label a root node in the tree,
but requires two compulsory outgoing edges, labelled subj and obj, and any number
of outgoing edges labelled adv. The entries for Peter and Mary, on the contrary, do
not allow any outgoing edge but require one incoming edge whose label should be
in the labels set: subj, obj. The parser builds all trees that can be built using a

lexical entry for each word in the input sentence.

'Example extracted from [Koller and Striegnitz, 2002]

45

Chapter 3. Optimising surface realisation

Koller and Striegnitz’s encoding. @ The TAG variant they consider is a TAG
grammar (|Joshi and Schabes, 1997|) without feature structures but with a syntax-
semantics interface in which non-terminal nodes of elementary trees are decorated
with semantic indices (an example grammar is shown in Figure 3.2). Each elementary
tree is associated with a semantic representation.

The idea underlying this encoding is to obtain a dependency grammar that mod-
els how a TAG elementary tree could be use in a derivation. That is, given a TAG
elementary tree, (i) which operations (substitution or adjunction) can take place
at which of its nodes and (ii) how the given tree could be combined (substituted
or adjoined) into another tree. The derived dependency grammar consists of a set
of lexical entries each of them derived from a TAG elementary tree in the original
grammar. These lexical entries are associated with two sets of constraints. One of
the sets, called walency, models point (i) and the other, called labels models point
(ii).

The encoding can be summarised as follows. Let us assume a TAG grammar
G as introduced in previous paragraphs (for which an example was provided in
Figure 3.2). The encoding makes use of two types of edge labels: substitution (Subst)
and adjunction (Adj). An edge with a substitution label Subst,;, from « to
indicates that 8 should be plugged into the p-th substitution node in « that has
label A and index i. subst(A) is defined as the maximum number of occurrences
of A as the label of substitution nodes within any elementary tree of G, and p takes
values from subst (A). An edge with an adjunction label Adj 4 ; from « to 3 specifies
that 8 adjoins into some node in « with label A and index ¢ admitting adjunction.
Given an elementary tree 7 in G with root label category A, root semantic index ¢,

and lexical anchor w, a lexical entry [,, is built in the following way:

e labels set

— if 7 is an initial tree, then [,, accepts incoming edges labelled as Subst 4,
where p € subst (A).

— if 7 is an auxiliary tree, then [,, accepts incoming edges labelled as Adj 4 ;.
Each label Adj 4,; encodes an adjunction site which is determined by the

category A and index 1.
e valency set

— [, requires one outgoing edge label for each substitution node of 7 labelled
as Substp , p, where B is the category label of the node, x the semantic
index decorating the node, and p is the p-th substitution with label B : x

n 7.

46

3.1. Introduction

S:e
N: v
NP: v NP|:t VP:e NPl:v . —
N: | NPt N# 'y ADJNA
DetV4 Nl:w i V:e ‘ ' |
m‘z e voiture ‘ Tex rouge
achéte

Figure 3.2: An example of TAG grammar variant used in Koller and Striegnitz for the
French version of the sentence Tex achéte une voiture rouge (Tex buys a red car), with
semantics { tex(t), achéte(e, t, v), voiture(v), rouge(v) }.

atom labels valency

start 0 { Substg,.1 }

achéte { Substg.i } { Substnp,1, Substnpy 2,
Adjypex, Adjy.ex }

tex { Substnpi1, Substypra b { Adjnpex }

mdef { SUbStNP,U,la Substh,mQ } { Adij,U*, SubstN,UJ }

voiture { Substy 1 } { Adjno* }

rouge {Adjn., } 1]

Table 3.1: Encoding of the grammar in Figure 3.2

O—s
Ubstsﬁl\u\ b
- subst
‘oe’w““ : StNPy2
De,o substuNA T
. ‘:"CIJ.N,V\L—_|
start tex achete voiture indef rouge

Figure 3.3: Dependency tree

— ly requires an arbitrary number (possibly zero) of outgoing edge labels
for each adjunction site in 7 labelled as Adjpg, where B is the category

of the node and x the semantic index decorating the node.

A special entry for the start symbol is added with valency Substgy 1, where S is
the root category and k is the semantic index with which generation should start. By
applying the encoding to the TAG grammar in Figure 3.2 the dependency grammar
shown in Table 3.1 is obtained (column atom refers to the semantic predicate).

Parsing with the encoded grammar produces a parse tree (an example is shown
in Figure 3.3) which is very close to a TAG derivation tree: nodes are labelled with
elementary trees, edges represent substitution and adjunction operations. From this

parse tree (derivation tree) the derived tree could be trivially constructed.

Generation using a constraint based dependency parser. Koller and Strieg-

47

Chapter 3. Optimising surface realisation

nitz’s (2002) approach showed favorable results in its evaluation and comparison
with other approaches. They achieved comparable running times to those obtained
in [Carroll et al., 1999] (and reported later improvements of Carroll et al.’s (1999)

algorithm) for the following sample sentences:

(20) The manager in that office interviewed a new consultant from Germany.

(21) Our manager organised an unusual additional weekly departamental conference.

Earlier on, Gardent and Thater (2001) proposed using a constraint based parsing
approach for generation with a variant of TAG: in which elementary tree descriptions
are associated with semantics and tree nodes are decorated with semantic indices.
They use a Description Grammar (DG) encoding where the basic building units are
tree descriptions instead of trees. The DG takes an axiomatic view of the grammar
(rather than generative, i.e. derived trees constructed as a sequence of rewriting
steps). In their encoding, a tree description is a conjunction of literals that specify
either the label of a node (with combining constraints) or the position of a node
relative to other nodes (dominance links). The authors report that the performance
of the constraint-based generation approach decreases with the length of the input.

Several remarks need to be done about what has been discussed so far. First,
both approaches, i.e. Gardent and Thater (2001) and Koller and Striegnitz (2002)
approaches, benefit from the constraint-based encoding of the global constraints
stated by the grammar. In particular, the propagation step, once a decision (or
choice) in the process of generation has been taken, filters out those variable values
which are inconsistent with the current state of the problem. In other words, the
propagation step dynamically prunes the search space.

Second, a difference between the approach in [Gardent and Thater, 2001] and the
approach proposed by Koller and Striegnitz (2002) is that the former builds derived
trees while the latter builds derivation trees. By building the derivation tree, the
second approach only needs to take into account essential information about how
trees could be combined. In contrast, the first approach needs to keep track of the
internal structure of the elementary tree.

Finally, Koller and Striegnitz’s (2002) constraint based dependency parser imple-
ments two important mechanisms to deal with ambiguity and intersective modifiers.
The so-called “selection constraints” restrict which lexical entry should be selected
for a node. When more than one lexical entry applies for a node and they contain
“shared information” this information is assigned to the node without committing
to any thereof. In other words, the parser implements a packing mechanism. Fur-

thermore, they allow for multiple adjunctions in a node, this permits to get rid of

48

3.1. Introduction

the 2" intermediate structures as well as the n! possible ways to order the n given
modifiers.

It is difficult to assess how much of the efficiency is due to the parser and how
much to the grammar conversion. Intuitively however, the motivation underlying
the construction of a derivation rather than a derived tree is that efficiency might
be increased because the context-free derivation trees (i) are simpler than the mildly
context sensitive trees generated by an FB-TAG and (ii) permit drawing on efficient

parsing and surface realisation algorithms designed for such grammars.

3.1.2 Using the RTG encoding of TAG derivation trees: RTGen

The encoding proposed by Koller and Striegnitz (2002) models how a TAG elemen-
tary tree can be used in a derivation leaving phrase structure information aside.
The parse tree obtained in Koller and Striegnitz’s approach can be seen as a TAG
derivation tree. Its nodes are labelled with TAG elementary trees and the edges are
labelled with the type of operation and the tree node at which the operation took
place. In fact, their dependency grammar encoding of TAG describes the sort of
dependency structures shown on TAG derivation trees.

Taking inspiration from Koller and Striegnitz’s (2002) approach, we formulate
the TAG based surface realisation task as the problem of building derivation trees
rather than derived trees. However, to model TAG elementary trees participation
in a derivation we rely on another grammar formalism: feature-based reqular tree
grammars ([Schmitz and Le Roux, 2008|).

The language of TAG derivation trees is a regular tree language, i.e. can be gen-
erated by a regular tree grammar (cf. [Vijay-Shanker et al., 1987; Shieber, 2006]).
Different (equivalent) encodings of regular tree grammars of TAG derivations exist,
but alike Koller and Striegnitz (2002) they do not take into account feature struc-
ture information. Based on this observation, Schmitz and Le Roux (2008) define
feature-based regular tree grammars and a translation from FB-TAG to FB-RTG.
The translation of the feature structures allows the transfer of all the linguistic in-
formation from the FB-TAG of derived trees to the FB-RTG of derivation trees.

Intuitively, each TAG elementary tree is represented as the fragment it con-
tributes to a derivation tree. Each elementary tree is encoded as a rule of an RTG
grammar ([Comon et al., 1997], we given the RTG definition in the next section) of
the form C' — ~(Ry--- R,) where: (i) C defines the type of contribution the ele-
mentary tree provides to a derivation, i.e. in which operation it could participate in,
(ii) Ry,--- , R, describe the requirements of the elementary tree within a derivation,

i.e. which type of operations should /might take place on that tree, and (iii) v is the

49

Chapter 3. Optimising surface realisation

elementary tree name. The diagram below illustrates a step in a derivation where a
tree a has been combined with the trees oy ---a;_1, ;41 - g and 7. In turn, the
tree v needs to be completed and requires either the adjunction or substitution of

TAG elementary trees satisfying Ry - - - R,,.

all.m..ak /’\
R Ry,

This is very close to the lexical entries of the dependency grammar encoding of
Koller and Striegnitz (2002), the right-hand side corresponds to the incoming edges
or labels set and the second to the outgoing edges or walency set.

Contrary to the approaches in |[Gardent and Thater, 2001| and in [Koller and
Striegnitz, 2002], this encoding embodies a generative view of grammar: derivation
trees are constructed as a sequence of rewriting steps. To build derivation trees with
FB-RTG we need an algorithm that implements the derivation relation defined for
RTG, the major requirement here being that the algorithm should be “guided” by
the input semantics. To this end, we implement an algorithm that is a variant of the
Earley algorithm ([Earley, 1970]) which provides a mized strategy for the construc-
tion of the derivation tree: both top-down predictions and bottom-up completions.
We developed a surface realiser based on this algorithm called RT'Gen.

RTGen’s generation algorithm also needs to deal with lexical ambiguity and the
lack of ordering information in the input flat semantics. RTGen draws on Kay’s
(1996) and Carroll et al.’s (1999) chart generation approaches, and makes use of the
now standard semantic criteria proposed in [Kay, 1996; Carroll et al., 1999] to reduce
the number of combinations tried out by the realiser. Based on ideas from [Carroll
and Oepen, 2005|, RTGen implements a local ambiguity packing technique which
has shown to improve realisation run-times in practice.

In what follows, we first present the FB-TAG to FB-RTG translation (Section
3.1.3), we then present the RTGen realiser we developed (Section 3.2).

3.1.3 Converting SemTAG to FB-RTG

First, we will present the TAG to RTG conversion i.e., the conversion for a grammar
without feature structures. Then, we go on to indicate how feature structures are
converted. For a complete description of this FB-TAG to FB-RTG conversion, we
refer the reader to [Schmitz and Le Roux, 2008|.

20

3.1. Introduction

A regular tree grammar ([Comon et al., 1997]) is a grammar whose rules rewrite
a non-terminal symbol as a tree whose internal nodes are each labelled with a termi-
nal symbol and whose leaf nodes are each labelled with a terminal or non-terminal
symbol.

Formally, an RTG is a 4-tuple G = (S, N, F, R) consisting of an axiom S, a finite
set NV of zero-arity non-terminal symbols with S € N, a set F (disjoint with A') of
terminal symbols each having a fixed arity, and a finite set R of production rules
of the foom A — [, with A a non-terminal of N' and 8 a term over FUN. A
term over some set of fixed-arity symbols M is defined recursively as a symbol of
M applied to n arguments with n equal to the arity of the symbol and each of the
arguments being a term over M. A set of fixed-arity symbols is also called a ranked
alphabet, and the set of terms over the ranked alphabet M is written T'(M).

The language described by an RTG is a regular tree language. A given RTG
G = (S,N,F,R) describes the language consisting of all terms ¢ over F such that
the axiom S can be rewritten as ¢ via a series of rewrites licensed by the rules in R.
In other words, to derive a term of the language, we start from the axiom and apply
rules until we have a term containing no non-terminal symbols.

More formally, the derivation relation —¢ associated to G is a relation on pairs
of terms of T'(F UN) such that s —¢ t if and only if there is a rule A — o € R such
that substituting « for an instance of A in s gives t; and the language generated by
G, denoted by L(G), is {s € T(F) | S —{ s} with —/ the transitive closure of —.
The subscript G on the symbols —¢g and —% can be omitted if the grammar is clear
from the context.

As is well known (|Vijay-Shanker et al., 1987; Shieber, 2006]), RTG can be used
to generate the derivation trees licensed by a TAG grammar. Intuitively, the RTG
representation of a TAG elementary tree is a rule that rewrites the requirement
satisfied by that tree as a local tree whose root is the tree name and whose leaves
are the introduced requirements. A substitution / adjunction requirement for a tree
of root category X is written as Xg and X 4, respectively.

Figure 3.4 shows in the right side the rules of an example RTG which describes
the derivation trees of the toy TAG grammar depicted in the left part of the figure.
The RTG terminals ({ the, man, runs, often, €}) refer to the elementary trees of
the TAG grammar while its non-terminals ({NPgs, Sg, NPa,V Ps,Va,S4a, Dety})
describe the adjunction and substitution requirements that can be introduced by
an elementary tree. Further, each elementary tree ¢ in the input TAG gives rise to
an RTG rule whose left hand side (lhs) expresses the syntactic requirement that ¢

can satisfy and whose right hand side (rhs) expresses the syntactic requirements it

o1

Chapter 3. Optimising surface realisation

rl. NPs — man(NPjy)
S VP r2. Ss — runs(S’A NPg VPy Vy)
T 3. VPy — often(VP
T often VP* A ften(VPa)
NP, VP rd. NPy, — the(NPA DetA)
NP \ R r5. NP4y — €
\%

man ‘ Det NP* r6. SA — €
rUns | r7. Vi — €
the 8. VP4 — €
r9. Detpy — ¢

Figure 3.4: Example RTG describing the derivation trees of a toy TAG.

introduces. If the tree is an auxiliary tree, it can satisfy an adjunction requirement
and the category labelling the lhs of the RT'G rule is subscripted with A. If it is
an initial tree, the lhs category of the RTG rule is subscripted with S to indicate
that it can satisfy a substitution requirement. Further, each node in the elementary
tree which either requires a substitution or allows for an adjunction introduces a
daughter node in the rhs RTG term whose category reflects the allowed/required
adjunction/substitution. To capture the fact that adjunction is optional, there are
additional rules allowing any adjunction requirement to be rewritten as the symbol
€, a terminal symbol of the RTG.

We just saw how to map a TAG to an RTG of TAG derivations. Schmitz and
Le Roux (2008) further extend this mapping to FB-TAG as follows. In the resulting
FB-RTG, each non-terminal symbol on the left and right side of a rule is marked up
with a feature structure with top and bottom attributes. For a symbol on the right
side, the values of those attributes are equal to the top and bottom feature structures
of the corresponding TAG tree node (substitution node or adjunction site). For the
symbol on the left, they are the interface of the tree to any node into which the tree
is inserted. When an initial tree is inserted into a substitution node of another tree,
its root node’s top unifies with the substitution node’s top. Thus, the interface of
the initial tree is its root node’s top, and this appears as the top attribute of the
symbol on the left side of the corresponding RTG rule. For an auxiliary tree, the
interface is the top of the root node and the bottom of the foot node (cf. Section
2.2.2), so these appear as the top and bottom, respectively, of the left side of the
corresponding rule.

To run some examples, let’s take up again the example grammar in Figure 3.2
Section 3.1.1 but this time we build the SemTAG version (i.e. an LTAG with feature

structures and semantics). The resulting grammar is shown in Figure 3.5.

There will generally be co-indexed feature values in a rule. In a substitution rule

02

3.1. Introduction

S idx O
b: |label P

mode ind

NPb' idx B
" [det + idx ¢ e v
, |label L1 . _|1abel L2
| det + . |:id]’3‘ l 1? Yl det +
: abe .
. {iddx B NP\L func suj VP " o NP\L func obj
et - .
DET NP* idx v b: [label LE}
b: [label 12 |
det - .. [iax B
une V. label LE
b [idx e
Iy : une(v, hy, hs), tabel 15
geq(hr, I2) achéte
l5 : achete(e, t,v
b b)
NP idx v
b: |label 12 NP -
NP idx v det D idx t
b: |label 12 b: label 16
det det +
nomProp +
idx v
t: |label 12
voiture det D
NP* ADJ Tex
b: [det]
o : voiture(v ‘ .
? @) rouge lg : tex(t)

Iy : rouge(v)

Figure 3.5: An example SemTAG sub-grammar selected for the input {l; :
une(v, hy, hs), qeq(hr,l2),la @ voiture(v),ls : rouge(v),ls : achete(e,t,v),lg : tex(t)} cor-
responding to the sentence Tex achéte une voiture rouge (Tex buys a red car). Note: capital
letters represent variable values (underspecified feature values).

such as (22), which is a translation of the Tez tree from Figure 3.5, the top value
of the left side symbol is equal to the top feature structure of the root node of the
tree, and therefore is co-indexed with the top value of the right side symbol that
embodies that node. In an epsilon rule such as (23), the top and bottom values
on the left side are co-indexed with each other to enforce the requirement that the
top and bottom feature structures of each node in the derived tree must unify (cf.
Section 2.2.2).

(22)

NPS[top o — Tex(N Paftop T)
idx,label t,16:|

bottom

det +
nomProp +

93

Chapter 3. Optimising surface realisation

(23)

NPA top — €
bottom

rl. NP, e[— une(NPy [t] T Dety)
idx v b idx v
b |label 12 det +
det
Uy : une(v, hyr, hs), geq(hy, l2)
r2. Sg [t } — achete(S [t T NPg idx t VP idx fe)
idx O ¢ [label L1 label P
b |label P det + idx B
mode ind func suj label LE
Va idx B NPg idx v)
label LE label L2
t
id . det +
1ax .
f b
b {label 15 mme ob)
l5 : achete(e, t,v)
r3. NPg [t } — voiture(NPy [¢ T)
idx v]
b |label 12
det -
lo : voiture(v)
rd. NPy [t — rouge(NP4 [t [T 1 Adja)
b [det -] idx v
b [label 12
det D
lo : rouge(v)
rb. NPg [t } — Tex (NP4 [t T)
idx,Ibl t,16
b det —+
nomProp +

lg : tex(t)

r6. NPy [y[p|—e r7. Saf¢t[@p]|—c¢
b[Pp bllp

Figure 3.6: FB-RTG translation of the SemTAG sub-grammar shown in Figure 3.5

Figures 3.5 and 3.6'% illustrate the FB-TAG to FB-RTG conversion explained in
previous paragraphs.
The derivation relation defined for FB-RT'G makes use of combinations of rewrites
derivation relation and unifications of terms. The FB-RTG defined by Schmitz and Le Roux (2008)

15Note that in the translation from the tree for une the indew variable B is translated with the
value v, this is because when the foot node contains a top feature structure it is kept for further
unification, here for simplicity we already take the corresponding value for the variable B.

54

3.1. Introduction

is a 5-tuple G = (S,N,F,D,R), where S, N, F, R are defined as in the RTG ver-
sion. In addition, an FB-RTG includes an extra set, that is the set D of features
structures; and the rules in the set R are of the form, as illustrated previously by
examples, (A,d) — a((By,d}),...,(Bp,d,))) where B, Bj,..., B, are non-terminals
and d,d,...,d] are features structures. The derivation relation of an FB-RTG G
—¢ is defined (cf. [Schmitz and Le Roux, 2008]) as follows. Two pairs of terms
from T(F,N x D) and their set of substitutions stand in a derivation relation
(s,e) —¢ (t,€¢) iff: 3 context C' in s and rule (A,d) — a((B1,d}),...,(Bn,d),)))
in R with fresh variables in the feature structures, a structure d’, and a unification
o verifying:

s = C[(A,d)], t = Cla((By,0(dy)), (Bn, o(dy)))];

o =mgu(d,e(d)) and ¢’ =coe

Below, we follow some steps of an example FB-RT'G derivation with the grammar
in Figure 3.6'% to illustrate the working of the feature structure unifications and
how each derivation step embodies a tree combination operation (substitution or
adjunction of the original TAG grammar). We start the derivation from the initial
symbol S = Sg and apply rule r2 (derivation steps (0:) and (1:)). The step (2:)
expands the first right-hand side non-terminal of (1:), i.e. S4, using the epsilon rule
r7, this step is equivalent to a top and bottom feature structures unification of a
node in TAG terms. To expand the next non-terminal of (1:), N Pg, there are two
candidate rules: r3 and r5. We choose the rule r5, corresponding to the tree for
Tex. Then, the N P4 non-terminal in (3:) is further expanded using the epsilon rule
r6. When unifying the left-hand side of 76 with NP4 in (3:), the top and bottom
feature structures are unified. As all unification steps succeed the partial derivation
succeeds, but it is only in step (4:) that we know that the choice of the rule r5 was

the right one.

18We omit some features “label, nomProp, mode and func” to simplify the example

95

Chapter 3. Optimising surface realisation

0: ((S,])7{})

[t: Top
1: ((achete(S NPg
t

PR e e N e R i

+

2: (ep, {1p — ,0t — 1p}) 3: (Tex(NPy
[iax o

) {2t — i)
t 2t idx ¢
{ [idx tﬂ |:det J
b
det +

4: (ea, {21p — 21p — 2t})
idx t
|:det 4}
If on the contrary, we would have chosen the sequence of rewriting steps using

rules r3,r4,r1,r6, the derivation would have failed as we would have encountered a

unification failure in the last step (applying epsilon rule 76) due to the feature idx.
Below, the unsuccessful derivation steps:

0: ((s,[t: Top]),{})
1: ((achete(Sy NPg VPy l Va NPg), {0t — Top})
t 0t {t |:idx 6 ” t [iax O] t [idx B] {t {idx v”
b [iax O] det + bliax B]| |bliax ¢ det +
2: (ea, {1lp — ,0t — 1p}) 3: (voiture(NPy
[idx o}

4: (rouge((NP4y

t 21t
idx v
b
|:det D}
), {211t > 21¢, D — —})
t 211t
ids v]
b
|:det +_

6: (ea, {2p — ,2p — 211t})

idx v
det +

), {21t — 2t})

5: (une(NPy

o6

3.1. Introduction

The derivation in the second N Ps of (1:) involves the application of the sequence
of rules 73, r4,r1,76. Note that in step (i+1:), if we apply rule 76 we obtain a feature
unification failure (i.e. in TAG terms, if after substituting the tree voiture into the
tree achete we try to unify the top and bottom features of the node where substitution
took place). Similarly, if we would have tried the derivation sequence r3,r1,74,r6,
we would have found a feature unification failure (i.e. again, in TAG terms, if we
look the corresponding elementary trees in the FB-TAG grammar in Figure 3.5, the

successful derivation sequence is adjoining the tree for rouge into the tree for voiture).

0: (S, D)
[¢: Tor]

t: Top
\
1: ((achete(-+ -+ NPg . Yo fooen H
|:t |:1dx v:|
det +
------ i+1: (voiture(NP4y), {5t — 1))
t 5t idx v
|: |:idx vi|:| |:d9t +i|
b
det -
(24) i+2: (rouge((NPy), {51t — 5t})
t
|: |:idx v:|:|
b
det D
i+3: (une(NP4y), {511t — 51t, D +— —1})
t 511t
|: |:idx v:|:|
b
det +
i+4: (ea, {bp — ,5p — 511t})
idx v
|:det +:|

Figure 3.7 shows a complete derivation for the sentence Tex achéte une voiture

rouge (Tex buys a red car) with the FB-RTG grammar of Figure 3.6.
Yachete

€ QTer € € Qyojture

€ ﬂmuge

ﬁune

€

Figure 3.7: FB-RTG derivation.

o7

left-corner
transformed
grammar

Chapter 3. Optimising surface realisation

Schmitz and Le Roux (2008) argue that derivations in FB-RTG are not very
predictive, because substitution sites are only fully defined once all adjunctions have
taken place. Figure 3.8a shows a derivation tree for the sentence One of the cats has
caught a fish with the normal FB-RTG translation that exemplifies their point. That
is, the subject/verb agreement in the main verb node is only determined in step (5:),
i.e. after all adjunctions have taken place. More generally, Schmitz and Le Roux’s
observation is that substitution sites admit their expansion by most of the initial
trees because their root top feature structure is often underspecified (e.g. trees for
voiture and Tex in FB-TAG grammar in Figure 3.5).

Thus, Schmitz and Le Roux propose two ways of encoding an FB-TAG. The
one we have seen so far, i.e. FB-RTG, and another variant which is a left corner
transformation, viz. left-corner FB-RTG. This transformation enforces derivations
in a different order: adjunctions at root nodes are applied first, i.e. before the initial
tree substitution. Figure 3.8b illustrates such a derivation for the same sentence. In
this case, information about subject/verb agreement becomes available earlier, i.e.

after the first adjunction.

' Qgqught [<= L a Caugh’t«[\agr x=3g]
2 acats 6 Bhas [\agr x=3sg] \‘8\=\&ﬁsh S Bhas [\'ﬁ;gr x=3sg] e
3 Bihe € o Ba ‘3= 5071@_ of ‘ 7: € o: Ba
4 Bone_of 10:€ 4 ﬂ‘the 10: Qfipy
5: a‘cats
(a) (b)

Figure 3.8: FB-RTG derivation tree (a.) and left-corner FB-RTG derivation tree (b.) for
the sentence One of the cats has caught a fish. Node labels of the derivation trees start with
as and (s indicating whether they correspond to an initial or auxiliary tree respectively.

To obtain derivations in reversed order, initial trees and auxiliary trees that
adjoin at root positions are translated in a slightly different way'”. An example of a
transformed RTG grammar is shown in Figure 3.9. New e-rules of rank 1 performing
top/bottom unifications and rewriting only non-terminals subscripted with S, e.g.
N Pg, are introduced. Root nodes of initial trees are not present in the right-hand

side of the corresponding FB-RTG rule, because there will be no root adjunction

17 Auxiliary trees that do not occur at the root are translated in the same way, auxiliary trees
that occur at root positions are translated in both ways.

o8

3.1. Introduction

rl. NP — man
r2. S = runs(NPs VPs Vy)
5 Pl 3. VPi — often(VPy)
T often VP* rd. NPy — the(NPa Detys)
e PRV . 5. NP — the(NP Dety)
| v o~ 6. NPs — €(NP)
man | Det NP* r7. Vi — ¢
runs tl‘le r8. NPy — ¢

r9. VPy — ¢
rl0. Dety — €

Figure 3.9: Example of left-corner transformed RTG describing the derivation trees of a
toy TAG (the same as that of Figure 3.4).

taking place at root nodes of initial trees. We can think of the left-corner translated
auxiliary trees that adjoin into root positions as playing the role of initial trees where
the foot node acts as a sort of substitution node.

The features in the transformed RTG are translated in a different way too (cf.
[Schmitz and Le Roux, 2008| for a formal definition about the translation of the
features in the left-corner transformation). In Figure 3.10, we recall some of the
elementary trees of the FB-TAG example grammar in Figure 3.5. In Figure 3.11, we
show the left-corner FB-RTG rules corresponding to those trees in Figure 3.10. For
FB-RTG rules from initial trees, the lhs top and bottom features are the top and
bottom features of the root node of the corresponding initial tree. For FB-RT'G rules
from auxiliary trees adjoining into root nodes, the lhs takes the features from the
root node of the auxiliary tree and the “left-most” non-terminal of the right-hand
side contains those feature structures that make up the interface of the tree (i.e.
those feature structures that are involved in adjunctions: top of the root node and
bottom of the foot node).

In the present section, we have explained the FB-TAG to FB-RTG translation.
We described how TAG elementary trees are encoded into RTG rules including fea-
ture structures. In our FB-TAG grammar, elementary trees are associated with a
unification-based compositional semantics and tree nodes are decorated with unifi-
cation variables from that associated semantics (cf. Section 2.2.4). FB-RTG rules
other than the epsilon rules are also associated with a semantic formula containing
unification variables. These are carried over as is from the FB-TAG trees to the
FB-RTG rules. This is possible because feature structures are preserved and so are
those features corresponding to the unification variables from the associated semantic
formula (e.g. idx and label).

In the following sections, we present the core derivation tree generation algorithm

99

Chapter 3. Optimising surface realisation

NPb: |:idx B] NP e
det + NP |:idx v:| b: |:lele1 g
b: [label 12
|:idx B] det
: det .
DET NP* idx v t: |:id1)3(1 I,2
b: |label 12 voiture N : det b
Let } NP b: [det } ADJ
une Iy : voiture(v) Toige
Iy : une(v, by, hs), .
qeq(hr,12) 2 : rouge(v)

Figure 3.10: Recall of elementary trees for une, voiture, rouge from the grammar in Figure
3.5

lecune. NP [¢[T ﬁune(NP (t[1 Det 5)
b |:idx vi| idx v
det b |label 12
det -
l1 : une(v, hr, hs), geq(hr,l2)
lc-voiture. NP idx v || = voiture
b |label 12
det -
l2 : voiture(v)
lc-rouge NP [t[1T — rouge(NP |t [T Adja)
dx v b [det]
b [label LA
det D

l2 : rouge(v)

lc-epsilonl. NPg [t T] — (NP
bAT

tT})

e-rule of rank 1

Figure 3.11: Left-corner FB-RTG translation of the trees voiture, rouge une of the Sem-
TAG grammar fragment shown in Figure 3.10

based on the FB-RTG encoding'® of FB-TAG.

'8Both the original and the left-corner transformed one.

60

3.2. RTGen surface realisation algorithm

3.2 RTGen surface realisation algorithm

SemTAG (the FB-TAG for English and French described in detail in Section 2.2) is
a wide-coverage reversible grammar which associates natural language expressions
with syntactic trees and meaning representations. When used for generation, the
input is a meaning representation (flat semantics representation of the form discussed
in 2.2.4) and the output is the set of strings associated by the grammar with the
given meaning. Furthermore, in the same way that lexicalised grammars permit
stating a parsing algorithm in two major stages: sub-grammar selection and structure
combination (cf. Section 2.2.2), they also enable this division in generation. The
difference being that instead of selecting structures from the grammar for lexical
items in the input string; in generation, we select grammar structures associated
with semantic representations from the input semantics. Thus, our SemTAG based
surface realisation algorithm (similarly to existing ones, e.g. |Gardent and Kow, 2007;
Koller and Striegnitz, 2002]), starts from a meaning representation and pipelines

three main phases:

e Lexical selection selects from the grammar those elementary trees whose
semantics subsumes part of the input semantics.

e Tree combination systematically tries to combine trees using substitution
and adjunction.

e Retrieval unpacks the generation forest and extracts the yields from complete

derivation trees, thereby producing the generated sentence(s).

Given an input semantics ¢, the lexical selection step will select those items
from the grammar, whose semantic representation v unifies with part of the input
semantics ¢. For instance, given the input semantics in (25-a), the lexical items
in Figure 3.12 will be selected. We recall from Section 2.2.4, that the unification
variables occurring in the lexical semantics also occur in the feature structures of the
elementary trees. After a lexical item is selected (unification of lexical semantics and
part of the input semantics), the semantic indices of the input semantic formulae are

propagated in the elementary trees’ feature structures.

(25) a. ¢ = {I1:tammy(x1), 12 : tex(x2), I3 : regarde(es, x1,x2), I3 : souvent(ez)}
b. Tammy regarde souvent Tex. (Tammy often looks at Tex)

The RTGen algorithm manipulates RTG rules describing the contribution of the
SemTAG elementary trees to the derivation tree rather than the elementary tree
themselves. In what follows, we describe the other two steps of surface realisation,

namely tree combination and retrieval (i.e. unpacking and string extraction).

61

Chapter 3. Optimising surface realisation

Sa.c Ses ls
XL/A c . L
NPJXL VPAS NP VPl
[— T
VoP'L NPJY Vesls NP2
regarde regarde
L :regarde(E,X,Y) I3 : regarde(es, x1,x2)

Figure 3.12: The lexical item in the left is selected given the input semantics in (25),
{L : regard(E,X,Y)} C ¢. Note that es,z1,x2 are constants. Thus, in the generation
process, 1 would never be instantiated with x5 or any other constant.

3.2.1 RTGen’s base algorithm

Given an FB-RTG encoding Grp_grrg from the sub-grammar Grp_14¢g resulting
from the lexical selection phase, the algorithm described in [Perez-Beltrachini, 2009]
computes L(Grp—_grra), i.e., the generation forest.

This base algorithm (|Perez-Beltrachini, 2009]) integrates several ideas and tech-
niques from the parsing literature. It draws on Pereira and Warren (1983) and
Shieber et al.’s (1995) deductive parsing framework for unification-based grammati-
cal formalisms. To avoid the repeated computation of intermediate structures com-
mon to several larger parse structures, it integrates Kay’s (1986) chart mechanism.
Finally, the adopted parsing strategy is an Earley style algorithm ([Earley, 1970])
adapted to support generation from a flat semantics.

In essence, RTGen implements a chart-based Earley-style algorithm for the FB-
RTG encoding of SemTAG. Table 3.2 sketches the Earley-style generation algorithm
stated as a deduction system ([Shieber et al., 1995]). The standard item repre-
sentation is the pair [(A,d) — To((B1,d1),..,e(B;,d;), ..., (Bpn,dy)),?]. In the first
component, the dot in the production marks the point reached in the generation of
the derivation tree. The non-terminal symbols (B;, d;) in the dotted rule are complex
non-terminals from the FRTG rules (i.e. a non-terminal symbol, syntactic category
and operation type, B; and a feature structure d;). T, is the ranked terminal of the
FRTG rule (i.e. is the elementary tree family). The second component of the item,
1, is a flat semantic formula. In the items, we do not keep track of string positions,
as is usually done when parsing a string, but rather we keep the associated semantic
formula. The algorithm starts from the initial fact, the aziom, [S" — Sg,()]. Note
that in this item the non-terminal symbol Sg is the axiom in the FRTG grammar
while the second component represents the empty semantics. As we are generat-

ing from an input semantics (i.e. the semantic input to the realiser), the subset of

62

3.2. RTGen surface realisation algorithm

the input semantics analysed so far is empty. On the other hand, in the goal item
[S” — Sge, ¢] the dot at the end of the item production means that the whole deriva-
tion tree with root Sg has been traversed. At this point, the semantics ¢ should be
exactly the input semantics. Further, inference rules are associated with a set of
constraints (side conditions [Shieber et al., 1995]). In Table 3.2, “where’-statements

describe constraints regarding semantic coverage.

Table 3.2: RTGen derivation tree generation algorithm (deductive system).

Axi _
xiom 5 9550l
Goal [S” — Sge, @] where ¢ is the input semantics.
- [(A,d) = Ta(ae (B, d;) B), ¢]
Prediction
[(B,o(d')) = Tp(e(By,0(d})), ... (B, o(dy))), ¢]
where (B,d") = T,((B1,d}), ..., (Bn,d,,)) is a rule in the grammar
with associated semantics ¢, o = mgu(d;,d’) and p N =0
a, 8 are sequences of non-terminals
: [(A,d) = To(a e (B,di) B), ¢] [(B,d) = Ty(p o), Y]
Completion
[(A,0(d)) = Ta(o (B, o(d;)) o (Co(dit1)) 9), &
where o0 = mgu(d;,d’), pNY =0 and pUp = ¢
«, B, p,d are sequences of non-terminals

The deduction procedure implemented in RT'Gen follows from the agenda-driven,
chart-based deduction procedure proposed in [Shieber et al., 1995|. Its generic steps

are:

1. Initialise the chart as an empty set of items and the agenda with the axiom
items.

2. Repeat the following steps until the agenda becomes empty:

e Select an item from the agenda trigger item.
e Add the item to the chart (if not already contained in)
e Generate all the items that are immediate consequences of the trigger

item and the items in the chart. Add the new items to the agenda.

3. If the goal item is in the chart, then the goal is proved; otherwise it is not.

In what follows, we discuss the techniques included in the RTGen derivation

63

Chapter 3. Optimising surface realisation

tree generation algorithm ([Perez-Beltrachini, 2009; Gardent and Perez-Beltrachini,
2010]).

Chart based generation

While applying the inference rules we want the derived items (or consequences) to be
“cached”, so they can be re-used instead of being re-computed when needed again in
future computations. Tabulation techniques are motivated by considering problems
which display a high degree of redundant computations and aim at keeping a cache
of the computed elements. A chart data structure in chart-based parsing algorithms
([Kay, 1986]) provides such a cache mechanism. One major cause for redundancy
in Natural Language parsing (and generation) lies in the inherent ambiguity of nat-
ural language and thereby of its grammar. In particular, in our case, because the
grammar used is a wide-coverage lexicalised grammar, lexical ambiguity (the number
of grammatical units associated with each word or lexical semantics) is very high.
Indeed, for one lexical item there might be several families with several trees. Fur-
thermore, we might choose to explore not just one but all possible solutions. Hence,
this process generates several intermediate results which are used to build several

distinct derivations.

Subsumption based blocking of new items. As a result of applying the in-
ference rules, new items are produced and we want them to be stored in the chart.
However, we need to verify that these new items have not already been produced.
This verification, in the RTGen algorithm, involves subsumption checking ([Shieber
et al., 1995]). The reason is that the RT'G grammar rules contain feature structures
with underspecified features values (cf. Figure 3.5), and sometimes underspecified
syntactic category (as in the case of epsilon rules). Therefore, newly derived items
may differ only in terms of instantiations. Instead of keeping every differently instan-
tiated item, the idea is to keep only the most general form which would be available
in the chart for further utilization in different operations. Thus, we have to check
whether a more general item has already been stored in the chart. In short, a new
item should be added to the chart only if no subsuming (more general) item already

exists in it.

Agenda based control. To control the application of the inference rules, we have
choosen an agenda-driven chart algorithm (cf. previous section). Derived items are
not directly placed into the chart but stored in the agenda (i.e. an auxiliary storage

structure). The use of an agenda allows the customization of the search strategy.

64

3.2. RTGen surface realisation algorithm

Specifically, implementing the agenda as a stack would provide a depth-first search
strategy, whereas implementing it as a queue would result in a breadth-first search.
The difference in the search strategy does not affect the results produced by the

selected tree traversal. In the RTGen algorithm the agenda is a stack.

Redundancy checking in the agenda. As pointed out by Shieber et al. (1995),
we can carry out a step in advance by verifying the existence of derived items when

they are added into the agenda.

Packed Shared Generation Forest

A packed shared forest (|Billot and Lang, 1989|) is a compact representation of a po-
tentially huge search space. In parsing, a packed forest is the compact representation
of all possible hierarchical structures covering the same phrase string. In contrast,
in generation (Figure 3.13), a packed forest is a compact representation of one or
few hierarchically (different) structures covering the same string plus several differ-
ent structures with their corresponding strings covering the same input semantics
(|[Langkilde, 2000; Carroll and Oepen, 2005]).

S

Tex achéte une voiture rouge
Une voiture rouge est achétée par Tex
{ly : une(v, hy, hs), geq(hy,12), la : voiture(v),
Iy : rouge(v), s : acheter(e,t,v),lg : tex(t)}

Figure 3.13

To construct a packed shared generation forest, the RT'Gen algorithm relies on
two concepts: (i) the “offline” generation of derivation trees ([Shieber et al., 1995])
and (ii) “item equivalence”, i.e. subsumption-based checking of new edges with iden-
tical semantic coverage ([Carroll and Oepen, 2005]).

Information about how a given item in the chart was obtained (i.e. derivation
history) is not stored in the chart together with the item. Instead, the derivation
history is separately represented by means of pointers towards chart items. At the
end of the generation process, the generation forest represents a set of derivation
trees, which could be extracted in a subsequent step.

Figure 3.14 shows an excerpt of the chart data structure for the generation from

the semantic input ¢. The arrows illustrate pointers from consequent items to an-

65

Chapter 3. Optimising surface realisation

(5) [(Ss,d') = . 9]

(3) [(Ss1,d1) = Tactive(9a1), {..}] (4) [(Ss2,d3) — 7;mssive (er2),{...}]

(1) [(NPs,d3) — e,
{l1 : une(v, hy, hs), qgeq(hr,l2), (2) [(NPs,ds) — o, {ls : tex(t)}]
Iy : voiture(v), la : rouge(v)]}

¢ = {l1 : une(v, hy, hs), qeq(hy, 12), la : voiture(v),la : rouge(v),ls : acheter(e,t,v),lg : tex(t)}

Figure 3.14: Example of items in a chart (excerpt) and generation forest for the generation
from ¢ of the sentences Tex achéte une voiture rouge and Une voiture rouge est achétée par
Tex.

tecedent items. For instance, items 1 and 2 are used in the derivation of items 3
and 4 —sharing—, further in the derivation, items 3 and 4 will be merged into item 5
—packing.

This packed shared forest mechanism comes almost for free from Earley-style
chart-based deduction framework, pointers and subsumption checking of new items.

Though, the compactness of the forest could be further improved.

As aforementioned, the verification whether an item already exists in the chart
consists in checking if there exists in the chart a more general item. If such item
does exist, the new item is considered as already existing and packed together with
the item already present in the chart. However, if the new item happens to be more
general than the one in the chart, the new item is also added to the chart without
packing taking place. This mechanism is called proactive packing (cf. [Oepen and
Carroll, 2000]). An alternative solution in this case would be to replace the more
specific chart item by the newer more general, and then packing them together. But
this implies that previous derivations involving the existing more specific item need
to be revised. This alternative mechanism is called retroactive packing by Oepen and
Carroll (2000). In RTGen’s algorithm we have implemented proactive packing which
is the straightforward solution. Nevertheless, it would be interesting to investigate
how RTGen algorithm could be modified to integrate retroactive packing.

In this packing schema, active items of the form [X — eaY] and [X — eJY]
might be also packed into a single entity when reaching a derivation point at an item
of the form [X — eY]. However, differences in o and /5 could have been factored

out by defining a more “abstract” equivalence criteria considering only certain in-

66

3.2. RTGen surface realisation algorithm

formation present on them. This can be achieved by applying restrictors ([Oepen
and Carroll, 2000]) on the grammar rules. A restrictor that removes most of the
grammatical features would result in a very compact generation forest representa-
tion and in a more laborious unpacking phase. The appropriate choice of restrictors

determines the optimality of packing.

Indexing

In string parsing, chart items standardly contain two indices, pointing at the start
and end positions of the recognised span over the input string. These positions help
not only in ensuring correctness but also in improving efficiency, as two edges are only
considered for combination whenever they are adjacent. In this way, the number of
non-productive attempts at applying the inference rules is reduced. In our problem,
because the input to surface realisation is a flat semantic formula, there are no string
positions to use. Instead, we use the information given by the semantic indices in

the semantic formulae as proposed in [Kay, 1996; Carroll et al., 1999].

Based on these proposals, RTGen implements the following mechanism for in-
dexing items in the chart. Each item is associated with two semantic indexes that we
called index and dotted-indexr. Moreover, we distinguish between active and passive
items. For active items, the index index is the semantic index associated with the
left-hand side of the rule and the dotted-indez is the semantic index associated with
the active symbol (symbol after the dot) in the right-hand side. For passive items,
we require both indices to coincide, that is we the dotted-index has the same value

as the index, in fact, as the item is passive there is no active symbol.

Semantic filter. A semantic filter is implemented based on the standard idea of
item coverage ([Kay, 1996; Carroll et al., 1999]). In our algorithm, we use this as
described in the previous section (preconditions regarding semantics in the inference
rules). First, the semantic filter in item prediction permits the prediction of new
edges only if the semantic of the newly predicted item is disjoint with the semantic
of the active one. This means that, we only predict items that would successfully
combine with others, at least from the semantic coverage point of view. Second,
the semantic filter in the item combination takes place allowing or not those item
combinations. That is, checking if their semantic does not cover the same lexical

items. When edges are combined their semantics are too.

67

Chapter 3. Optimising surface realisation

3.2.2 Extensions to the base algorithm
Further exploiting semantic indices

The indexing mechanism described in the last section, though useful in some cases,
is not always effective. As we have seen in the FB-RTG example grammar in Figure
3.6 (Section 3.1.3 p.54), for some non-terminal symbols, the index feature (idx) value
is underspecified (i.e. a unification variable that has not yet being instantiated). In
general, this corresponds to non-terminal symbols in the righ-hand side of the rules
stemming from internal phrasal nodes of the FB-TAG elementary trees. But also
the value of the idx feature might be under-specified for non-terminal symbols of the
left-hand side of the rules.

Therefore, we extend the indexing mechanism to use the semantic information,
i.e. the semantic indices, present in the semantic predicates associated with each rule
to better guide the prediction and completion operations. We combine information
about semantic indices (distinguished index and argument indices) in the predicates
of the input semantics ([Copestake, 2008; Copestake, 2009]) with information about

the type of the non-terminals (representing substitution or adjunction sites).

In prediction from an active item of the form (A,d) — (B, d;)a with semantics
rel(x1,xa,..,x,), only new items stemming from rules whose left-hand side unifies
with the non-terminal symbol (B,d;) (as stated before, Table 3.2) and whose asso-
ciated semantics has some index belonging to the set z1,xo,...,x, will be created.
During prediction this constraint helps in reducing the work carried out. It might
happend that the idx features in the left-hand side of the FB-RTG rules are under-
specified (see for instance, rules r3. and r4 corresponding to initial trees in Figure
3.6 p.54).

For completion, given a semantic predicate of the form rel(zq, o, .., z,) associ-
ated to some item, we differentiate two sets of semantic indices. One, is the single set
that we call offered index comprised of the distinguished index ([Copestake, 2008;
Copestake, 2009]), i.e. x7. The other, is the set of argument indices that we
call required indices, i.e. x9,...,z,. Given an active item of the form [(A,d) —
o(B,dy) a, v], it will be combined with a passive item [(B,d') — ey, ¢, if (B, d;)
and (B,d') unify and their semantics do not overlap (as before Table 3.2) and if:

- (B,dy) is of type subst, the intersection of the set required indices of the active

item with the set offered index of the passive item is not empty.

- (B, dy) is of type adj, the intersection of the set offered index of the active item

with the set required indices of the passive item is not empty.

68

3.2. RTGen surface realisation algorithm

Blocking the proliferation of incomplete intermediate structures

In the FB-RTG derivation of the noun phrase Une voiture rouge followed in Section
3.1.3 we have choosen at each step the successful expansions. Our algorithm will
systematically try all possible combinations and will therefore, produce intermediate
incomplete structures such as Une voiture (cf. Section 2.1.1 where we discuss the lack
of ordering information and intersective modification problem).

Following Kay (1996) and Carroll and Oepen’s (2005) approach for blocking in-
termediate incomplete structures, we add a constraint on the composition operation.
That is, when combining a passive item with an active one at a given substitution
node X, it is required that the lower level derivation tree fragment (passive item)
inserted into a higher level derivation tree structure (active item) covers all seman-
tic predications that have a semantic index in common with the semantic index
associated to node X.

To illustrate the working of this constraint let us take again the FB-RTG gram-
mar in Section 3.1.3 p.54. We draw below a simplified version of the rules, i.e. only

non-terminals and index features, that we will use for the example:

rl. NPy4

t [— une(NPa {tT } Dety)
b [idx v] b[idx 8]

l1 : une(v, hy, hs), geq(hr,l2)

r2. Sg — achete(Sz

cmr }NPS [¢fiax o] VP [t [idx o]]]vA [t [idx E]] NPs [fiax)

b[iax o] bidx E b [idx e]
ls : achete(e, t,v)

r3. NPg [t] — voiture(NP4

tMT)
b [idx v]:|

l2 : voiture(v)

rd. NPy [t] — rouge(NPy

tT Adja)
b [idx v]:|

l2 : rouge(v)

r6. NPy |t[MP|—€ r7. Sa — €

b [P

t[P
b P

69

Chapter 3. Optimising surface realisation

Let us also assume that the input semantics is that given in (26) for the sentence
Tex achéte une voiture rouge. At some point of the generation process for this sentence,
the partial derivation given by the active item (3.1) will be produced. Following a
sequence of bottom-up completions RT'Gen’s algorithm will also produce the passive
item in (3.2), corresponding to the noun phrase une voiture rouge and the one in
(3.3), corresponding to the noun phrase une voiture. This last one is also licensed by
the rules of the grammar and will be derived, nevertheless it does not contain the
modifier rouge.

Both of the complete items, (3.2) and (3.3), could be used to rewrite the active
symbol after the dot in the active item (3.1). And further two new passive items
would be constructed. One resulting from the combination of (3.1) with (3.2) corre-
sponding to the sentence Tex achéte une voiture rouge. The other obtained from the
combination of (3.1) with (3.3) corresponding to the sentence Tezx achéte une voiture.

This last been an incomplete sentence because it does not cover the input semantics.

(26) {ls : achete(e,t,v), lg : tex(t), lz : rouge(v), la : voiture(v) Iy : une(v, hr, hs), qeq(hr,l2)}
[Ss — achete(S4 NPs VP4 V4 o NPgt [idX V]), {l5 : achete(e, t,v),ls : tex(t)}] (3.1)

[NPs|¢ [idx V]} — voiture(NPy b [idX V]o), {l2 : rouge(v), l2 : voiture(v) U1 : une(v, hr, hs), geq(hr,12)}]

b [idx v]
(3.2)

[NPs|¢ [idx v]} — voiture(NP4 P [idx V]o), {l2 : voiture(v) 11 : une(v, hr, hs), geq(hr,12)}] (3.3)

blidx v

To block the construction of such incomplete sentences (i.e. 3.1 combined with
3.3). The blockin gconstraint verifies that when rewriting the non-terminal N Pg
after the dot in 3.1 all predications in the input semantics containing the v index are
covered by the passive item used to rewrite the non-terminal. As 3.3 does not cover

ly : rouge(v), it will not be combined with 3.1.

Unpacking the generation forest

The unpacking of the generation forest consists in extracting each individual deriva-
tion tree out of the derivation forest. To do this, the basic extraction procedure starts

from each goal item of the form [S’ — Sge, ¢| where ¢ is the input semantics (cf.

70

3.2. RTGen surface realisation algorithm

Q- ch@nte

a-tatou

ﬂ—gelztille
B—pf’ztite
- d‘ort
ﬂ—‘la

Figure 3.15: Derivation tree with an NP containing two pre-modifiers and a relative
clause. Sentence La gentille petite tatou qui dort chante (The kind small armadillo that
sleeps sings).

Section 3.2.1) in the chart, and systematically extracts all different possible deriva-
tion trees from the combination of all different possible derivations at each packing

point.

In particular, different orderings of noun modifiers are packed into a single in-
termediate derivation structure. For instance, given the following NP with 3 in-
tersective modifiers, An easy introductory linguistic course the different orderings (i.e.
permutations) of the three modifiers, and in turn, their different derivations, will be
packed into a single chart item. For the case of intersective modifiers packing, to
extract only one derivation tree with the best modifiers orderings we could rely on a
data-driven approach. For instance, Mitchell et al. (2011) propose an n-gram based
model to obtain the best order for a given set of prenominal modifiers. This model
was found to outperform other approaches, in a semi-supervised setting obtaining

large amounts of data by using an automatic parser.

We integrated Mitchell et al.’s n-gram approach in our unpacking procedure. In
this approach, the n-gram model is built on eztracted multiple modifiers NPs —this
gave better results than building the n-gram model based on entire sentences. An
extracted NP (also called in [Mitchell et al., 2011]| as “simple NP”) is a maximal
NP that includes pre-modifiers such as determiners and adjectives but no post-
nominal constituents such as prepositional phrases or relative clauses. When the
unpacking procedure detects a packed NP item we build all alternative NP sub-
phrases (cf. string extraction in next section) rank them and choose the one (and
the corresponding sub-derivation tree) with highest score. One tricky point about
integrating Mitchell et al.’s (2011) approach is how to “detect the simple NP”. If we
look at Figure 3.15, the sub-derivation that corresponds to the N P combines the pre
and post modifiers. Then, we need to selectively extract certain constituents from

the NP which form a simple NP and do the ranking based on these phrases.

71

Chapter 3. Optimising surface realisation

3.2.3 String extraction from derivation trees

As Schmitz and Le Roux (2008) point out, the string language of TAG can also be
encoded in a FB-RTG provided the FB-RTG of TAG derivations is extended with
topological information along the lines of Kuhlmann (2007). This means that words
could be extracted in the appropriate order without the need of explicitly building
the phrase structure tree (i.e. derived tree). In what follows, we explain how we
extend the encoding of Schmitz and Le Roux to support string extraction from the

derivation tree.

Main points from Kuhlmann’s (2007) framework

We will first give the intuitions behind the procedure which we follow to read-off the
strings directly from derivation trees instead of building the corresponding derived
tree. For more details and formal definitions we refer the reader to [Kuhlmann, 2007].

Kuhlmann (2007) draws on the observation that lexicalised grammars can be
seen as generators of dependency trees. If the grammar is lexicalised then there is
a one-to-one correspondence between the nodes in a derivation tree and the words
(or positions) in the derived string, Figure 3.16 shows an example. Then, if the
nodes of the derivation tree are ordered according to string positions of their anchors

19

a dependency structure is obtained. The dependency structure is said to be

“induced” by the derivation.

a-achete

a-Tex a-voiture

\
B-rouge

I | ! ! :
B-une Tex achéte une wvoiture rouge

Figure 3.16: One-to-one correspondence between nodes in a derivation tree of a lexicalised
grammar and words of the generated string.

In order to characterise grammatical formalisms in terms of the type of depen-
dency structures that their derivations induce, Kuhlmann (2007) defines an algebraic
framework. First, in this algebraic framework he shows: (i) how dependency struc-

tures can be encoded into terms over a certain signature of order annotations and (ii)

19A dependency structure for a sentence @ = ww, is the directed graph on the set of positions
for o that contains an edge i — j if and only if w; depends on w;.

72

3.2. RTGen surface realisation algorithm

defines a dependency algebra where order annotations are interpreted as composition
operations on dependency structures. Then, this framework is used to characterise
the types of dependency structures produced by different grammatical formalisms.
To formalise the link between grammar derivations and dependency structures, he
starts by defining an algebra of the grammar derivations (derivation algebra). From
this algebraic definition of the grammar, a string algebra and linearisation algebra
are further defined. Tt follows from the linearisation algebra that productions (i.e.
rules) of the grammar in a derivation can be seen as order annotations.

Here, we are not interested in the induced dependency structure per se, but
in the linearisation of tree nodes. To introduce the main concepts of Kuhlmann’s
framework, we will start by reviewing the algebraic characterization of projective
dependency structures and how context-free grammar derivations induce this type
of dependencies.

In a dependency structure there are two relations, governance: the dependency
relation between nodes, and precedence: a total order of the nodes of the graph.
When imposing a global order (post or pre order) on the nodes in a tree, a dependency
structure is obtained. The governance relation is the same but the nodes are ordered.
Figure 3.17(a-b) shows a tree and a dependency structure induced by imposing an
order (that of pre-order traversal of the tree) on tree nodes.

However, by giving the order following a tree traversal strategy such as pre-order,
the position of a node with respect to its children is tied to the traversal strategy.
There is a more flexible way to define order for the nodes of a tree that is not
determined by the traversal strategy. It is to associate each node with its position
relative to its children (if any) and make the traversal strategy use this information.
For instance, in the tree in Figure 3.17(c) each node is associated with information
(a list) of its order with respect to the order of its children. In this example, the tree
node 1 is annotated with [215], in terms of a traversal order this means that the first
child node 2 is visited first, then the parent node himself, i.e. 1, and finally the child
node 5. If this tree is traversed according to these order annotations, the nodes are
linearised as shown in 3.17(d). The local tree formed by a node u and its children
is called treelet, and a tree is a treelet-ordered tree if each of its nodes is annotated
with a total order on the nodes in the treelet rooted at that node.

Order annotations. The list-based order annotations (e.g. tree in Figure 3.17(c)
can be seen as a ranked set {2 and treelet-ordered trees as terms over this set Ty,.
The sequences in {2 are “node names” rather than concrete nodes. The node names
are solved according to the term structure (i.e. their position, e.g. 1st child, 2nd
child, etc.). Figure 3.18 shows the term for the treelet-ordered tree of Figure 3.17(c).

73

Chapter 3. Optimising surface realisation

1 1j215)

/\ T~

% 5 2[23] 5(5)
\

? 3[43]
\

4 Ay

(a.) (c.)

Figure 3.17: A children-ordered tree (a.) and the dependency structure induced by a pre-
order traversal (b.) and a treelet-ordered tree (c.) and the dependency structure obtained
by treelet-order traversal.

<102>

<01> <0>

<10>

<0>

Figure 3.18: Term for the treelet-ordered tree of Figure 3.17c.

Up to here, we have informally described how projective dependency structures
can be encoded as terms over order annotations (cf. [Kuhlmann, 2007] for the com-
plete definition with the dependency algebra using the order annotations to build
the dependency structure). Hereafter, we will see how an algebraic view on a gram-
matical formalism (we follow the case of context-free grammars) is set up to relate
derivation structures of grammatical formalisms to dependency structures. Again,
we are not interested in the resulting dependency structures but in how we associate

these order annotations to the derivations of a grammar formalism.

So now, how to associate derivations with this kind of order annotations? The
starting point is to take an algebraic view of the given grammatical formalism. For
instance, in the case of a lexicalised CFG G the set of productions P of G can
be turned into an algebra and the derivations can be seen as terms in this algebra.
Further, a string algebra can be defined as having a string composition operation that
takes as domain the set of terms in the derivation algebra. For instance, for each
production p = A — Ay---Ag_1-a-A--- Ay, of G with A, Ay, ..., A, non-terminals
and a a terminal symbol and @ strings of terminal symbols, the string composition

operation is defined as:

74

3.2. RTGen surface realisation algorithm

fp(al,...,a:m) :61 . ”a’k—l aa:k . C_l:m

Each composition operation f, concatenates the anchor (i.e. the terminal symbol
a) of p and the strings obtained from the sub-derivations in the order specified by p.

Further, instead of evaluating derivations into strings of words (anchors of the
productions in the derivation), it is possible to obtain a list of the nodes of the deriva-
tion, i.e. a linearization. For this, a linearization algebra is defined. To this end, for
the case of a CFG G, a composition operation f, is defined which concatenates node
positions (e.g. gorn addresses) in the derivation structure. Then, for each production
p=A—>A1---Ap_1-a-A--- A, with A, Aq, ..., A, non-terminals and a a terminal
symbol. A composition operation f, is defined as follows, being # strings of node
addresses (e.g. gorn addresses) and pfz; a function that prefixes nodes with node

addresses:

fp(Ut, oy Um) = pfai(tr) - - - pfrg—1(tk—1) - € - pfag(ty) - - - pfrm(in)

Each composition operation f, of the linearization algebra concatenates a root
node (i.e. the anchor of p) and appropriately prefixed (i.e. pfx applied) sub-
derivations in the same order as they would be concatenated in the string algebra.

As G is lexicalised, the linearization algebra defines a bijection between the set of
nodes in the derivation tree ¢ and the set of positions in the derived string. Important
to note is the fact that if we read the anchors of the productions in the derivation
tree in the order specified by the linearization we obtain the derived string.

Then, the linearisation semantics of the derivations in the CFG mimics the
treelet-ordered tree traversal. Hence, the productions of the grammar can be seen
as order annotations and each derivation tree can be seen as a treelet-ordered tree.
So, the translation between a derivation tree in a CFG and a projective dependency
structure (represented as terms as described at the beginning of this section) can be

obtained by relabeling the productions of G as order annotations as follows:

We have succinctly discussed the elements that we need from Kuhlmann’s frame-

work for the case of CFGs. We will now see how this framework applies to our

75

Chapter 3. Optimising surface realisation

1 1[1232] <0121>
: P N _
! L % :‘s 212,5] 3[34] <0,1> <0‘1>
oo \ \ \
1 2 3 4 5 5 4 5[5] 4[4] <0> <0>
(a.) (b.) (c.) (d.)

Figure 3.19: (a) Dependency structure, (b) tree, (¢) block-ordered tree and (d) term.

grammar framework. That is, how we associate RTG rules with the kind of order

annotations seen so far.

Extracting strings from TAG derivation trees

Asis known from [Bodirsky et al., 2005; Kuhlmann, 2007], TAGs produce well-nested
dependencies with block-degree at most 2. We explain these two concepts with the
example in Figure 3.19(a). The yield of the tree node 2 in the dependency structure
in (a.) falls into two discontinuous spans, i.e. into two blocks, one is the block [2]
and the other is [5 |. Since this is the maximal number of blocks per yield, in the
entire dependency structure D in (a.), it is said that the block degree of D is 2. The
dependency structure in 3.19(a) is well-nested in that the edges 1 — 2 and 2 — 5
overlap but the node 2 dominates 5.

Given the tree in Figure 3.19(b), it is possible to define a traversal order (o
precedence relation) based on order annotations to order the nodes in the tree in such
a way to induce the dependency in Figure 3.19(a). List-based order annotations can
be defined in similar way as done in the previous section, the difference is the order
annotations needed to account for discontinuity. The tree in Figure 3.19(b) can be
annotated as shown in Figure 3.19(c). The tree traversal strategy works in a similar
way as described for single list-based order annotations. We can follow the traversal
example of tree 3.19(c) 2°. The root node 1 is labelled with the order [1232], this
means that the yield of node 2 is distributed in two spans. So, we list node 1 then
its daughter node 2. The traversal of the sub-tree rooted at node 2, is defined by
the two-block list-based order annotation [2, 5]. The first component stipulates that
the current node, i.e. 2, should be visited (linearised). After processing the first
component, the traversal continues at root node (i.e. [1232]) with the child node
3. From this child, we list nodes 3 and 4. Then, the order annotation follows by

child node 2 (i.e. [2, 5]), and, at this time, the traversal continues with the second

20These trees are called block-ordered trees and they follow certain requirements on the lists
annotating the nodes, see [Kuhlmann, 2007] p.40 for the complete definition.

76

3.2. RTGen surface realisation algorithm

SNA RNA
B C D
ﬂa\p R /3%
PN b c d
B C B x C
[6%) Qs Qg
o B1

Figure 3.20: Toy TAG grammar

component of the order annotations, i.e. with node 5. The result of this traversal
gives the node linearisation 12345. If we replace node labels in the order annotations
with node positions (i.e. 1st, 2nd child and 0 for current node) we get the term
annotations shown in Figure 3.19(d).

We have previously seen how the rules of CFG can be seen as defining order
annotations. We will see now how TAG elementary trees can also define order an-
notations.

To analyse the string or linearization semantics of TAG elementary trees, we will
follow an example using the toy grammar in Figure 3.20 2'. In a TAG derived tree,
we can read the yield string by reading the leaf (terminal) nodes from left-to-right.
Similarly, to understand the string order in a TAG elementary tree we have to look at
the nodes in its frontier from left-to-right. Let us look at the tree a; in Figure 3.20.
Since no adjunction can take place at the root of aj, the leftmost leaf in a possible
derivation starting from «; is the leaf node labelled with the terminal symbol a.
Then, the following leaf node is the node labelled with the non-terminal symbol B.
However, before the string material that might come from B we have to consider that
an adjunction might take place at the internal node R of ;. More precisely, after
the leaf node yielding the string a we expect the string material contributed by the
left half (with respect to the foot node) of a possibly adjoined tree (eg. (1). Then,
all string material of the left half of an adjoined tree precedes the string material
that is dominated by the adjunction site, i.e. B followed by C. All the material in
the right half of the adjoined tree follows the content contributed by C'. Finally, at
the right-most leaf of ; labelled with non-terminal D we expect the string material
contributed by D. Then, for a; we have the sequence a Ry B C' Ry D of string
material.

On top of an appropriate algebraic formulation of TAG elementary trees (i.e.
our grammar productions) we can define the string and linearization algebras. As

Kuhlmann points out, from the linearization point of view TAGs correspond to Cou-

2'The toy grammar example is taken from [Kuhlmann, 2007] p.85

7

Chapter 3. Optimising surface realisation

pled Context-Free Grammars (CCFQG) with rank at most 2 (CCFG(2), cf. [Kuhlmann,
2007] for the formal definition of CCFG). Then, we follow his definition of string al-
gebra and linearization algebra for CCFG (which are in turn a special case of Linear
Context-Free Rewriting Systems (LCFS, [Kallmeyer, 2013])). That is, we think of
TAG elementary trees as CCFG rules.

Let us take the example CCFG grammar G from [Kuhlmann, 2007], with the
alphabet of non-terminal symbols Il = {S/1,R/2,B/1,C/1,D/1} (non-terminal
symbols are ranked, the number after the slash represents the non-terminal’s rank),
an alphabet of terminal symbols Ty = {a,b,c,d}, and the start symbol of G is
Sa = 5, the set of productions is the following:

S = (aR{BCR,D) | (aBCD)
R — (aR1B, CRyD) | (aB, CD)
B — (b), C —{(c), D — (d)

In this grammar, the right-hand side of the rules is a tuple of arity equal to the
arity of the non-terminal in their left-hand side (e.g. R is of rank 2 therefore the
right-hand side of productions rewriting R are tuples of arity 2). In addition, a non-
terminal symbol appears in the right-hand side as many times as its arity to account
for its synchronised rewriting (e.g. R appears in the right-hand side of the rules split
into R; and Ry meaning that they will be expanded at the same time). We can think
of TAG initial trees as CCFG rules with non-terminals of rank 1 at the left-hand side,
and auxiliary trees as rules with non-terminals of rank 2 in the left-hand side. The
right hand-side of the rules would be derived from accommodating non-terminals of
the TAG elementary tree according to the analysis of its string semantics. Internal
nodes admitting adjunction are split into two non-terminals. For auxiliary trees
(rules of rank 2), the right-hand side content is divided on the tree material to the
left and to the right of the foot.

Thinking of elementary trees as productions of a CCFG(2) we can reuse the
string and linearization algebras defined for CCFGs in [Kuhlmann, 2007]. But now,
we directly go to the relabeling operation to obtain the order annotations.

Applying the relabeling function for the TAG trees oy and (3 respectively from
Figure 3.20 but reformulated as CCFG(2) rules as before:

78

3.3. Evaluation

/alﬁ—\a Q1-2[012314]
51-:8{\ axb az-c ay-d 51-3[01:2131{4] ax-bp asc as-dy
e/ag—b e ard e/aQ-bM Cren ey
(a.) (a.)

Figure 3.21: (a.) FB-RTG derivation tree and (b.) derivation tree with order annotations
using the grammar in Figure 3.20 for the string aabbcedd.

Finally, these order annotations can be associated to each RTG rule X —
7(X1,--+,Xp) (in turn having been translated from a TAG elementary tree). Figure
3.21(a) show an example derivation tree for the string aabbcedd generated by the toy
TAG grammar in 3.20. As now we can associate each node of the derivation tree
with order annotations corresponding to each RTG rule, Figure 3.21(b) shows the
same derivation tree but nodes are decorated with order annotations. If we traverse
the derivation tree according to these order annotations, we can linearise its nodes
and further read the derived string. For instance, the annotation [012314] states that
first comes the current node anchor (i.e. a) then that of its first child (whose content
is split in two, note 1 double appearing in the order annotations). This means that
the traversal of the tree now continues with the content of its 1st child. On doing
this, it follows the order annotations [012,314] (a 2-tuple) whose first component
indicates that first comes the content of the current node (i.e. a), then the content
of its 1st child and 2nd one. The first child is the empty string, the second is the
terminal b. So far we have linearised the string aab. Before continuing with the sec-
ond component of [012,314] the traversal returns to its parent (i.e. root node with
annotations [012314]). It proceeds with the 2nd and 3rd children which contribute
the strings bc, then the second component of the 1st child (second component of
[012,314]) and so on. At the end we have read the string aabbcedd.

3.3 Evaluation

To evaluate the performance of the RTGen algorithm, we use GENSEM ([Gottesman,
2009; Gardent et al., 2010]) to construct two benchmarks. The first contains input
cases involving intersective modifiers and the second contains input cases of varying
overall complexity. Using these benchmarks, we examine the impact of the different
optimisations incorporated in RTGen on its performance and we compare RTGen

with an existing surface realiser, namely GENI (|Gardent and Kow, 2005]).

79

Chapter 3. Optimising surface realisation

3.3.1 Surface realisers: Genl and RTGen configurations
Genl

GENI is a TAG-based surface realiser (|Gardent and Kow, 2005; Gardent and Kow,
2006; Kow, 2007]) which encodes a bottom up, tabular realisation algorithm opti-
mised for TAGs. It implements the standard three step strategy (lexical selection,
tree combining, sentence extraction) described in Section 3.1.2. GENI constructs
derivation trees bottom-up. It starts from a set of selected lexical items and tries
to combine them successively into larger structures (derived trees). The search is
depth-first because the agenda it uses in its chart-based algorithm is implemented as
a stack. Substitution nodes are processed in a (arbitrarily) fixed order (left-to-right)
to avoid some spurious combinations stemming from different ways of processing
nodes. Neither sub-tree sharing nor packing are implemented. Indexing is defined
in terms of semantic coverage of chart items. Two major optimisations to deal with
the complexity issues (cf. Section 2.1.1) are a filtering step and a two-phase tree

combination (substitution and adjunction).

Polarity filtering. = GENI’s polarity filtering optimisation (based on [Bonfante et
al., 2004]) takes place between the lexical selection phase and the tree combination
phase. The objective is to reduce the initial search space. As explained in Section
2.1.1, the number of combinations that are a priori possible after the lexical selection
phase is [[,<;<,, @i, with a; the degree of lexical ambiguity of the i-th literal and
n the numbe_r_of literals in the input semantics.

The motivation for polarity filtering is based on the observation that not all the
combinations of the selected lexical items would lead to a successful derivation. In
specific, this filtering removes all tree sets covering the input semantics such that
either the category of a substitution node cannot be canceled out by that of the root
node of a different tree; or a root node fails to have a matching substitution site. In
practice, as shown in Figure 3.22 each lexical item is assigned a polarity signature
(+Cat for each initial tree with root node category Cat; —Cat for each substitution
node with category Cat). Then, the total polarity signatures of each combination is

computed 22:
g1 * Qex * Ocorey * Qlel = 0
Qg1 * Qtex * OQcorey * Oe2 = +17Lp, —1s
Qg2 * Qtegx * OQcorey * Olel = +15; 717’Lp

Qg2 * Qegx * Olcorey * Q2 = 0

22 An initial polarity of —1s is considered in the computation of the polarity charge of a given
combination.

80

3.3. Evaluation

aq1 @ +1np, —2np

Get +1S’_1np Qe : +17’Lp
NP,
S
s
es - NP2
le déménagement P NP|™! NPy \‘/ A‘dJ |
d‘e est ennuyeur chez Tex
ly : tex(x
demenager(es, x1, x2) ennuyeuz(es) 2 (22)
age @ +1s,—2np
Qeo 1 +1s,—1s Qcorey +1np
Ses
S
NPl VP,
I — Sles vV Adj NP,
VGS NP\I(CEQ ‘ ‘ ‘
| est ennuyeur Corey
déménage
ennuyeux(es) tammy(z1)

demenager(es, 1, x2)

Figure 3.22: Selected lexical items with assigned polarities.

Only those combinations whose total polarity charge is equal to zero are consid-

ered during tree combination.

Polarity filtering has been shown to reduce surface realisation initial search space.
However, this filtering relies solely on categorial information — feature information is
not used. Furthermore, auxiliary trees have no impact on filtering since they provide

and require the same category thereby being “polarity neutral elements”.

Two-phase tree combination. Another optimisation technique is a delayed
modification strategy inspired from [Carroll et al., 1999]. Applying the composition
operations (substitution and adjunction) in two separate phases supports the inte-
gration of a mechanism to deal with the intersective modifiers problem. In a first
phase, only substitutions are carried out. In a second phase, modifiers are added
by applying adjunction operations. In this way, the multiple modification struc-
tures licensed by modifications are produced but they are not multiplied out by the
sentence context. This approach provides a mechanism to lessen the impact of in-
tersective modifiers. Nevertheless, in the adjunction phase all possible permutations

of modifiers are built, i.e. given n modifiers, n! solutions are produced.

81

Chapter 3. Optimising surface realisation

Different configurations of RTGen

FB-RTG and left-corner FB-RTG translation. The derivation tree gener-
ation algorithm of RTGen can be used with both the FB-RTG and the left-corner
FB-RTG translations. Schmitz and Le Roux (2008) argue that the left corner trans-
lation should result in more predictive derivations. This observation might apply
in particular to our Early-style algorithm, making more accurate top-down predic-
tions and avoiding useless item compositions. In fact, in the left-corner mode epsilon
unifications take place before and lhs might be more informative (i.e. containing
instantiated features that might avoid items combinations)?® (cf. Section 3.1.3).
Depending on how much linguistic information (i.e. feature constraints from the
feature structures) is preserved in the FB-RTG rules, several RTGEN configurations
can be tried out which each reflect a different division of labor between constraint
solving and structure building. To experiment with these several configurations, we
exploit the fact that the FB-TAG-to-FB-RTG conversion procedure developed by
Schmitz and Le Roux (2008) permits specifying which features should be preserved

by the conversion.

RTGen-all. In this configuration, all the feature structure information present in
the SemTAG elementary trees is carried over to the RTG rules. As a result, tree
combining and constraint solving proceed simultaneously and the generated parse

forest contains the derivation trees of all the output sentences.

RTGen-level0. In the RTGen-level) configuration, only the syntactic category
and the semantic features are preserved by the conversion. As a result, the grammar
information used by the (derivation) tree building phase is comparable to that used
by GENI filtering step. In both cases, the aim is to detect those sets of elementary
trees which cover the input semantics and such that all syntactic requirements are
satisfied while no syntactic resource is left out. A further step is additionally needed
to produce only those trees which can be built from these tree sets when applying
the constraints imposed by other features. In GENI, this additional step is carried
out by the tree combining phase, in RTGEN, it is realised by the extraction phase
i.e., the phase that constructs the derived trees from the derivation trees produced

by the tree combining phase.

RTGen-selective. Contrary to parsing, surface realisation only accesses the mor-

phological lexicon last i.e., after sentence trees are built. Because throughout the

2 Nevertheless, this depends on how the features are designed in the grammar.

82

3.3. Evaluation

tree combining phase, lemmas are handled rather than forms, much of the morpho-
syntactic feature information which is necessary to block the construction of ill-
formed constituents is simply not available. It is therefore meaningful to only include
in the tree combining phase those features whose value is available at tree combining
time. In a third experiment, we automatically identified those features from the ob-
served feature structure unification failures during runs of the realisation algorithm.
We then use only these features (in combination with the semantic features and with

categorial information) during tree combining.

3.3.2 Constructing benchmarks for sentence generation

Unlike parsing, where the input (strings) can be taken from existing text, sentence
generation requires abstract input data that is not readily available. FExisting ap-
proaches to automated or semi-automated benchmark construction for sentence gen-
eration are of two main types depending on the type of sentence realiser used: either
the sentence realiser is based on a reversible grammar and the benchmark items are
constructed by parsing some sentences and selecting the appropriate semantic for-
mula from the parser output; or it is not, and the benchmark items are derived by
transformation from a syntactically annotated corpus.

To test a surface realiser based on a large reversible Head-driven Phrase Structure
Grammar (HPSG), Carroll et al. (1999) use a small test set of two hand-constructed
and 40 parsing-derived cases to test the impact of intersective modifiers on generation
performance. Later on, Carroll and Oepen (2005) present a performance evaluation
which uses as a benchmark the set of semantic representations produced by parsing
130 sentences from the Penn Treebank and manually selecting the correct semantic
representations. Finally, White (2004) profiles a CCG2*-based sentence realiser using
two domain-focused reversible CCGs to produce two test suites of 549 and 276 (
semantic formula, target sentence) pairs, respectively.

For realisers that are not based on a reversible grammar, there are approaches
which derive large sets of realiser input from the Penn Treebank (PTB). For example,
Langkilde-Geary (2002) proposes to translate the PTB annotations into a format
accepted by her sentence generator Halogen. The output of this generator can then
be automatically compared with the PTB sentence from which the corresponding
input was derived. Similarly, Callaway (2003) builds an evaluation benchmark by
transforming PTB trees into a format suitable for the KPML realiser he uses.

In all of the above cases, the data is derived from real world sentences, thereby

24Combinatory Categorial Grammar

83

Chapter 3. Optimising surface realisation

exemplifying “real world complexity”. If the corpus is large enough (as in the case of
the PTB), the data can furthermore be expected to cover a broad range of syntactic
phenomena. Moreover, the data, being derived from real world sentences, is not
biased towards system-specific capabilities. Nonetheless, there are also limits to
these approaches.

First, they fail to support graduated performance testing on constructs such as
intersective modifiers or lexical ambiguity, which are known to be problematic for
surface realisation.

Second, the construction of the benchmark is in both cases time consuming. In
the reversible approach, for each input sentence, the correct interpretation must be
manually selected from among the semantic formulae produced by the parser. As a
side effect, the constructed benchmarks remain relatively small (825 in the case of
White (2004); 130 in [Carroll and Oepen, 2005]). In the case of a benchmark derived
by transformation from a syntactically annotated corpus, the implementation of the
converter is both time-intensive and corpus-bound ([Callaway, 2003]). This coincides
with recent results reported in [Belz et al., 2011]: grammar based surface realisers
faced a major obstacle in converting the shared task common ground input into the
format “expected” by the system.

To avoid these shortcomings take a different approach. We make use of the
GENSEM (|Gottesman, 2009; Gardent et al., 2010]) tool to automatically generate
focused benchmarks from the same FB-TAG grammar. In essence, GENSEM traverses
the grammar to build semantic representations generated by this grammar. To ensure
termination and linguistic coverage, user defined constraints are used (we refer the
reader to [Gardent et al., 2010; Gardent et al., 2011a] for further details on GENSEM).
With GENSEM, we can create tailored benchmarks that include specific constructions
we want to test (e.g. those cases known problematic with lexical ambiguity and
modifiers). Furthermore, we do not get into issues related to grammar or lexicon
coverage while evaluating performance. In the next section, we describe two test
suites for the evaluation of our surface realisation algorithm that we generate using
GENSEM.

Two GENSEM benchmarks

We use GENSEM to produce benchmarks that are tailored to test the impact of
optimizations to deal with (i) the intersective modifiers and (ii) lexical ambiguity
issues.

The first benchmark (MODIFIERS) was designed to test the realisers on cases

involving intersective modifiers. To support only this dimension, it displays little or

84

3.3. Evaluation

no variation w.r.t. other dimensions such as verb type and non-modifying adjuncts.
It includes 1 789 input formulae with a varying number (from 0 to 4 modifications),
type (N and VP modifications) and distribution of intersective modifiers (n modifiers
distributed differently over the predicate argument structures). For instance, the
formula in (27) involves 2 N and 1 VP modification. Further, it combines lexical
ambiguity with modification complexities, i.e. for the snore modifier the grammar
provides 10 trees.

(27) 11 : 321, heyhs)y he > 1oy hs > 13,10 2 man(z1),l2 @ snoring(er, x1),1ls @ big(x1),ls :

sleep(ea, 1), 14 : soundly(ez)

(A snoring big man sleeps soundly)

The second benchmark (COMPLEXITY) was designed to test overall performance
on cases of differing complexity (input formulae of increasing length, involving verbs
with a various number and types of arguments and with a varying number of and
types of modifiers). It contains 890 distinct cases. A sample formula extracted from
this benchmark is shown in (28), which includes one modification and two different
verb types.

(28) hy > l4,lo s want(e, hq), 1y : (@1, hey hs), he > 11, b > 1o, 11 man(xy), 1y : snoring(er, 21), 13

@2, hp, haw, b)), hp > 13, hay > 1a, by > 15,13 - monkey(z2), 14 : eat(eq, x2, €3)

(The snoring man wants the monkey to eat)

3.3.3 Comparative results on GENSEM’s benchmarks

To evaluate GENI and the various configurations of RTGEN base (RTGEN-all,
RTGEN-level0, RTGEN-selective) with the left-corner transformed FB-TAG-to-FB-
RTG translation, we ran the 4 algorithms in batch mode on the two benchmarks and

collected the following data for each test case:

e Packed chart size : the number of chart items built. This feature is only
applicable to RTGen as GENI does not implement packing.

e Unpacked chart size : the number of intermediate and final structures available
after unpacking (or at the end of the tree combining process in the case of
GENI). Note that RTGen never handles explicitly this number of intermediate
structures. Even when carrying out unpacking as in that step it focuses only
on successful structures.

e Initial Search Space (ISS) : the number of all possible combinations of ele-
mentary trees to be explored given the result of lexical selection on the input
semantics. That is, the product of the number of FB-TAG elementary trees

selected by each literal in the input semantics.

85

Chapter 3. Optimising surface realisation

e Generation forest (GF) : the number of derivation trees covering the input

semantics.

The graph in Figure 3.23 shows the differences between the different strategies
with respect to the unpacked chart size metric.

A first observation is that RTGEN-all outperforms GENI in terms of interme-
diate structures built . In other words, the Earley sharing and packing strategy is
more effective in reducing the number of constituents built than the filtering and
substitution-before-adjunction optimisations used by GENI. In fact, even when no
feature information is used at all (RTGEN-level0 plot), for more complex test cases,
packing and sharing is more effective in reducing the chart size than filtering and
operation ordering.

Another interesting observation is that RTGEN-all and RTGEN-selective have
the same impact on chart size (their plots coincide). This is unsurprising since
the features used by RTGEN-selective have been selected based on their ability to
block constituent combination. The features used in RTGEN-selective mode are wh,
Xp, assign-comp, mode, definite, inv, assign-case, rel-clause, extracted and
phon, in addition to the categorial and semantic information. In other words, using
all 42 SEMXTAG grammar features has the same impact on search space pruning
as using only a small subset of them. As explained in the previous section, this is
probably due to the fact that contrary to parsing, surface realisation only accesses
the morphological lexicon after tree combining takes place. Another possibility is
that the grammar is under constrained and that feature values are missing thereby

inducing over-generation.

108 E T T I I I I
5 —eo— RTGEN-all

T T T
—eo— RTGEN-all

—m— RTGEN-level0 [
—— RTGEN-selective | | 107 E
—r— GENI §

—m— RTGEN-level0 ||
—P— RTGen-selective ||
e GENI 1

unpacked chart size
unpacked chart size

2 3
Initial Search Space (ISS) s

0
100-1000
00015000
000-[10000
000-100000
00000{500000

500000-1000000
more thap 1000000

N

. 7e
number of modifiers

Figure 3.23: Performance of realisation
approaches on the MODIFIERS bench-
mark, average unpacked chart size as a
function of the number of modifiers.

86

Figure 3.24: Performance of realisation
approaches on the COMPLEXITY bench-
mark, average unpacked chart size as a
function of the ISS complexity.

3.3. Evaluation

Zooming in on cases involving three modifiers, we show in Table 3.3 the average

25

results for various efficiency metrics This provides a more detail view of the

performance of the differences among the three RTGEN variants.

| strategy GF chart unpacked-chart seconds |
RTGen-all

RTGen-level0
RTGen-selective

Table 3.3: Average results on 610 test cases from the MODIFIERS benchmark. Each test
case has 3 modifications, distributed in various ways between adjectival and adverbial mod-
ifications. The second column, Generation Forest (GF), is the number of derivation trees
present in the generated parse forest. The third and fourth columns show the chart and
unpacked chart sizes, respectively. The last column shows the runtime in seconds.

This data shows that running RTGEN with no feature information leads not only
to an increased chart size but also to runtimes that are higher in average than for full
surface realisation i.e., realisation using the full grammar complete with constraints.

Interestingly, it also shows that the selective mode (RTGEN-selective) permits
improving runtimes while achieving almost perfect disambiguation in that the aver-
age number of derivation trees (GF) produced is close to that produced when using
all features. The differences between the two generation forests stems from the fact
that when some features are excluded some more derivation trees might be produced.

Graph 3.24 and Table 3.4 confirm the results obtained using the MODIFIERS
benchmark on a testset (COMPLEXITY) where input complexity varies not only with
respect to modification but also with respect to the length of the input and to the
degree of lexical ambiguity. Typically, in a TAG, one word or one semantic literal
may be associated either with one tree or with up to several hundred trees (e.g.,
ditransitive verbs and verbs with several subcategorisation types). By varying the
type and the number of verbs selected by the semantic literals contained in the
input semantics, the COMPLEXITY benchmark provides a more extensive way to test
performance on cases of varying complexity.

We have chosen to use the left-corner mode in the previous evaluation because
it provided more predictive derivations. Table 3.5 summarises in the upper part
(RTGen base) information about the generation of the sentence Tex looks for a master
program that includes a module that includes a course. It shows for both the FB-RTG

and the left-corner FB-RTG translations the number of clashes encountered in pre-

%5 The two realisers being implemented in different programming languages (RTGEN uses Prolog
and GENI Haskell), runtimes comparisons are not necessarily very meaningful. Additionally, GENI
does not provide time statistics. After adding this functionality to GENI, we found that overall
GENI is faster on simple cases but slower on more complex ones. We are currently working on
optimising RTGEN prolog implementation before carrying out a full scale runtime comparison.

87

Chapter 3. Optimising surface realisation

| strategy GF chart unpacked-chart seconds |
RTGen-all

RTGen-level0
RTGen-selective

Table 3.4: Average results on 335 cases with 10000 < I.5S < 100000, from the COMPLEX-
ITY benchmark. The columns show the same performance metrics as in Table 3.3.

diction and completion. As we can see the left-corner translation is more effective
in blocking unwanted predictions. As a result, the number of items entered in the
agenda is smaller (2473 against 1452), despite the fact that the number of rules in
the left-corner FB-RTG is greater as auxiliary trees that adjoin into root positions
are translated into two rules (cf. Section 3.1.3).26 Note aside, by looking at the rows
“Nb successful predictions” and “Nb items entered in agenda” we can see the effect
of subsumption blocking of new edges and packing.

In the bottom part of Table 3.5, we summarise the same information but in this
case obtained by running RTGen extended. After the optimisations the differences
between the FB-RTG and left-corner FB-RTG disappear. Thus, the optimisations
have a better impact. For instance, in the left-corner FB-RTG translation, instan-
tiated semantic features are available in left-hand sides and therefore provide more
information for predictions and completions. In RTGen extended, the indexing mech-
anism relies on the semantic indices of the semantic formula associated to each rule
and blends this information with node type (substitution or adjunction site) infor-
mation. Therefore, predications and combinations are effectively guided in both the
FB-RTG and left-corner FB-RTG translations.

3.4 Related work on efficient surface realisation

3.4.1 Comparison with results in previous work

The results reported in previous work are not directly comparable with those ob-
tained by other surface realisers because of differences in the size of the resources
(grammars and lexicons); in the benchmarks used; in the programming language
used for implementation and in the computers used for testing. Moreover the effi-
ciency of existing surface realisers is often not reported on in the literature. In what
follows, we compare our approach with two realisers for which such results were given
namely, the HPSG based surface realiser described in [Carroll et al., 1999] and the

26Note that “prediction and completion clashes” are illustrative in the sense that the counts are
per prediction per feature. That is, in a failure to predict one rule, there might be more than one
feature in conflict, therefore, summing more than one clash for each attempt of rule prediction.

88

3.4. Related work on efficient surface realisation

FB-RTG left-corner FB-RTG

RTGen base

Prediction clashes 437 9498
Completion clashes 4467 2675
Nb successful predictions 7490 6344
Nb items entered in agenda 2473 1452
RTGen extended

Prediction clashes 287 6588
Completion clashes 2 109
Nb successful predictions 1887 2776
Nb items entered in agenda 429 623

Table 3.5: Summary of the number of predictions running the generation algorithms (Sec-
tions 3.2.1 and Section 3.2.2) for the generation of the sentence (and its licensed paraphrases)
using the SemXTAG English grammar.

plan based approach of Koller and Hoffmann (2010). For this comparison, we run the
extended RTGen-selective?” with left-corner encoding instance of RT'Gen to generate
the sentences in (29), (30), and (31). The first two sentences are used in [Carroll et
al., 1999] to illustrate the realiser efficiency. The third sentence, is added, to extend
the comparison to a more complex case namely, a sentence including 4 verbs (main

verb, sentential arguments and relative clauses) and 3 noun modifiers.

(29) The manager in that office interviewed a new consultant from Germany.
(30) Our manager organised an unusual additional weekly departmental conference.

(31) Fido thinks John looks for a master program which includes a module which includes

an easy introductory linguistics course.

In Table 3.7, we show an excerpt of Carroll and Oepen’s (2005) reported results.
The results are broken down by average ambiguity rates, the first two columns show
the average number of items and average sentence length in each partition. The other
columns show relative CPU time. As explained in by Carroll and Oepen, the column
1p — f— corresponds to the baseline algorithm suggested by Kay (1996) implement-
ing a one-phase without packing and without filtering algorithm. The subsequent
column, headed 2p — f—, corresponds to the algorithm proposed in [Carroll et al.,
1999] (two-phase processing of modifiers, no packing and no filtering). The last one,
1p + f+, corresponds to the best-performing configuration reported in [Carroll and
Oepen, 2005|.

2"Using the set of features: assign-case, assign-comp, definite, extracted,
idx, inv, mode, rel-clause rmode, wh, xp, rel-clause, phon, nocomp-mode,
lemanchor.

89

Chapter 3. Optimising surface realisation

sentence length trees init_search space chart seconds

(29) 11 4 36 676 0.34
(30) 9 24 36 213 0.11
(31) 19 72 793152 989 1.06

Table 3.6: Summary of RTGen run on 3 sample sentences.

Aggregate nb.items length 1p-f- 2p-f- 1p+f+
100 < trees < 500 22 17.4 53.95 36.80 5.61
50 < trees < 100 21 18.1 51.53 13.12 3.74

10 < trees < 50 80 14.6 35.50 18.55 1.77
0 < trees <10 185 10.5 9.62 6.83 0.58

Table 3.7: Extract of the results reported in Carroll and Oepen (2005).

In Table 3.6, we summarise RT'Gen results on the example sentences. The column
trees shows the number of derivations produced while the column init _search _space
corresponds to the number of potential combinations to be explored (cf. Section
2.1.1). There are 17 trees selected for think and 36 for looks for and includes. The last
column gives the running time in seconds. We can think of sentences (29) to belong
to the partition 0 < trees < 10 of Carroll and Oepen’s Table. Sentence (30) to be
in the 10 < trees < 50 partition and sentence (31) in 100 < trees < 500. RTGen
runtimes favourably compare to the results reported in [Carroll et al., 1999] in the

three cases considered.

Koller and Stone (2007) propose a planning-based approach which also constructs
derivation trees rather than derived trees. As discuss in [Koller and Hoffmann, 2010],
this planning approach fails to scale to conjunctions of five basic clauses such as The
man greets the man and the man greets the man and the man greets the man and the
man greets the man and the man greets the man. For such cases, all planners and
planner strategies tries out by Koller and Hoffmann (2010) time out. In contrast,
RTGen?® yields the expected sentence in 2.03 seconds of CPU time. While the
planning approach is an interesting way of dealing with the interactions between
surface realisation and the generation of referring expressions, the grammar-based
approach seems better suited to handle the production of well formed sentences of
arbitrary length and complexity.

As discussed in Chapter 5, we plan to further evaluate RT'Gen in a more general
setting, e.g. using Surface Realisation task data (|Belz et al., 2011]). This would
allow a more direct comparison with other surface realisers but require both obtaining

efficiency results from these alternative realisers and more importantly, transforming

28RTGen-all, base algorithm and left-corner FB-RTG encoding.

90

3.4. Related work on efficient surface realisation

the SR data into a format compatible with that expected by RTGen.

3.4.2 Encoding into another grammatical formalism

As already discussed in Section 3.1.1, the RTGEN approach is closely related to the
work of Koller and Striegnitz (2002) where the XTAG grammar is converted to a
dependency grammar capturing its derivation trees. This conversion enables the use
of a constraint based dependency parser, a parser which was specifically developed
for the efficient parsing of free word order languages and is shown to support an
efficient handling of both lexical and modifier attachment ambiguity.

Our proposal differs from this approach in three main ways. First, contrary to
XTAG, SEMXTAG integrates a full-fledged, unification-based compositional seman-
tics thereby allowing for a principled coupling between semantic representations and
natural language expressions. Second, the grammar conversion and the feature-based
RTGs used by RTGEN accurately translates the full range of unification mechanisms
employed in FB-TAG whereas the conversion described by Koller and Striegnitz
(2002) does not take into account feature structure information. Third, the RTGEN
approach was extensively tested on a large benchmark using 3 different configura-
tions whilst Koller and Striegnitz’s results are restricted to a few hand constructed

example inputs.

3.4.3 Chart generation algorithm optimisations

Carroll and Oepen (2005) provide an extensive and detailed study of how various
techniques used to optimise parsing and surface realisation impact the efficiency of
a surface realiser based on a large coverage Head-Driven Phrase Structure grammar.

Because they use different grammars, grammar formalisms and different bench-
marks, it is difficult to compare the RTGEN and the HPSG approach. However, one
point is put forward by Carroll and Oepen (2005) which it would be interesting to
integrate in RTGEN. Carroll and Oepen show that for packing to be efficient, it is
important that equivalence be checked through subsumption, not through equality.
RTGEN also implements a packing mechanism with subsumption check, i.e. different
ways of covering the same subset of the input semantics are grouped together and
represented in the chart by the most general one. One difference however it that
RTGEN will pack analyses together as long as the new ones are more specific cases.
It will not go backwards to recalculate the packing made so far if a more general
item is found ([Oepen and Carroll, 2000]). In this case the algorithm will pack them

under two different groups.

91

Chapter 3. Optimising surface realisation

3.4.4 Statistical pruning

Various probabilistic techniques have been proposed in surface realisation to improve
e.g., lexical selection, the handling of intersective modifiers or ranking. For instance,
Bangalore and Rambow (2000a) use a tree model to produce a single most proba-
ble lexical selection while in White’s system, the best paraphrase is determined on
the basis of n-gram scores. Further, to address the fact that there are n! ways to
combine any n modifiers with a single constituent, White (2004) proposes to use a
language model to prune the chart of identical edges representing different modifier
permutations, e.g., to choose between fierce black cat and black fierce cat. Similarly,
Bangalore and Rambow (2000a) assume a single derivation tree that encodes a word
lattice (a {fierce black, black fierce} cat), and uses statistical knowledge to select the
best linearisation. Our approach differs from these approaches in that neither lexical
selection is filtered nor ranking is performed. However, it shares some similarities
with respect to intersective modifiers handling. Our approach handles only one in-
stance of the n! ordering possibilities thanks to the chart packing strategy during
generation, and extracts only one ordering if the prenominal modification ordering

model is used during the unpacking phase.

3.5 Conclusions and perspectives

In this chapter we presented RT'Gen, a new surface realisation algorithm for TAG
based on an RTG encoding of its derivation trees. This encoding facilitated the
implementation of an Earley-style chart algorithm with sharing and packing of inter-
mediate structures. It has also permitted varying the generation algorithm according
to (i) the two different encodings, the original RTG translation and the left-corner
transformed one, and (ii) the selective translation of features from the feature struc-
tures. In the implementation of the generator, we have integrated well-known tech-
niques such as chart indexing, control of proliferation of intermediate incomplete

structures and packing. Nonetheless, RT'Gen algorithm could be further extended.

In the start. Reducing the initial search space. The sole mechanism of RTGen to
deal with lexical ambiguity is packing. However, known strategies to tackle this issue
could be also integrated in RT'Gen. One of these strategies is lexical selection filtering
which has been shown to be drastically effective in parsing ([Bangalore and Joshi,
1999; Chen et al., 1999; Gardent et al., 2011b]) as well as in generation (|Gardent and
Kow, 2005; Espinosa et al., 2008; Bangalore and Rambow, 2000a]). This filtering step

might be based on symbolic information contained in the grammar and the input se-

92

3.5. Conclusions and perspectives

mantics (e.g. polarity filtering in Genl [Gardent and Kow, 2005]), or data-driven (e.g.
hypertagging in OpenCCG [Espinosa et al., 2008| using an extended corpus of CCG
derivations, logical forms and sentences derived from the CCGBank [Hockenmaier
and Steedman, 2007| or hierarchical supertagging in FERGUS |Bangalore and Ram-
bow, 2000a; Bangalore and Rambow, 2000b]). Filtering the initial search space
reduces the amount of work carried out by the generation algorithm. Nevertheless,
it is important to note that on top of it we need to integrate additional optimisation
strategies (e.g. packing). The polarity filtering approach is cautious in that only infe-
licitous trees are pruned, however, as shown in our evaluation in Section 3.3.3, much
work might still remain for the chart generator. Reinforcing the same fact, with the
statistical filtering there is a trade-off between using a few best lexically selected items
at the expense of (possibly) loosing coverage and using a bigger set of lexical selected
items augmenting the cost of generation. Moreover, these models require the creation
of an annotated corpus relating input semantic formulae and parse trees. The stan-
dard way to create this corpus would be to parse with a SemTAG-based parser. How-
ever, it would be interesting to explore how the GENSEM tool ([Gardent et al., 2010;
Gardent and Kruszewski, 2012|) could be used for creating such a corpus ([Hwa,
2000]).

In the forest. In the past decade, purely symbolic sentence generation algo-
rithms have evolved through the incorporation of data-driven techniques into hybrid
symbolic-statistical generation algorithms ([Carroll et al., 1999; Carroll and Oepen,
2005; White, 2004; Espinosa et al., 2008; Nakanishi et al., 2005]). A commonality
among these approaches is that all of them rely on a packed shared forest, in addition
to statistical models to prune during or at the end of the generation process. RT Gen
provides an algorithm for TAG which builds a packed shared forest. Thus, for exam-
ple, in a similar way as we choose the order of pre-modifiers, we could implement a
selective unpacking mechanism based on a language model (e.g. [Langkilde, 2000]).

RTGen packing criteria could be relaxed in order to obtain more compact forests.
For instance, by not considering some features as well as some right-hand side non-
terminals of RT'G rules packing of active edges could be favoured. Going further,
we could take the following criteria for packing passive edges: consider as equivalent
edges with the same semantic coverage though possibly different root (or left-hand
side category), similarly to [Bangalore and Rambow, 2000a] ~-trees which do not
specify exactly how they are inserted into another tree. For instance, in this way
edges for S: Tammy adore la tatou(Tammy loves the armadillo) and NP: La tatou
que Tammy adore(The armadillo that Tammy loves) would be packed into a [NP|S]

93

Chapter 3. Optimising surface realisation

passive edge.

In conclusion, one interesting feature of hybrid approaches to NLG is that nat-
urally support a distinction between items (or combinations thereof) which can be
safely ignored because they cannot occur in a valid phrase structure tree (e.g. using
polarity filtering) and those which should be preferred base on statistical information
(e.g. using n-grams). These approaches have being applied to NLG for example by
White (2004) and Rambow and Joshi (1994). For future work, it would be interesting
to explore which approaches could be used to further extend RTGen.

94

Chapter 4

Natural language generation for

language learning

Contents
4.1 Imtroductiont 97
4.2 Generating exercise stems, 98
4.2.1 Constructing a Generation bank 98
4.2.2 Retrieving Appropriate Sentences 101
4.2.3 GramEx implementation details and resources 103
4.3 Building Fill-in-the-blank and Shuffle exercises 105
4.3.1 Evaluation: correctness, variability and productivity 106
4.4 Transformation-based grammar exercises 112
4.4.1 Related work on sentence reformulation 113
4.4.2 SemTAG derivation trees 114
4.4.3 Why Derivation Trees? 116
4.4.4 Tree filters for transformation related sentences 118
4.4.5 Meaning Preserving Transformations 119
4.4.6 Meaning Altering Transformations 122
4.4.7 Evaluation: coverage, genericity and precision 123

4.5 Comparison with previous work on (semi-)automatic
grammar exercises generation 125

4.6 Conclusions and perspectives 126

Grammar exercises in textbooks are not built from arbitrary text material, the de-
sign of textbooks for language learning is informed by evidence from language learn-
ing and acquisition research and teaching experience ([Krashen, 1982; Pienemann,
1998; Biber and Conrad, 2010]). In general, their syntax and vocabulary are tailored

to the lesson topic and in accordance with a given language level. Usually, these

95

Chapter 4. Natural language generation for language learning

exercises are edited by hand. Even though there exist authoring tools such as Hot
Potatoes® (|[Winke and MacGregor, 2001]) (cf. Chapter 2.3) that provide a graph-
ical interface where the teacher can create different types of exercises, ultimately,
the exercises are created by hand. The language teacher manually enters the text
that serves as the stem for the exercise and further edits it, for instance by selecting
blanks in a Fill-in-the-blank exercise type. In addition, the teacher must provide
the solutions and the associated feedback messages. Another example along these
lines is the system Lédmpel developed within the context of the Allegro project®. In
the final project evaluation report, the authors of Ladmpel indicate that around 100
exercises of different types have been edited by language teachers since the platform
was made available in 2011. In contrast, the approach we propose for automating
exercise edition was shown to automatically provide around 5000 exercises from 50
input semantic formulae.

Our SemTAG-based natural language generation approach aims at automatically
producing syntactically and lexically controlled grammar exercises for language learn-
ing. A key feature of this approach is that because the grammar constitutes a rich
linguistic resource describing natural language, the sentences produced by the gen-
eration processed are automatically associated with detailed linguistic information.
This permits specifying fine-grained linguistic constraints for selecting adequate ex-
ercice stems and supports further processing for building grammar exercises. An-
other important aspect of the approach is the input underspecification mechanism
endorsed by our generator together with the paraphrastic power and coverage of the
grammar. This alleviates content edition since from the underspecified input, we can
obtain several syntactically and morpho-syntactically distinct output sentences.

In this chapter, we describe our approach for automatically generating grammar
exercises. We start by describing the task of grammar exercises generation and
introduce the framework we propose, namely GramExz (Section 4.1). In Section 4.2,
we describe how we obtain appropriate exercise stems for building grammar exercises
using a constraint language over the syntactic and morpho-syntactic properties of
the SemTAG grammar and retrieving those generated sentences that satisfy the
constraints modelling a given exercise. In Section 4.3, we show how to generate
Fill-In-the-Blank (FIB) and Shuffle exercise types. In Section 4.4, we move on to
the generation of transformation-based type of exercises and present an approach
for generating pairs of sentences that are related by a syntactic transformation. We

evaluate the framework on several dimensions using quantitative and qualitative

http://hotpot.uvic.ca/
3Onttp://www.allegro-project.eu/

96

http://hotpot.uvic.ca/
http://www.allegro-project.eu/

4.1. Introduction

metrics as well as a small scale user-based evaluation. Finally, we wrap up with a
discussion of conclusions and perspectives (Section 4.6). Throughout this chapter,
our reference grammar book is the Tex’s French Grammar online grammar book.

Pedagogical goals as well as most of the examples are taken from it.

4.1 Introduction

To generate grammar exercises we need some “source’ text material (i.e. sentences

or phrases) from which concrete exercises can be built. We call this text material

exvercise stem. Grammar exercises pursue different pedagogical goals; and these exercise stem
pedagogical goals impose syntactic constraints on the stems used to build these

exercises. In practice, exercise stems are constrained by the: [Sjt:dngg cfgi :;)Izcci)g?s
Goal linguistic phenomena. Sentences for exercising on a given pedagogical

goal should encompass the specific linguistic phenomena pursued by that pedagogical

goal. For instance, given the pedagogical goal of learning relative clauses, a sentence

used to build a grammar exercise satisfying that goal might contain a relative pro-

noun, e.g. dont in (32).

(32) Tex: Le livre dont je suis Uauteur est un roman historique.

Tex: The book of which I'm the author is an historical novel.

Preferred linguistic phenomena. The content and the ordering of the content
in grammar books is carefully chosen by grammar books writers ([Krashen, 1982;
Pienemann, 1998; Biber and Conrad, 2010]). Certain grammar structures are pre-
ferred to be introduced in earlier stages than others. Therefore, additional constraints
might be placed on the general syntactic configuration of the selected sentences. Let
us consider the case of an introductory lesson where the pedagogical goal is learning
adjectives. In this case, sentences containing “simpler” grammatical constructions,
such as (33) might be preferred. In contrast, more complex sentences (e.g. exam-
ple (32)) with passive constructions and relative clauses, among others, might be

avoided.

(33) Tammy a une robe ravissante.

Tammy has a ravishing dress.

Granularity of the pedagogical goal. A pedagogical goal of learning adjectives

could be pursued in which sentences containing any adjective type might be used as

97

exercise item:
question and
solution

GramFEx

Chapter 4. Natural language generation for language learning

learning material. However, more fine grained pedagogical goals could be defined;
for instance, the pedagogical goal of learning irreqular adjectives. In this case, stem
sentences for exercises on this pedagogical goal should include those adjectives that
are of type irregular.

The first milestone of our approach is the generation of exercise stems that satisfy
these pedagogical constraints. The next step, is the construction of concrete exercise
items . That is, from generated stems we want to produce both the exercise question
(Q) and the expected solution (S) —as well as alternative correct solutions in some
cases. In (34), we can see two examples of question and solution, one (34a) for a

Fill-in-the-blank and the other (34b) for a transformation type of exercise.

(34) a. Give the correct form of the adjective indicated in parentheses.
Q: Tammy a une voiz . (douz, ’soft’) (Tammy has a soft voice.)

S: douce

b. Rewrite each question using the form specified in parentheses, est-ce que or
n’est-ce pas.
Q: Tex aime Bette? (est-ce que) (Tex loves Bette?)

S: Est-ce que Tex aime Bette?

In the following sections, we describe the GramFEx framework for the generation
of grammar exercises. That is, we will see in Section 4.2 how exercise stems are
produced by GramFEz; and how these stems are further processed to form the ques-
tion (Q) and solution (S) of Fill-in-the-blank, Shuffle, and Reformulation exercises
(Sections 4.3 and 4.4).

4.2 Generating exercise stems

To generate exercise stems, GramFEz proceeds as follows. First, a generation bank is
constructed using surface realisation techniques. This generation bank stores sen-
tences that have been generated together with the detailed linguistic information
associated by the generation algorithm with each of these sentences. Next, stem sen-
tences that permit exercising the given pedagogical goal are retrieved from the gener-
ation bank using a constraint language. This language permits defining pedagogical
goals in terms of the linguistic properties associated to the generated sentences (cf.
Section 2.2.5).

4.2.1 Constructing a Generation bank

98

4.2. Generating exercise stems

Sentence (5;):

Tammy a une voiz douce

Semantics (o;):

LO:proper _q(J HR HS) Ll:named(J tammy n)

L1:indiv(J f sg) qeq(HR L1) A:un_d(C RH SH)

B:indiv(C f sg) qeq(RH B) B:doux_adj(S C) B:voix_n(C)

G:avoir_ v(E J C) G:event(E pres indet ind)

Morpho-syntactic and syntactic properties (L;):

{lemma: "Tammy",

lemma-features: {anim:+,num:sg,det: +,wh:-,cat:n,func:subj,xp: +,gen:f},

synProperties: {propername}},

{lemma: "avoir",

lemma-features: {aux-refl:-,inv:-,pers:3,pron:-,num:sg,mode:ind,aspect:indet,
tense:pres,stemchange:-,flexion:irreg},

synProperties: {CanObj,CanSubj, Active, n0Vnl}},

{lemma: "un",

lemma-features: {wh:-,num:sg,mass:-,cat:d,gen:f,def:4},

synProperties: {determiner}},

{lemma: "voix",

lemma-features: {func:obj,wh:-,cat:n,num:sg,mass:-,gen:f,flexion:irreg},

synProperties: {noun}},

{lemma: "doux",

lemma-features: {num:sg,gen:f,flexion:irreg,cat:adj},

synProperties: {Epith,EpithPost}}

Derivation Tree (7;):

Tn0Vnl — 323-avoir:{Active,CanSubj,CanObj}
(num:sg,tse:pst,mode:ind,pers:3)

///\

Tpropername — 109-tammy:{Propername} Tnoun — 223-voix:{Noun}
(func:subj,gen:fem,num:sg,pers:3) (func:obj,gen:fem,num:sg)

T EpithPost — 1257-doux:{EpithPost}
(gen:fem,num:sg)

TdetQuantifier — 105-un:{Determiner}
(gen:fem,num:sg)

Figure 4.1: Linguistic information associated by GraDe with the sentence Tammy a un
voix douce (Tammy has a soft voice).

The generation bank is a collection of sentences associated with a representation
of their semantic content and a detailed description of their syntactic and morpho-
syntactic properties. In other words, a generation bank is a set of (S;, L;, 04, 7;)
tuples where S; is a sentence, L; is a set of linguistic properties true of that sentence,

o; is its semantic representation, and 7; is its associated derivation tree.

Figure 4.1 shows the linguistic information associated with the sentence .S,
Tammy a une voix douce (Tammy has a soft voice), output by our generator. The

semantic representation of the sentence is given by o;, a MRS (Minimal Recursion

99

generation
bank

core semantics

Chapter 4. Natural language generation for language learning

Semantics, [Copestake et al., 2001]) representation. Each lexical item in the derived
sentence is associated with a set of morpho-syntactic and syntactic properties Lj;.
That is, a set of feature-value pairs occurring as values of the lemma-features fields
and a set of syntactic properties, i.e. items occurring in the synProperties fields.
The last component is the SemTAG derivation tree 7; which provides structural in-
formation. As can be seen at the bottom of Figure 4.1, tree nodes are labelled with
(i) the name of an elementary tree, (ii) the set of tree properties associated with
the elementary tree, (iii) the lexical item anchor of the tree, and (iv) a subset of
the linguistic properties from L; associated to the lexical anchor. Importantly, the
derivation tree provides information about relations between lexical items, we will
see more details about this in Section 4.4.2.

To produce those tuples, we use the GraDe grammar traversal algorithm de-
scribed in [Gardent and Kruszewski, 2012]. Given a grammar G and a set of user-
defined constraints, this algorithm generates sentences licensed by G. The user-
defined constraints are either parameters designed to constrain the search space and
guarantee termination (e.g., upper-bound on the number and type of recursive rules
used or upper-bound on the depth of the tree built by GraDe); or linguistic pa-
rameters which permit constraining the output (e.g., by specifying a core semantics
the output must verbalise or by requiring the main verb to be of a certain type).
Note, that we mean by core semantics a set of literals describing predicate/argument
and modifier/modifiee relationships and not a full semantic specification as the one
used in the grammar (cf. Section 2.2.4). Indeed, the job of GraDe is to complete
this input core semantics turning it into a well-formed full semantic representation.
Here, we use GraDe both to generate from manually specified semantic input; and
from a grammar (in this case an existing grammar is used and no manual input need
to be specified). As explained in [Gardent and Kruszewski, 2012|, when generating
from a semantic representation, the output sentences are constrained to verbalise
that semantics but the input semantics may be underspecified thereby allowing for
morpho-syntactic, syntactic and temporal variants to be produced from a single se-
mantics. For instance, given the input semantics L1:named(J bette_n) A:le_d(C RH
SH) B:bijou_n(C) G:aimer_v(E J C), GraDe will output among others the following

variants:

Bette aime le bijou (Bette likes the jewel), Bette aime les bijoux (Bette likes
the jewels), C’est Bette qui aime le bijou (It is Bette who likes the jewel), C’est
Bette qui aime les bijoux (It is Bette who likes the jewel)), Bette aimait le bijou
(Bette liked the jewel), Bette aimait les bijoux (Bette liked the jewels), ...

When generating from the grammar, the output is even less constrained since all

100

4.2. Generating exercise stems

derivations compatible with the user-defined constraints will be produced irrespective
of semantic content. For instance, when setting GraDe with constraints restricting
the grammar traversal to only derive basic clauses containing an intransitive verb,

the output sentences include among others the following sentences:

Elle chante (She sings), La tatou chante-t’elle? (Does the armadillo sing?), La
tatou chante (The armadillo sings), Chacun chante -t’il (Does everyone sing?
), Chacun chante (Everyone sings), Quand chante la tatou? (When does the
armadillo sing?) Quand chante quel tatou? (When does which armadillo sing?),
Quand chante Tammy? (When does Tammy sing?), Chante-t’elle? (Does she
sing?) Chante -t'il? (Does he sing?), Chante! (Sing!), Quel tatou chante ?
(Which armadillo sings?), Tammy chante-t’elle? (Does Tammy sing?), Tammy
chante (Tammy sings), une tatou qui chante chante (An armadillo which sings

sings), C’est une tatou qui chante (It is an armadillo which sings) , ...

4.2.2 Retrieving Appropriate Sentences

To enable the retrieval of sentences that are appropriate for a given pedagogical
goal, we define a constraint language on the linguistic properties assigned by GraDe
to sentences. We then express pedagogical goals constraints in that language; and
we use the resulting specifications as queries to retrieve from the generation bank
appropriate stem sentences. For instance, to retrieve a sentence for building a FIB
exercise where the blank is a relative pronoun, we query the generation bank with
the constraint RelativePronoun. This will return all sentences in the generation
bank whose synProperties field contains the Relative Pronoun item i.e., all sentences

containing a relative pronoun.

GramEx Query Language

We now define the query language used to retrieve sentences that are appropriate to
build an exercise for a given pedagogical goal. Let B be a generation bank and let
(Si, Li, 04, 7;) be the tuples stored in B. Then, a GramEz query ¢ permits retrieving
from B the set of sentences S; € (S;, L;,04,7;) such that L; satisfies ¢. In other
words, GramFEz queries permit retrieving from the generation bank all sentences

whose linguistic properties satisfy those queries.

The syntax of the GramEx query language is as follows:

101

boolean
constraints on
linguistic
properties

Chapter 4. Natural language generation for language learning

Grammatical Properties (traceltem)
Argument Cleft, CleftSUbj, CleftOBJ, ...,
Realisation | InvertedSubj
Questioned, QuSubj, ...
Relativised, RelSubj ...
Pronominalised, ProSubj, ...

Voice Active, Passive, Reflexive

Aux tse, modal, causal

Adjective Predicative,Pre/Post nominal
Adverb Sentential, Verbal
Morpho-Syntactic Properties (feature=value)
Tense present,future,past

Number mass, count, plural, singular
Inflexion reg,irreg

Table 4.1: Some grammatical and morpho-syntactic properties that can be used to specify
pedagogical goals.

LingDescription — LingTerm

LingTerm — LingFactor | LingTerm V LingFactor

LingFactor — LingUnary | LingFactor A LingUnary

LingUnary — LingPrimary | - LingPrimary

LingPrimary — PrimitiveCond | (LingDescription) | [LingDescription |

PrimitiveCond — traceltem | feature = value

In words: the GramFEz query language permits defining queries that are arbitrary
boolean constraints on the linguistic properties associated by GraDe with each gener-
ated sentence. In addition, complex constraints can be named and reused (macros);
and expressions can be required to hold of a single lexical item ([LingDescription]
indicates that LingDescription should be satisfied by the linguistic properties of a
single lexical item).

The signature of the language is the set of grammatical (¢traceltem) and morpho-
syntactic properties (feature = wvalue) associated by GraDe with each generated
sentence where traceltem is any item occurring in the value of a trace field and
feature = value any feature/value pair occurring in the value of a lemma-features
field (cf. Figure 4.1). Table 4.1 shows some of the constraints that can be used to

express pedagogical goals in the GramFEz query language.

Query Examples

The GramFEzr query language allows for very specific constraints to be expressed,
thereby providing a fine-grained control over the type of sentences and therefore
over the types of exercises that can be produced. The following example queries

illustrate this.

102

4.2. Generating exercise stems

(35) a. EpithAnte
Tex pense que Tammy est une jolie tatou

Tex thinks that Tammy is a pretty armadillo

b. [Epith A flexion: irreg]
Tex et Tammy ont une voiz douce

Tex and Tammy have a soft voice

c. POBJinf A CLAUSE
POBJinf = (DE-OBJinf V A-OBJinf)
CLAUSE = Vfin A -Mod A —~CCoord A =Sub
Tammy refuse de chanter

Tammy refuses to sing

Query (35a) shows a query for retrieving sentences containing prenominal adjec-
tives which uses the grammatical (fraceltem) property EpithAnte associated with
preposed adjectives.

In contrast, Query (35b) uses both grammatical and morpho-syntactic properties
to retrieve sentences containing a prenominal or postnominal adjective3! with irreg-
ular inflexion. The square brackets in the query force the conjunctive constraint to
be satisfied by a single lexical unit. That is, the query will be satisfied by sentences
containing a lexical item that is both a pre or postnominal adjective and has irregular
inflexion. This excludes sentences including, for instance, a postnominal adjective
and a verb with irregular inflexion (unless they also contain an irregular adjective).

Finally, Query (35¢) shows a more complex case where the pedagogical goal is de-
fined in terms of predefined macros themselves defined as GramFExz query expressions.
The pedagogical goal is defined as a query which retrieves basic clauses (CLAUSE)
containing a prepositional infinitival object (POBJinf). A sentence containing a
prepositional infinitival object is in turn defined (second line) as a prepositional ob-
ject introduced either by the de or the a preposition. And a basic clause (3rd line) is
defined as a sentence containing a finite verb and excluding modifiers, clausal or verb
phrase coordination (CCORD) and subordinated clauses. The expressions CCoord

and Sub are themselves defined rather than primitive expressions.

4.2.3 GramEx implementation details and resources

The major three steps of our exercise generation approach are shown schematically

in Figure 4.2.

3 Note that in the grammar Epith = (EpithAnte VV EpithPost)

103

grammar and
lexicons

Chapter 4. Natural language generation for language learning

Grammar

Lexicon . . Exercise
1. Generation bank 2. Sentence retrieval source 3. Exercise genertaion iterns

sentences
construction -

GramEx GramEx
GraDe query language activity types

input
constraints

Generation
bank

Figure 4.2: GramFEz architecture.

The first module corresponds to GraDe (described in Section 4.2.1). It takes
as input a grammar and a lexicon together with a set of traversal constraints to
generate sentences. GraDe is written in Python3? and converts the FB-RTG de-
rived from the SemTAG Grammar to a Definite Clause Grammar which supports a,
constraint-driven traversal of the grammar. The output of GraDe, i.e. a sentence
with its associated linguistic information as shown in Figure 4.1, is encoded in JSON
(JavaScript Object Notation®?) format and is stored in an open source document
database named MongoDB>*.

The GramEz’'s modules are written in Java. In the second step, the second module
in Figure 4.2, GramFEz's boolean query expressions are translated into MongoDB
queries to retrieve from the sentence bank those sentences that satisfy the constraints
defined by the queries. The retrieved sentences are then passed on to the third
module. In the last step, the third module implements the different exercise types
by post-processing the selected exercise stems so as to produce exercise items. In the
next section, we describe the exercise types defined in GramFEx.

The grammar used is SemFraG (an FB-TAG for French, cf. Section 2.2.5). This
grammar contains around 1300 elementary trees and covers auxiliaries, copula, rais-
ing and small clause constructions, relative clauses, infinitives, gerunds, passives,
adjuncts, wh-clefts, PRO constructions, imperatives and 15 distinct subcategorisa-
tion frames.

The syntactic and morpho-syntactic lexicons used for generation were derived
from various existing lexicons, converted to fit the format expected by GraDe and
tailored to cover basic vocabulary as defined by the lexicon used in Tex’s French
Grammar. The syntactic lexicon contains 690 lemmas and the morphological lexicon

5294 forms.

32
33
34

www.python.org/
www. json.org/
www .mongodb. org/

104

www.python.org/
www.json.org/
www.mongodb.org/

4.3. Building Fill-in-the-blank and Shuffle exercises

4.3 Building Fill-in-the-blank and Shuffle exercises

In the previous section, we saw the mechanism used for selecting an appropriate
sentence for a given pedagogical goal. GramEx uses such selected sentences as stem
sentences to build exercise items. In this section, we describe how GramFEz produces
two types of exercises namely, Fill-in-the-blank and Shuffle exercises. Here, the
exercise question is automatically generated from the selected sentence based on its

associated linguistic properties.

FIB questions. FIB questions are built by removing a word from the target sen-
tence and replacing it with either: a blank (FIBBLNK), a lemma (FIBLEM) or a set
of features used to help the learner guess the solution (FIBHINT). For instance, in
an exercise on pronouns, GramEx will use the gender, number and person features
associated with the pronoun by the generation process and display them to specify
which pronominal form the learner is expected to provide. The syntactic represen-
tation (cf. Figure 4.1) associated by GraDe with the sentence is used to search for
the appropriate key word to be removed. For instance, if the pedagogical goal is
Learn Subject Pronouns and the sentence retrieved from the generation bank is that
given in (36a), GramEz will produce the FIBHINT question in (36b) by searching for
a lemma with category ¢l (clitic) and feature func=subj and using its gender value

to provide the learner with a hint constraining the set of possible solutions.

(36) a. Elle adore les petits tatous. (She loves the small armadillos)

b. adore les petits tatous. (gender—fem)

Shuffle questions. Similarly to FIB questions, shuffle exercise items are produced
by inspecting and using the target derivational information. More specifically, lem-
mas are retrieved from the list of lemma-feature pairs. Function words are (option-
ally) deleted. And the remaining lemmas are “shuffled” (MSnUF). For instance, given

the source sentence (37a), the MSHUF question (37b) can be produced.

(37) a. Tammy adore la petite tatou. (Tammy loves the small armadillo)

b. tatou / adorer / petit / Tammy

Note that in this case, there are several possible solutions the learner can en-
ter. One is with respect to morpho-syntactic information, i.e. depending on which
tense and number is used by the learner. For such cases, we can either use hints as
shown above to reduce the set of possible solutions to one; or compare the learner’s

answer to the set of output produced by GraDe for the semantics the sentence was

105

blank out
constraints

Chapter 4. Natural language generation for language learning

produced from (i.e. the core semantics with underspecified morphological informa-
tion). Furthermore, the possible candidate solutions might vary with respect to the
syntactic constructions used by the learner. If the exercise formulation states to only
add determiners and morphology to give the answer, in principle, there should be
no syntactic variation expected. In contrast, if the exercise formulation does not
give guidelines on the expected syntax, possible correct alternative answers for the
question (37b) (e.g. C’est Tammy qu’adore la petite tatou (It is Tammy that loves the
small armadillo)) could be expected. Here, we can also rely in the fact that grammar
generates different syntactic configuration for the same input semantics. Finally,
the example in (37) illustrates another ambiguity issue that occurs when there is no
enough information for the learner to know from the question whether it is Tammy
who loves the armadillo or the other way around. The same thing occurs with the
adjective, the learner does not know from the question sentence in which NP the
adjective goes (although in this example the NP La petite Tammy would be less nat-
ural). To address these issues there are different alternative solutions. One option
is to show semantic features indicating roles, however, this might force the learner
to get used to this kind of semantic information. Another possibility is to collect
from the sentence bank all those sentences whose transformation into Shuffle leads
to the same question (e.g. collect all the sentences that after been turned into Shuffle
questions lead to the same set of lemmas). For the modification ambiguity, GramFEz
could use brackets to indicate lemmas that go together into a NP, e.g. (tatou /

petit) / adorer / Tammy.

4.3.1 Evaluation: correctness, variability and productivity

At this point, we carried out an experiment designed to assess the exercises pro-
duced by GramFEz. On one hand, we want to evaluate the correctness of the exer-
cises produced (e.g. grammaticality of the generated sentences or accuracy of the
stem selection mechanism). On the other hand, we want to assess the impact of
this framework in the automation of grammar exercises production. To this end, we
summarise data from the experiment in different ways, as will be explained below, to
provide measures of both variability and productivity. In what follows, we describe
the parameters of this experiment namely, the input and the user-defined parameters
constraining sentence generation; and the pedagogical goals being tested. The gram-
mar and the lexicon resources are those mentioned in Section 4.2.3. After describing

the experimental settings we discuss the results we obtain.

106

4.3. Building Fill-in-the-blank and Shuffle exercises

Pedagogical Goals

We evaluate the approach on 16 pedagogical goals®® taken from the Tex’s French
Grammar book. For each of these goals, we define the corresponding linguistic
characterization in the form of a GramFEz query. We then evaluate the exercises
produced by the system for each of these queries. The pedagogical goals tested are
the following (we indicate in brackets the types of learning activity produced for each

teaching goal by the system):

e Adjectives: Adjective Order (MSHUF), Adjective Agreement (FIBLEM), Prenom-
inal adjectives (FIBLEM), Present and Past Participial used as adjectives (FI-

BLEM), Regular and Irregular Inflexion (FIBLEM), Predicative adjectives (MSHUF)

e Prepositions: Prepositional Infinitival Object (FIBBLNK), Modifier and Com-
plement Prepositional Phrases (FIBBLNK)

e Noun: Gender (FIBLEM), Plural form (FIBLEM), Subject Pronoun (FIBHINT).

e Verbs: Pronominals (FIBLEM), -ir Verbs in the present tense (FIBLEM), Simple
past (FIBLEM), Simple future (FIBLEM), Subjunctive Mode (FIBLEM).

GraDe’s Input and User-Defined Parameters

GraDe’s configuration. As mentioned in Section 4.2.1, we run GraDe using
two main configurations. In the first configuration, GraDe search is constrained by
an input core semantics which guides the grammar traversal and forces the output
sentences to verbalise this core semantics. In this configuration, GraDe will only pro-
duce the temporal variations supported by the lexicon (the generated sentences may
be in any simple tense i.e., present, future, simple past and imperfect) and the syn-
tactic variations supported by the grammar for the same MRSs (e.g., active/passive
voice alternation and cleft arguments).

Greater productivity (i.e., a larger output/input ratio) can be achieved by pro-
viding GraDe with less constrained input. Thus, in the second configuration, we run
GraDe not on core semantics but on the full grammar. To constrain the search, we
specify a root constraint which requires that the main verb of all output sentences is
an intransitive verb. We also set the constraints on recursive rules so as to exclude
the inclusion of modifiers. In sum, we ask GraDe to produce all clauses (i) licensed
by the grammar and the lexicon; (ii) whose verb is intransitive; and (iii) which do

not include modifiers. Since the number of sentences that can be produced under

35The list of defined pedagogical goals together with an extract of the automatically generated
exercises is in given in Appendix A.1.

107

Chapter 4. Natural language generation for language learning

this configuration is very large, we restrict the experiment by using a lexicon con-
taining a single intransitive verb (chanter/To sing), a single common noun and a
single proper name. In this way, syntactically structurally equivalent but lexically

distinct variants are excluded.

Input Semantics. We use two different sets of input semantics for the seman-
tically guided configuration: one designed to test the pedagogical coverage of the
system (Given a set of pedagogical goals, can GramEz generate exercises that ap-
propriately target those goals?); and the other to illustrate linguistic coverage (How

much syntactic variety can the system provide for a given pedagogical goal?).

Give the plural form of the noun indicated in parentheses. Pay attention to both the article and the noun.

1. Bette aime . (le bijou)

2. Fiona aime . (le cheval)

3. Joe-Bob aime américaines. (la biere)
4. Tex n'aime pas . (le choix)

5. Joe-Bob n'aime pas difficiles. (le cours)
6. Tammy n'aime pas . ('hopital)

7. Eduard aime . (le tableau)

8. Bette aime de Tex. (I'oeil)

9. Tex aime francais. (le poéte)

10. Corey aime fraiches. (la boisson)

11. Tammy aime américains. (le campus)
12. Corey n'aime pas . ("'examen)

Figure 4.3: Grammar exercises from the Tex’s French GrammarTextbook

The first set (D1) of semantic representations contains 9 items representing the
meaning of example sentences taken from the Tex’s French Grammar textbook.
For instance, for the first item in Figure 4.3, we use the semantic representation
L1:named(J bette_n) A:le_d(C RH SH) B:bijou_n(C) G:atmer_v(E J C). With
this first set of input semantics, we test whether GramFEz correctly produces the ex-
ercises proposed in the Tex’s French Grammar book. Each of the 9 input semantics
corresponds to a distinct pedagogical goal.

The second set (D2) of semantic representations contains 22 semantics, each of
them illustrating distinct syntactic configurations namely, intransitive, transitive and
ditransitive verbs; raising and control; prepositional complements and modifiers; sen-
tential and prepositional subject and object complements; pronominal verbs; pred-
icative, attributive and participial adjectives. With this set of semantics, we intro-
duce linguistically distinct material thereby increasing the variability of the exercises
i.e., making it possible to have several distinct syntactic configurations for the same

pedagogical goal.

108

4.3. Building Fill-in-the-blank and Shuffle exercises

Evaluation, Results and Discussion

Using the experimental setup described in previous sections, we evaluate GramFEz on

the following points:

e Correctness: Are the exercises produced by the generator grammatical, mean-

ingful and appropriate for the pedagogical goal they are associated with?

e Variability: Are the exercises produced linguistically varied and extensive?
That is, do the exercises for a given pedagogical goal instantiate a large number

of distinct syntactic patterns?

e Productivity: How much does GramEx support the production, from a re-

stricted number of semantic input, of a large number of exercises?

Correctness. To assess correctness, we randomly selected 10 (pedagogical goal,
exercise) pairs for each pedagogical goal in Section 4.3.1 and asked two evaluators to
say for each pair whether the exercise text and solutions were grammatical, mean-
ingful (i.e., semantically correct) and whether the exercise was adequate for the
pedagogical goal. The results are shown in Table 4.2 and show that the system al-
though not perfect is reliable. Most sources of grammatical errors are cases where a
missing word in the lexicon fails to be inflected by the generator. Cases where the
exercise is not judged meaningful are generally cases where a given syntactic con-
struction seems odd for a given semantics content. For instance, the sentence C’est
Bette qui aime les bijouz (It is Bette who likes jewels) is fine but C’est Bette qui aime des
bijour although not ungrammatical sounds odd. Finally, cases judged inappropriate
are generally due to an incorrect feature being assigned to a lemma. For instance,

avoir (To have) is marked as an -ir verb in the lexicon which is incorrect.

Grammatical | Meaningful | Appropriate
91% 96% 92%

Table 4.2: Exercise Correctness tested on 10 randomly selected (pedagogical goal, exercise
pairs)

We also asked a language teacher to examine 70 exercises (randomly selected in
equal number across the different pedagogical goals) and give her judgment on the

following three questions:

e A. Do you think that the source sentence selected for the exercise is appropriate
to practice the topic of the exercise? Score from 0 to 3 according to the degree

(0 inappropriate - 3 perfectly appropriate)

109

Chapter 4. Natural language generation for language learning

e B. The grammar topic at hand together with the complexity of the source sen-

tence make the item appropriate for which language level? A1,A2,B1,B2,C136

e C. Utility of the exercise item: ambiguous (not enough context information to

solve it) / correct

For Question 1, the teacher graded 35 exercises as 3, 20 as 2 and 14 as 1 pointing to
similar problems as was independently noted by the annotators above. For question
B, she marked 29 exercises as A1/A2, 24 as A2, 14 as A2/B1 and 3 as A1l suggesting
that the exercises produced are non trivial. Finally, she found that 5 out of the 70

exercises lacked context and were ambiguously phrased.

Nb.SP [1] 2] 3[4[5]6]7[&8]9[10]14] 21
SG) 33316724614 1| 2| 6

Table 4.3: Variability: Distribution of the number of distinct sentential patterns that can
be produced for a given pedagogical goal from a given input semantics.

Variability. For any given pedagogical goal, there usually are many syntactic
patterns supporting learning. For instance, learning the gender of common nouns
can be practiced in almost any syntactic configuration containing a common noun.
We assess the variability of the exercises produced for a given pedagogical goal by
computing the number of distinct morpho-syntactic configurations produced from a
given input semantics for a given pedagogical goal. We count as distinct all exercise
questions that are derived from the same semantics but differ either in syntax (e.g.,
passive/active distinction) or in morphosyntax (determiner, number, etc.). Both
types of differences need to be learned and therefore producing exercises which, for a
given pedagogical goal, expose the learner to different syntactic and morpho-syntactic
patterns (all involving the construct to be learned) is effective in supporting learning.
However, we did not take into account tense differences as the impact of tense on
the number of exercises produced is shown by the experiment where we generate by
traversing the grammar rather than from a semantics (as explained below). Table 4.3
shows for each (input semantics, teaching goal) pair the number of distinct patterns
observed. The number ranges from 1 to 21 distinct patterns with very few pairs (3)
producing a single pattern, many (33) producing two patterns and a fair number

producing either 14 or 21 patterns.

36 A1, A2, Bl, B2 and C1 are reference levels established by the Common Eu-
ropean Framework of Reference for Languages: Learning, Teaching, Assessment (cf.
http://en.wikipedia.org/wiki/Common_European_Framework_of_Reference_for_Languages)
for grading an individual’s language proficiency.

110

http://en.wikipedia.org/wiki/Common_European_Framework_of_Reference_for_Languages

4.3. Building Fill-in-the-blank and Shuffle exercises

Pedagogical Goal FIBLEM | FIBBLNK | MSHUF | FIBHINT
Preposition — 28 — —
Prepositions with infinitives — 8 — —
Subject pronouns—il — — — 3
Noun number 11 — — —
Noun gender — 49 — —
Adjective order — — 30 —
Adjective morphology 30 — — —
Adjectives that precede the noun 24 — — —
Attributive Adjectives — — 28 —
Irregular adjectives 4 — — —
Participles as adjectives 4 — — —
Simple past 78 — _ _
Simple future 90 — — —
-ir verbs in present 18 — — —
Subjunctive mode 12 — — —
Pronominal verbs 12 — — —
Total 236 78 30 3

Table 4.4: Number and Types of Exercises Produced from the 28 input semantics

Nb.Ex. |12]4|5 (6|12 17|18 |20 |21 |23 |26 | 31| 37 | 138
Nb.Sem |14 |6 |14 3 1 1 1 1 1 1 1 1 1

Table 4.5: Exercise Productivity: Number of exercises produced per input semantics.

Nb. PG 1 213 4| 5|6
Nb. sent | 213 | 25 | 8 | 14 | 10 | 6

Table 4.6: Pedagogical Productivity: Number of Teaching Goals the source sentence pro-
duced from a given semantics can be used for.

Productivity. When used to generate from core semantic representations (cf.
Section 4.3.1), GramEz only partially automates the production of grammar ex-
ercises. Semantic representations must be manually input to the system for the
exercises to be generated. Therefore, the issue arises of how much GramFEz helps au-
tomating exercise creation. Table 4.4 shows the breakdown of the exercises produced
per teaching goal and activity type. In total, GramFz produced 429 exercises out of
28 core semantics yielding an output/input ratio of 15 (429/28). Further, Table 4.5
and 4.6 show the distribution of the ratio between (i) the number of exercises pro-
duced and the number of input semantics and (ii) the number of teaching goals the
source sentences produced from input semantics ¢ can be used for. Table 4.6 (ped-

agogical productivity) shows that, in this first experiment, a given input semantics

111

Chapter 4. Natural language generation for language learning

can provide material for exercises targeting up to 6 different pedagogical goals while
Table 4.5 (exercise productivity) shows that most of the input semantics produce
between 2 and 12 exercises® .

When generating by grammar traversal, under the constraints described in Sec-
tion 4.3.1, from one input 90 exercises are generated targeting 4 different pedagogical

goals (i.e. 4 distinct linguistic phenomena).

4.4 Transformation-based grammar exercises

In the previous section, we saw how SemTAG based generation permits producing
grammar exercise items (question and solution) of type FIB and Shuffle. Here, we
focus on the generation of transformation-based grammar exercises. In this type
of exercises the question and the solution are two sentences that are related by a
syntactic transformation. For instance, in (38) the question (Q) is an active sentence

and the solution (S) its passive form counterpart.

(38) Q: C’est Tex qui a fait la tarte. (It is Tex who has baked the pie.)

S: C’est par Tex que la tarte a été faite. (It is Tex by whom the pie has been baked.)

Our approach to generate these pairs of related sentences relies on the linguistic
information associated to the sentences by the generator, in particular, the derivation
trees. We use the generation bank B consisting of tuples (S;, L;,0;,7;) and the
constraint language introduced in Section 4.2.1 for selecting stem sentences S;. But
this time, for the analysis of transformations we make use of the fourth component 7;,
i.e. the derivation tree associated with the sentence S;. Indeed, tree filters are used to
retrieve from the generation bank those sentences that pair stem sentences. Retrieved
pairs provide the question and the solution of a given transformation exercise. These
tree filters are defined on pairs of derivation trees and make use of the rich linguistic
information associated by our generator with those derivation trees.

As illustrated by the exercise item in (39) extracted from the Tez’s French Gram-
mar book, there are two major things we need to take care about when generating
pairs of transformationally related sentences. That is, (i) the informational content
of the sentences and (ii) the fact that the syntax of the solution sentence should be

as close as possible to that of the question sentence.

37If the input semantics contains a noun predicate whose gender is underspecified, the exercise
productivity could be doubled. This is the case for 4 of the input semantics in the dataset D2; i.e.
an input semantics containing the predicates tatou n(C) petit _a(C) will produce variations such
as: la petite tatou (the small armadillo (f)) and le petit tatou (the small armadillo (m)).

112

4.4. Transformation-based grammar exercises

(39) Tammy : Tex aime Bette? (est-ce que) (Tex loves Bette?)
correct answer: Est-ce que Tex aime Bette? (Does Tex love Bette?)

your answer: FEst-ce que Tex aime Bette? (Does Tex love Bette?)

If we had entered as solution the sentence Est-ce que Bette est aimée par Tex? (Is
Bette loved by Tex?) the exercise would have being considered as incorrect. The
learner is expected to enter the transformed sentence following closely the syntactic
configuration of the question sentence. Regarding the informational content of the
solution sentence, if the learner would have entered the answer Est-ce que Bette aime
Tezx? (Does Bette loves Tex?) it would have also been taken as incorrect. While the
answer uses the question form est-ce que the meaning is not the same as that of the
question sentence.

In what follows, we will see how the approach we propose based on SemTAG
derivation trees addresses the generation of the type transformation-based grammar
exercises discussed so far. We start by linking this approach to related work on
generating or deriving syntactic reformulations of a given sentence. Then, we review
the linguistic information present in the derivation trees and give some intuitions of
how this information is used by the tree filters. We go on to motivate the use of
derivation trees as a structure on which to base the identification of transformation-
ally related sentences. Finally, we present the derivation tree filters used to identify

pairs of transformationally related sentences.

4.4.1 Related work on sentence reformulation

In linguistics, transformations ([Harris, 1957; Chomsky, 1957]) model recurrent lin-
guistic relations between sentence pairs. For instance, a transformation can be used
to define the relation between the active and the passive voice version of the same sen-
tence. Formally, transformations were stated as tree-transducers on phrase structure
trees and they defined either structure changing or structure building (generalised
transformation) operations.

In computational linguistics, transformations and more generally, structure chang-
ing and structure building rules have been used in such tasks as text simplification
([Siddharthan, 2010]), text summarising ([Cohn and Lapata, 2009]) and question
generation (|[Piwek and Boyer, 2012|). In these approaches however, the transfor-
mation relation is not necessarily defined on phrase structure trees. For instance,
for the question generation task, Yao et al. (2012) have argued that Assertion/WH-
Question transformations are best defined on semantic representations. Conversely,

for text simplification, Siddharthan (2010) has convincingly shown that dependency

113

Chapter 4. Natural language generation for language learning

trees are better suited as a representation on which to define text simplification rules
than both phrase structure trees and semantic representations.

Siddharthan (2011) presents a user evaluation comparing different re-generation
approaches for sentence simplification. He notes in particular that annotators pre-
ferred those transformations that are closer in syntax to the original sentence. To
achieve this, rules for word ordering are either added to the transform rules or coded
as constraints within the input to a generator. In contrast, in our approach, syntactic
similarity can be deduced by tree comparison using the rich linguistic information
associated by the generator with the FB-LTAG derivation trees.

Chandrasekar and Srinivas (1997) describe an algorithm by which generalised
rules for simplification are automatically induced from annotated training material.
Similar to our work, their approach makes use of TAG derivation trees as a base
representation. Using a corpus of complex sentences parsed and aligned with the cor-
responding simplified sentences, the tree comparison algorithm they propose permit
inducing simplification rules between dependency trees derived from TAG derivation
trees. Although similar to our approach, Chandrasekar and Srinivas’s (1997) pro-
posal differs from ours in several ways. First, while we focus on transformations,
they work on simplifications relating e.g., a sentence containing a relative clause to
two base clauses. Second, the trees on which they define their transformations are
reconstructed in a rather ad hoc manner from the TAG derivation trees and from
information extracted from the TAG derived trees. In contrast, we make use of the
derivation trees produced by the GraDe algorithm. Third, while their work is limited
to sentences containing relative clauses, we consider a wider range of transformations.
Fourth, their approach targets the automatic acquisition of simplification rules while

we manually define those.

4.4.2 SemTAG derivation trees

In Section 2.2, we introduced the SemTAG grammar and, in particular, its derivation
trees (cf. Section 2.2.3). We also described the linguistic information present in the
SemTAG derivation trees produced by our generator (cf. Section 4.2.1). Here, we give
some intuitions about how this linguistic information will be used in the generation
of pairs of syntactically related sentences.

Figure 4.4 shows a small FB-LTAG grammar and the derivation tree associated
with the sentence C’est Tammy qui fait la tarte (It is Tammy who bakes a pie). This

example derivation tree illustrates the additional information®® contained in deriva-

38In Figure 4.4, edge labels are omitted for simplicity.

114

4.4. Transformation-based grammar exercises

tion trees produced by GraDe. Nodes are labelled not only with the name of an
elementary tree but also with the lemma anchoring that tree, the feature structure

associated with the anchor of that tree and the tree properties of that tree.

(02)
(a1) S, (ﬂl)
N/ e N,
| VP N} se ——
Tamm N — D N*,
Y 1 v N VP! \
10:proper_q(j hr hs) Vﬁ/\Nig la
geq(hr 1) L)
l1:named(j tammy) vV VvV 12:le_q(w dr ds)
l:indiv(j f s9) ce étre qui faire qeq(hr, 13)
lv:faire(a,f,g)
(c3)
Nt
\
tarte
13:tarte(t)
ao-faire:{ Active,CleftSubj,CanObj}
(num:sg,tse:pst,mode:ind,pers:3)

as-tammy:{ProperNoun} az-tarte:{Noun}
(func:subj,gen:fem,num:sg,pers:3) (func:obj,gen:fem,num:sg)

B1-la:{DefDet}
(gen:fem,num:sg)

Derivation Tree

S
/\
VP PP

N T
Cl Y Prep N

ce étre par

Tree Property CleftAgent

Figure 4.4: Grammar, Derivation Tree and Example Tree Property (Bottom right) for
the sentence C’est Tammy qui fait la tarte (It is Tammy who bakes the pie)

We use feature structure information in three main ways. To identify the gram-

115

Chapter 4. Natural language generation for language learning

matical function of an argument, to verify that two transformationally related sen-
tences are syntactically and morpho-syntactically identical up to the transformed
part and to verify morpho-syntactic constraints on the transformed parts.

In Figure 4.4, the func feature indicates the function of the two arguments of the
verb: Tammy is the subject and tarte (pie) the object of faire (to bake). The tense-
aspect morphological features (tse and aspect) for the verb faire permit verifying
temporal relations between a sentence and its transform. Similarly, the verb feature
mode for verifying the mode of two sentences. The gender, number and person (gen,
num, pers) features in, for example, a noun argument of a verb (tarte in Figure 4.4)
allow verifying that the noun argument is the same or replaced by an adequate
syntactic element, e.g. a pronoun, Tammy — elle (she —nominative case).

Recall from Section 2.2.5, tree properties are abstractions over tree descriptions.
They name the tree descriptions that were used to build the FB-LTAG elementary
trees. Thus, for instance, the tree property CleftAgent names the tree description
appearing at the bottom right of Figure 4.4; and the elementary tree as in Figure 4.4
is associated with the tree properties Active, CleftSubj,CanObj indicating that this tree
was built by combining the tree descriptions named Active, CleftSubj and CanObj.

4.4.3 Why Derivation Trees?

While providing detailed information about the syntax and the informational content
of a sentence, FB-LTAG derivation trees provide both a more abstract description
of this information than derived trees and a richer representation than semantic
formulae.

Figure 4.5 illustrates the difference between derived and derivation trees by show-
ing those trees for the sentences C’est Tex qui a fait la tarte (It is Tex who baked the
pie) and C’est par Tex que la tarte a été faite (It is by Tex that the pie was baked).
While the derived trees of these two sentences differ in their overall structure (differ-
ent structure, different number of nodes), their derivation trees are identical up
to the tree properties of the verb. Moreover, the tree properties of the active
({ Active, CleftSubj,CanObj }) and of the passive ({passive,cleftAgent,canSubj}) verb cap-
ture the changes in argument and verb realisation typical of a passive transformation.
In other words, derivation trees provide a level of description that is simpler (less
nodes) and that better supports the identification of tranformationally related sen-
tences (more similar configurations and explicit description of changes in argument
and verb realisation).

Derivation trees are also better suited than semantic formulae to capture transfor-

116

4.4. Transformation-based grammar exercises

S
. T
VP N S
N >
cl Vv N VP

¢ est Tex qui
S
.
VP PP S
N S .
Cl V Prep N C VP
/\
N)%
N .
D N A% \Y
N
i

)

c est par Tex que la tarte a été faite

ao-faire:{ Active,CleftSubj,CanObj}
ag-tex:{ ... } as-avoir:{TenseAux} «s-tarte:{ ... }

B1-la:{defDet}

ag-faire:{Passive,Cleft Agent,CanSubj}
ag-tex:{ ... } as-avoir:{TenseAux} «as-tarte:{ ... }

B1-la:{defDet}

Figure 4.5: Derived (top) and Derivation (bottom) Trees for the active voiced sentence
C’est Tex qui a fait la tarte (It is Tex who baked the pie) and its passive variant

mations as, in some cases®?, the semantic representations of two transformationally

39Whether two syntactically distinct sentences share the same semantics depends on the grammar.
In the grammar we use, the semantic representations aim to capture the truth conditions of a
sentence not their pragmatic or informational content. As a result, Passive/Active variations do
share the same semantics.

117

Chapter 4. Natural language generation for language learning

related sentences may be identical. For instance, in our grammar, Active/Passive,
canonical /inverted subject and cleft /non cleft argument variations are assigned the
same semantics. As illustrated in Figure 4.5, for those cases, the tree properties
labelling the derivation trees provide a direct handle for identifying sentences related

by these transformations.

4.4.4 Tree filters for transformation related sentences

LA LA
a)
.%{Ps} ,,,,,,,,,,,,,,, ma}
D ae] o]
K\\\\\“ ##’///’ pron
......)
P 0
\“5)_‘__,4‘1
NN
LA LS
d)

o——o——§
.

5bet -7
Figure 4.6: Tree filter types (tree schemas on the left depict source sentence derivation

trees and those to their right their transform).

To identify transformationally related sentences, we define tree filters on deriva-

118

4.4. Transformation-based grammar exercises

tion trees. These filters make use of all the information present in the FB-LTAG
derivation trees produced by GraDe namely, the tree names, the lemmas, the feature
structures and the tree properties labelling the nodes of these trees.

Figure 4.6 shows the general filtering patterns we used to handle four types of
transformations used in language learning: Active/Passive, NP /pronoun (pronomi-
nalisation), NP/Wh-NP (WH-questions) and Assertion/Yes-No questions.

Filters (a) and (d) are used for the Active/Passive and for the canonical /inverted
subject variations. Filter (a) relates two trees which are identical up to one node
differing in its tree properties. It applies for instance to the derivation trees shown
in Figure 4.5. Filter (d) is used for cases such as John wants Mary to like him /
John wants to be liked by Mary where the two derivation trees differ both in the tree
properties assigned to want (CanSubj, CanObj, SentObj <> CanObj, SentObj) and in
the tree properties assigned to like (InfSubj, CanObj <> InfSubj, CanAgent); and where
an additional node is present due to the presence of the pronoun him in the active
sentence and its absence in the passive variant.

Filter (b) is used for the NP /Pronoun transformation and relates two trees which
in addition to having one node with different tree properties also differ in that an
NP node and its subtree maps to a pronoun node.

Filter (c) relates two trees which are identical up to the addition of an auxiliary
tree of type Bgm. As we shall see below, this is used to account for the relation
between an assertion and a question including a question phrase (i.e., n'est ce pas /
Isn't it, est ce que, inverted il or question mark).

Finally, Filter (e) is used for the assertion/wh-question transformation and matches
pairs of trees such that an NP containing n modifiers in one tree becomes a WH-NP
with any number of these n modifiers in the other tree.

We now discuss in more detail the derivation tree filters specified for each type

of transformations.

4.4.5 Meaning Preserving Transformations

In SemTAG semantic representations aim to capture the truth conditions of a sen-
tence not their pragmatic or informational content. As a result, some sentences with
different syntax share the same semantics. For instance, all sentences in (40b) share

the semantics in (40a).

(40) a. LO:proper q(C HR HS) Ll:named(C tammy) L1:indiv(C f sg) qeq(HR L1) L3:love(EL
TX C) L3:event(EL pst indet ind) L4:proper q(TX HRX HSX) L5:named(TX tex)
L5:indiv(TX m sg) qeq(HRX L5)

119

Chapter 4. Natural language generation for language learning

b. Tex loves Tammy, It is Tex who loves Tammy, It is Tammy whom Tex loves,
Tammy is loved by Tex, It is Tammy who is loved by Tex, It is by Tex that Tammy
is loved, etc.

The syntactic and pragmatic differences between these semantically identical sen-
tences is captured by their derivation trees and in particular, by the tree properties
labelling the nodes of these derivation trees. More generally, Active/Passive sen-
tence pairs, canonical/cleft (e.g., Tex loves Tammy / It is Tex who loves Tammy and
Canonical/Inverted Subject variations (e.g. C’est Tex que Tammy adore / C’est Tex
qu’adore Tammy) may lead to derivation trees of identical structure but distinct tree
properties. In such cases, the transformationally related sentence pairs can therefore
be captured using the first type of derivation filter i.e., filters which relate derivation
trees with identical structure but distinct tree properties. Here, we focus on the

Active/Passive variation.

The differences between an active voice sentence and its passive counterpart
include lexical, morphological and syntactic differences. Thus for instance, (41a)
differs from (41b) in that the verb agrees with the proper name Tammy rather than
the pronoun il; the clitic is in the oblique case (lui) rather than the nominative
(il); the subject NP Il has become a PP headed by the preposition par; the passive
auxiliary étre and the preposition par have been added to support the passive voice

construction.

(41) a. Il regarde Tammy (He watches Tammy)

b. Tammy est regardée par lui (Tammy is watched by him)

In [Siddharthan, 2010], these variations are handled by complex node deletion,
lexical substitution, insertion, and node ordering rules. By contrast, to identify
Active / Passive variations, we search for pairs of derivation trees that are related by
an Active/Passive derivation tree filter namely, a filter that relates two trees which
are identical up to a set of tree properties labelling a single node pair. We specify
as many Active/Passive tree property patterns as there are possible variations in
argument realisations. For instance, for a transitive verb, some of the defined tree

property patterns are as follows:

Active/Passive Tree Property Patterns

120

4.4. Transformation-based grammar exercises

{Active, CanSubj, CanObj} < {Passive, CanSubj, CanAgent}
{Active, CliticSubj, CanObj} <> {Passive, CanSubj, CanAgent}
{Active, WhSubj, CanObj} <> {Passive, InvertedSubj, WhAgent}
{Active, RelSubj, CanObj} <> {Passive, CanSubj, RelAgent}
{Active, CleftSubj, CanObj} < {Passive, CanSubj, CleftAgent}

In sum, in our approach, the possible differences in morphological agreement
between active and passive sentences are accounted for by the grammar; differences
in argument realisation (Object/Subject, Subject/Agent) are handled by the tree
filters; and lexical differences due to additional function words fall out of the FB-
LTAG coanchoring mechanism.

As should be clear from the derivation tree below, our approach supports trans-
formations at any level of embedding. For instance, it permits identifying the pair
Tammy sait que Tex a fait la tarte / Tammy sait que la tarte a été faite par Tex (Tammy

knows that Tex has baked the pie / Tammy knows that the pie has been baked by Tex).

ap-savoir:{ ... }

a2-f(\

ag-tammy:q ...
{Passive, CanAgent, CanSubj } ‘ v }

e

ar-tex:{ ... } as-avoir:{ ... } as-tarte:{ ... }

ﬂl—la:{ }

It also supports a fine grained control of the Active/passive variants allowing
both for cases with multiple variants (42a) and for transitive configurations with no

passive counterpart (42b,d).

(42) a. C’est la tatou qu’il adore
C’est par lui que la tatou est adorée
C’est lui par qui la tatou est adorée

(Tt is the armadillo that he loves / It is the armadillo that is loved by him)

b. Tex veut faire une tarte
** Une tarte veut étre faite par Tex

(Tex wants to bake a pie / ** A pie wants to be baked by Tex)

c. Tex semble faire une tarte
Une tarte semble étre faite par Tex

(Tex seems to bake a pie / A pie seems to be baked by Tex)

121

Chapter 4. Natural language generation for language learning

d. Texr mesure 1.80m
** 1.80m est mesuré par Tex

(Tex measures 1.80m ** 1.80m is measured by Tex)

(42a) is accounted for by specifying a tree filter including the tree property map-
ping CleftSubject <+ CleftAgent where CleftAgent subsumes the two types of clefts
illustrated in (42a).

The lack of passive in (42b) and (42d) is accounted for by the grammar: since
(42b) does not licence a passive, the starred sentence will not be generated. Similarly,
because the verb mesurer / to be X tall is not passivable, the starred sentence in (42d)

will not be produced.

4.4.6 Meaning Altering Transformations

When the content of two sentences differs, in particular, when a content word is
deleted or added, the derivation trees of these sentences may have a different struc-
ture. In those cases, we use filters that relate derivation trees with distinct tree

structures namely, filters (b), (c), (d) and (e) in Figure 4.6.

NP /Pronoun To handle the NP/Pronoun, we use the filter sketched in Fig-
ure (4.6b) which relates derivation trees that are identical up to an NP subtree
replaced by a node labelled with a pronoun. In this way, the difference between
the derivation tree of le tatou (two nodes) and il (one node) does not prevent the

identification of sentence pairs such as (43a).

(43) a. Le tatou chante
I chante (Personal pronoun)

The tatoo sings/He sings

b. Quel tatou chante ?
Qui chante ? (WH-Personal Pronoun)

Which armadillo sings?/Who sings?

NP/Wh-NP For wh-questions, the main difficulty is to account for variations
such as (44) below where a complex NP with several modifiers can map to a Wh-
NP with different numbers of modifiers. To capture these various cases, we use
two tree filters. The first filter is similar to filter (b) in Figure 4.6 and matches
NP/WH-Pronoun sentences (e.g., 44a-b where the NP Le grand tatou avec un chapeau

qui dort sous le palmier maps to a WH-Pronoun qui). The second tree filter is sketched

122

4.4. Transformation-based grammar exercises

in Figure (4.6e). It matches NP/Wh-NP sentences (e.g., 44a-c/f) where an NP
matches to a WH-NP headed by a WH-Determiner, the head noun and any number

of modifiers.

(44) a. Le grand tatou avec un chapeau qui dort sous le palmier ronfle.
Qui ronfle 7 Quel tatou ronfle 7 Quel grand tatou ronfle? Quel tatou avec
un chapeau ronfle 7 Quel tatou qui dort sous un palmier ronfle 7 etc.
The big armadillo with a hat who sleeps under the palmtree snores/ Who snores?
Which armadillo snores? Which armadillo with a hat snores? Which armadillo

who sleeps snores? etc.

Yes-No Question. In French, yes/no questions can be formed in several ways:

(45) a. Le tatou chante

Le tatou chante-t-il? (Inverted t-il)
Est ce que le tatou chante ? (est ce que)
Le tatou chante? (Intonation)
Le tatou chante n’est ce pas? (n’est ce pas (isn’t it))

The armadillo sings / Does the armadillo sing? The armadillo sings? The armadillo

sings doesn’t, it?

b. Vous chantez
Chantez-vous? (Inverted Subject)
You sing/Do you sing?

For cases such as (45b), we require the derivation trees to be identical up to the
tree property mapping CliticSubject <> InvertedCliticSubject. For cases such as (45a)
on the other hand, we use the filter sketched in Figure (4.6¢) that is, a filter which
requires that the derivation trees be identical up to a single additional node licenced

by a question phase (i.e., t'il, est ce que, n'est ce pas or a question mark).

4.4.7 Evaluation: coverage, genericity and precision

Our first evaluation experiment in Section 4.3.1 was mainly evaluating general fea-
sibility of the GraDe framework. Now, we focus on the evaluation of the approach
to generate transformation-based grammar exercises. To this end, we carry out an
experiment to assess the genericity, the correctness and the coverage (i.e. recall) of
this approach. The grammar and lexicon used in this experiment are the same as
the ones described in the evaluation in previous Section (4.3.1). In what follows, we

describe the sentence set used for testing; and the results obtained.

123

Chapter 4. Natural language generation for language learning

S | T | TF | Precision
Active/Passive 43 | 38| 8 84
Pronominalisation | 36 | 33 | 7 73
Wh-Questions 25120 7 88
YN-Questions 24 120 | 5 90.5

Table 4.7: Source Sentences (S), Transformations of Source Sentences (T), Number of
Filters (F) and Precision (Ratio of correct transformations)

Generated Sentences. To populate the generation bank, we input GraDe with
52 semantic formulae corresponding to various syntactic and semantic configurations

and their interactions*?

: including all types of realisations for verb arguments (cleft,
pronominalisation, relative, question arguments); Intransitive, Transitive and ditran-
sitive verbs; Control, raising and embedding verbs; Nouns, common nouns, personal
strong and weak pronouns; standard and Wh- determiners.

From these 52 semantic formulae, GraDe produced 5748 sentences which we

stored together with their full semantics and their derivation tree.

Results. Table 4.7 summarises the results of our experiment. It indicates the num-
ber of source sentences manually selected so as to test different syntactic configura-
tions for each type of transformation considered (S), the number of transformations
found for these source sentences (T), the number of tree filters used for each type of
transformation (TF) and the precision obtained (ratio of correct transformations).

The low number of tree filters relative to the number of syntactic configurations
explored indicates a good level of genericity: with few filters, a transformation can
be captured in many distinct syntactic contexts. For instance, for the Active/Passive
transformation, 8 filters suffice to capture 43 distinct syntactic configurations.

As expected in an approach where the filters are defined manually, precision is
high indicating that the filters are accurate. The generated pairs marked as incorrect
by the annotator are all cases where the transformed sentence was ungrammatical,;
in other words, the filters were accurate.

Finally, the relatively low number of transformations found relative to the number
of source sentences (e.g., 38 transforms for 43 source sentences in the Active/Passive
case) is mainly due to transformed sentences that are missing from the generation
bank either because the corresponding input semantics is missing or because of gaps
in the grammar or the lexicon. However, for few cases missing filters were identified

as well.

40WWe restrict the tense of the verb of the main clause to present and indicative mode

124

4.5. Comparison with previous work on (semi-)automatic grammar exercises generation

4.5 Comparison with previous work on (semi-)automatic

grammar exercises generation

We have already initiated the discussion regarding related work on the (semi-)automatic
generation of grammar exercises in Section 2.3.1. After having presented our ap-
proach we resume the discussion with a more detailed comparative view with respect
to the exercise types and evaluation results.

ArikIturri ([Aldabe et al., 2006]) automatically constructs grammar exercise
items from a corpus annotated with syntactic and morpho-syntactic information.
They retrieve sentences from this annotated corpus based on some target linguistic
phenomena that is to be practiced. The types of exercises handled by the approach
are Fill-in-the-blank, word formation, multiple-choice and error detection. The Fill-
in-the-blank and word formation exercises correspond to our different types of Fill-
in-the-blanks exercises (i.e. FIBBLNK and FIBLEM). As in our approach, the blank
is identified based on morpho-syntactic information. Aldabe et al.’s (2006) approach
support the generation of two additional exercise types namely, multiple-choice ques-
tions and error detection queries. To create distractors for multiple-choice questions,
they use alternative inflections or conjugations of the words in the key phrases. These
types of exercises could also be added to our GramFEz framework. They carried out
an evaluation experiment in which a language teacher manually evaluated 1350 au-
tomatically generated questions of multiple-choice and error-detection types. The
percentage of the automatically generated questions accepted by the teacher was
around 80%.

Similarly, in the FAST ([Chen et al., 2006]) system, grammar-based multiple-
choice and error detection exercise types are generated automatically. A bank of
sentences is constructed from sentences gathered from the Web and each sentence
is POS tagged and chunked. Exercises are generated from manually defined “test
patterns”. For instance, a pattern for a multiple-choice exercise type describes the
surface pattern the source sentence should have and the patterns to generate the
distractors. The carried out an evaluation in which 70 exercise patterns where defined
based on grammar rules taken from the book?'. From Wikipedia and the VOA
(Voice Of America) corpus they extracted 3872 sentences which were transformed
into 25906 multiple-choice questions and 2780 sentences were converted into 24221
error detection questions. A sub-set of these exercises was given to language teachers
and students for manual evaluation. From 1359 multiple-choice questions 77% were

considered correct (either without or with minor post-editing) while from 1908 error

“1“How to prepare for the TOEFL” by Sharpe (2004)

125

Chapter 4. Natural language generation for language learning

detection questions, 80% were considered correct.

Although the architectures, resources, exercise types and size of the samples man-
ually evaluated are different, the rate of correct generated exercises in our approach
is similar to that obtained in these approaches with around 90% of the exercises
considered correct by the evaluators.

Two important points distinguish our exercise generation framework from Arik-
Iturri and FAST. First, the syntax and vocabulary of the exercise stems can be
highly constrained using rich and fine-grained linguistic information. Second, we

handle another type of exercises namely, the transformation-based exercises.

4.6 Conclusions and perspectives

In this chapter, we presented the GramFEz framework for the (semi-)automatic gen-
eration of grammar exercises which are similar to those often used in textbooks for
second language learning. Their syntax and vocabulary are controlled having as ob-
jective to make it easier for the learner to concentrate on the grammatical point or
vocabulary to be learned.

Grammar exercises target a specific pedagogical goal, therefore, they are built
from stem sentences that permit exercising that pedagogical goal. Stem sentences
are further processed to build both the exercise question and the target solution.
Concretely, the type of exercise that GramEx builds are Fill-in-the-blank, Shuffle
and transformation-based grammar exercises.

As mentioned at the beginning of this chapter and shown throughout it, a key
feature of the approach is the rich linguistic information associated by the genera-
tor with the source sentences. Moreover, the underspecification mechanism of our
generator together with the paraphrastic grammar make possible to obtain morpho-
syntactic and syntactic variations from a single input. In other words, we do not need
to fully specify a different input for each different (morpho-)syntactic output config-
uration. This is an important aspect regarding the (semi-)automatic production of
material for grammar exercise generation.

We carried out two evaluation experiments which allowed us to assess the im-
pact of the generation based approach on the automation of grammar exercises
generation (variability and productivity) as well as the correctness of the proposed
mechanisms for stem generation and exercise item building. There is some man-
ual work required to provide core semantic inputs and afterwards revising the gen-
erated material. Nevertheless, there is a wide number of exercises that are au-

tomatically generated and whose completely manual authoring would have being

126

4.6. Conclusions and perspectives

tedious and a more time consuming task. Issues related to over-generation (e.g.
“ungrammatical” cases pointed out by the annotators for some of the stem sen-
tences) and under-generation (e.g. missing sentences detected when finding trans-
formationally related sentence pairs) can be addressed by making use of existing
tools for grammar debugging and error mining ([Gardent and Kruszewski, 2012;
Gardent and Narayan, 2012]).

In particular, as shown in the evaluation, the generation of transformation-based
exercises suffers from a low coverage. The reasons for this are twofold facts: missing
counterpart sentences in the generation bank and missing tree filters. The latter
can be improved by applying machine learning techniques in a similar way as in
[Chandrasekar and Srinivas, 1997| for inferring tree filters (or transformation rules)
from our corpus of FB-LTAG derivation trees annotated with transformation rela-

tions.

In this chapter, we have considered as input to the generation process a set of
GraDe constraints (cf. Section 4.2.1). Concretely, in the evaluation experiments,
we have used both types of GraDe user-defined constrainted, either syntactic con-
straints or a core semantic specification. Recall that we mean by “core semantics”
core predicate/argument and modifier/modifiee relationships. When generating from
a core semantics, GraDe will first automatically complete, or “enrich”, this seman-
tics (possibly in different ways) as dictated by the underlying grammar and lexicon.
Because this enrichment process is based on the SemTAG grammar traversal, the
obtained meaning representations are well-formed with respect to the type of se-
mantic formulae expected by the realiser. In the future, we foresee two additional
ways in which the input formulae to GramFz could be produced. One possibility
is through an interface which lets the language teacher enter basic core content by
using some templates. These templates could then be input to GraDe to automat-
ically generate a semantic formula compatible with the realiser. Another possibil-
ity is to derive meaningfull core semantics from some existing knowledge source.
For instance, a knowledge base as in the case in I-FLEG ([Amoia et al., 2012;
Denis et al., 2012]). In this language game, there is a Description Logics (DL)
describing the objects of the 3D world. [-FLEG’s architecture includes a content
selection module that extracts facts from the underlying knowledge base (the work-
ing of the content selection module is explained in [Denis et al., 2012]). Given an
object selected by the learner, the content selection module automatically extracts
a set of facts describing it and which permit creating an exercise corresponding to a
given pedagogical goal. These facts could be used as input to GraDe, and in turn to
GramFEx.

127

GramFEz input

Chapter 4. Natural language generation for language learning

The GramEz framework presented in this chapter could be extended in different
ways. A follow up in the transformation-based grammar exercises is the generation
of more complex pairs of transformationally related sentences such as those in (46).
The first one (46a) presents a lexico-syntactic transformation while the second (46b)

involves a change in the phrase category (from sentence to noun phrase).

(46) a. Tom ate because of his hunger / His hunger caused Tom to eat

b. Tammy loves the armadillo / The armadillo that Tammy loves

The semantic content in the sentence bank could be further exploited by grouping
meaning representations to produce aggregated phrases as proposed in [Williams and
Power, 2010| or by discovering rhetorical relations as explained in [Power, 2011]. The
example in (47a-b) shows a pair of sentences that could be generated by grouping and
aggregating meaning representations from the sentence bank. In (48) both clauses
stand in an elaboration or exemplification relation. Although we could directly write
an input semantics for the sentences in (47b) and (48), by applying these techniques,
the teacher only needs to author simple clauses from which complex sentences could

be automatically derived.

(47) a. Tammy mange une pomme. (Tammy eats an apple)
Tex mange une pomme. (Tex eats an apple)
La petite tatou mange une pomme. (The small armadillo eats an apple)
b. Tammy, Tex et la petite tatou mangent une pomme.

(Tammy, Tex and the small armadillo eat an apple)

(48) a. Tex travaille a l'université; Tex est professeur.

(Text works at the university; he is a professor)

Another interesting extension to the GramFEz approach would be to provide each
exercise with some context as is frequently done in textbooks. It would be interesting
to explore, for instance, how to precede the exercise question with an introductory
sentence providing a more natural setting and minimizing the risk of ambiguity. For
instance, in a pedagogical goal for Learning pronouns (e.g. 49) a Fill-in-the-blank
exercise could be produced. However, the exercise item should provide hints to the
learner as shown in (49¢) because otherwise an exercise without these hints might
result ambiguous as is the case of (49b) *2. By providing a text with more context as
in the case of the sentence (49d), the gender of the pronoun could be inferred from

the referred noun phrase (i.e. Tezx and Tammy).

*2Note that here it is not necessary to give hints for the number because it can be inferred from
the conjugation of the verb.

128

4.6. Conclusions and perspectives

(49) Fill in the blank with the correct subject pronoun: je, tu, il, elle, on, nous,
vous, ils, elles.
a. Ils se sont rencontré o l'université. (They have met at the university)
b. Q: ___ se sont rencontré a l'université.
c. Q:___ se sont rencontré a l'université. (gen=m)
d. Tex et Tammy sont des tatous. Ils se sont rencontré a 'université.
(Tex and Tammy are armadillos. They have met at the university)

e. Q: Tex et Tammy sont des tatous. se sont rencontré a l'université.

129

Chapter 4. Natural language generation for language learning

130

Chapter 5

Conclusions

5.1 Summing up and concluding

In this thesis, the common thread was the question of “how natural language gen-
eration techniques can contribute to computer assisted language learning”. In what
follows, we summarise and draw our conclusions on each particular line of work
we pursued, optimising surface realisation and generation for language learning, to

address this question.

5.1.1 On surface realisation optimisation

By constructing derivation trees rather than derived trees we provide a new surface
realisation algorithm for FB-TAG, RTGen, that provides packing and structure shar-
ing. To do this, we made use of a translation from FB-TAG to FB-RTG describing the
derivation trees of the original FB-TAG grammar. This encoding permitted varying
the working of the algorithm by providing a left corner version of the FB-RTG gram-
mar and the possibility of transferring from the FB-TAG to the FB-RTG grammar
different sets of features. We evaluated RTGen with different combinations thereof
and found that the left-corner with selected blocking features, i.e. RTGen-selective,
was the most efficient one. These results are not surprising. On one hand, in the
left corner mode, top/bottom unifications occur earlier and instantiated features are
available earlier too. On the other hand, by using only those features that are in
the grammar to block certain structures combinations, RT'Gen-selective avoids over-
generation while unifications are cheaper to compute. However, when the indexing
according to semantic arguments and the blocking of the proliferation of intermediate
incomplete structures mechanisms are integrated into RT'Gen, the difference in per-

formance between using the left-corner version or not disappears. Even though, the

131

Chapter 5. Conclusions

latter optimisations need to be tested more extensively, the results obtained on the
available data already provide some positive evidence of better performance. This
also coincides with previous work. First, in their detailed comparative evaluation,
Carroll and Oepen (2005) already report the benefits of reducing the search space by
blocking intermediate incomplete structures. Second, indexing avoids the prediction
and the attempts of combination of items which would otherwise take place if relying
solely on possibly uninstantiated features in the feature structures.

RTGen’s forest generation algorithm could be combined with different filtering
techniques (e.g. polarity filtering or supertagging) before the tree combination phase.
It could also be combined with a language model to prune possible solutions during
tree combining or at the end of the unpacking phase (possibly extending what was

done for intersective modifiers ordering, Section 3.2.2).

5.1.2 On generation for language learning

We showed one way of exploiting NLG for language learning: the generation of vo-
cabulary and syntax controlled grammar exercises. The SemTAG based generation
approach permits defining a mechanism to select stem sentences that satisfy certain
linguistic properties. This is an important ingredient in supporting teaching where
input is provided according to the learner’s language development. Concretely, the
selection mechanism we proposed permits selecting stems sentences that can be con-
strained with respect to the pedagogical goal (e.g. grammar point to learn/practice)
and the general syntactic configuration preferred or disallowed (e.g. syntactic con-
figuration according to learners level).

The boolean constraint language based on SemTAG’s linguistic properties for
sentence selection, includes constraints over morpho-syntactic features in feature
structures, combination of features and tree properties, disjunctions and negations
thereof. One useful feature of our selection mechanism is that by means of “negated
linguistic properties” it is possible to exclude certain linguistic constructions instead
of listing all alternative desired ones. Our approach implements a “generate and
select” strategy rather than “fully specify and generate”. This was the most adequate
way given that in our application to exercises generation, it might be often the
case that is not a single syntactic configuration that can be used but possible set
thereof. Currently, queries for sentence selection are manually specified and require
a depth knowledge of the grammar. It could be interesting to investigate how to
automatically guide the edition of such queries and to highlight queries that are
unsatisfiable.

Grammar features, or more precisely, linguistic properties in SemTAG, could be

132

5.2. Future work and research directions

mapped to language levels. Then, GramFEz could select stem sentences based on the
linguistic phenomena required by a given pedagogical goal (specified manually for a
given exercise activity) and the “degree of difficulty” of the sentence. This degree of
difficulty could be automatically computed over the associated linguistic properties
and their assigned language level. In addition, the degree of difficulty associated
with a whole exercise item could be computed in a similar way and thus be exploited
to gradually deliver exercises.

In a more detailed manner, the linguistic information encoded in the generation
grammar, and in turn, associated to the generated sentences and exercise items could
be further exploited for learner modelling a la Michaud and McCoy (2000). That
is, an ICALL application integrating GramFEz, such as I-FLEG, can keep track of
the grammar points (encoded as SemTAG linguistic properties) mastered by each
learner. Then, GramFEz could exploit this information for the selection of stem
sentences. Further, the application could deliver exercices to the learners based on
the acquired grammar points, what they need to reinforce and probably some activity
sequencing model.

As for the learning activity types, we showed that the underspecification mecha-
nisms of the generator together with the rich linguistic information provided by the
SemTAG grammar permits the (semi-)generation of a wide number of grammar ex-
ercise types with varied syntax (Variability) from few input (Productivity). We have
examined GramFEz exercises and we found that the exercises produced are mostly
correct both linguistically and pedagogically (Correctness). Furthermore, we have
shown that our approach can generate both exercises that are with a unique answer

and exercises with a small set of correct alternative answers.

5.2 Future work and research directions

At this point, as a final step in taking stock of the work of this thesis we discuss
what would be coming next. We point out to future work that needs to be done to
further complement or extend the approaches developed in this thesis and suggest

directions for further research.

5.2.1 Surface realisation learning by generating

Some techniques to prune the search space are informed by the probability of lexical
dependencies from observed data, in data-driven approaches, or by syntactic infor-
mation about the lexical items encoded in the grammar in symbolic approaches (e.g.

valency and categorial information in polarity filtering).

133

Chapter 5. Conclusions

In the absence of annotated data, one possibility would be to learn (store for fu-
ture use) this information from previous runs. This idea may be seen as an instance of
a technique called Explanation-Based Learning (EBL, [DeJong and Mooney, 1986]).
This technique, popular during the 80’s and 90’s, aims at inferring generalised rules
from observed examples in order to speed up further processing or extend a given
theory. In particular, within the context of constraint satisfaction problems (CSPs)
the learned elements are called nogoods (or conflicts). They are fruitless trials in the
search that are recorded so as not to attempt to use them again when backtracking
or in future computations ([Dechter, 1990]). Indeed, this technique has already been
used in the context of TAG parsing ([Srinivas and Joshi, 1995]), where models of
successful parses are learned. In the RTGen algorithm, it would be interesting to
explore how information about successful /unsuccessful item combinations could be

stored for guiding the search in future realisations.

5.2.2 Widening RTGen domain of application

A straightaway step is to complete the small evaluation performed with the RTGen
extensions (semantic argument indexing and blocking of intermediate structures pre-
sented in Section 3.2.2) with a comparatively larger scale evaluation as carried out
for the base algorithm. It would also be interesting to evaluate RTGen performance
on the generation of “real world” sentences, for instance, generating from the Surface
Realisation Shared Task ([Belz et al., 2011]) deep inputs. Though, as we discussed
in Section 3.3.2, we would need to first develop an input converter from the SR task
input to the input format expected by our realiser. A benefit of this evaluation is
that it would permit debugging the grammar in terms of over-generation (and possi-
bly under-generation, though, in this cases, it would not be clear how to distinguish
from lack in grammar coverage to “non expected” input). Further, we could probably
generate paraphrases (and grammar exercises) from “real world” sentences but with
associated rich linguistic information for language learning.

Another direction to explore is how SemTAG and RTGen surface realisation
techniques can be exploited for generation in the context of Conceptual Authoring
([Hallett et al., 2007]). In conceptual authoring, text and meaning representations are
linked, and editions on the text trigger modifications in the corresponding underlying
meaning and viceversa. The text is dynamically generated (from the underlying
meaning representation) and modified (by the user using operations —e.g. insertion,
deletion and replacement of spans of text in [Franconi et al., 2010]- supported in the
specific interface).

SemTAG seems to be a natural candidate to support conceptual authoring, as

134

5.2. Future work and research directions

it systematically relates text, syntax and semantics. But the question about how
to efficiently support dynamic (or incremental) content realisation due to deletion,
replacement and addition of text arises. In some cases, adding text would involve
just a simple coordination while in other cases the left (and right) context will have
to bear structural and/or lexico-syntactic modifications ([Smedt, 1990]). So, how
to determine the parts of the existing text that are affected? Which are the lexico-
syntactic modifications that need to be done to the existing text in oder to go with
the modifications? How to compute all this efficiently? An idea towards computing
them efficiently could be to make use of RT'Gen’s chart datastructure. It could
serve as a pool of pre-computed intermediate alternative realisations which could be
selectively picked up for combination in different contexts. Or keeping a dynamically
modified generation forest from which the most appropriate combination of lexical

items is evaluated and extracted.

5.2.3 Using GramEx

The GramEx framework is being integrated into two systems. The first one, called I-
FLEG* (Interactive French Learning Game, [Amoia et al., 2012; Denis et al., 2012]),
is a serious game prototype designed to explore the potential contribution of virtual
environments in conjunction with NLP technology to ICALL. To learn French with
I-FLEG, the learner moves her avatar inside a virtual 3D house and clicks on objects
thereby triggering the display of language learning exercices. Altogether, they are
meant to support a free (e.g. the learner explores the virtual world and decides
on the type of (grammar) activities she wants to solve), situated (e.g. the content
of the interactions e.g. messages from the system or activities are related to the
learner current position in the virtual environment) and interactive (e.g. there is,
yet basic, system initiative communication and feedback —score and correct answers—
) learning environment. Briefly, the semantic information describing facts about the
3D world (i.e., the ontology describing the 3D objects) is exploited for the generation
of sentences and grammar exercises. Given the input specification of the grammar
point to be exercised and the object touched by the learner, GramFEx produces an
exercise item which allows to exercise the grammar point and that verbalises facts
about the touched object.

The second is a web workbook called W-FLEG**, where the learner can select a
practice activity (teaching goal plus exercise type). Exercise items are provided for

the select practice and feedback is also provided in the form of scores and correct

“Shttp://talc.loria.fr/I-FLEG.html
Y“http://talc.loria.fr/W-FLEG.html

135

http://talc.loria.fr/I-FLEG.html
http://talc.loria.fr/W-FLEG.html

Chapter 5. Conclusions

answers.

Data collection. Both I-FLEG and W-FLEG are web-based and rely on a
database for permanent storage of learner interactions. Thus, this facilitates their
use to collect data: learner’s written language as well as extra information about the
learner interactions. This additional information consists of (i) the teaching goal and
exercise type, (ii) the exercise item question and expected answers, (iii) the score,
(iv) the time spent on solving it, and (v) summary information that can be derived.
For instance, how many times did she try the same exercise item until it got it right.
This type of data could provide a rich resource to be exploited for research in second
language acquisition and language teaching in different ways (cf. [Pravec, 2002] and
references therein). For instance, the analysis of learner errors or the optimisation

of instructional models as proposed by Pietquin et al. (2011).

Teacher mode and content edition. An important aspect towards putting
GramFEz to use is to supply an interface where language instructors could define ex-
ercices and edit content. For instance, either for I-FLEG’s house ontology (or any
other domain, e.g. restaurant or greengrocer’s shop) or, in general, for any content
or topic lesson for W-FLEG, minimal content needs to be edited. There are different
ways to provide this functionality without requiring the teacher to be specialist in
formal linguistic or semantic representation methods. Possible options include enter-
ing content using some kind of template-based interface or parsing simple sentences.
Yet another possibility is to use a NLG based knowledge editor ([Scott et al., 1998;
Hallett et al., 2007; Power, 2012|). In this editor, the author composes natural
language text, while transparently for her, editing an underlying knowledge repre-

sentation.

Evaluation. The integration of GramExz into a 3D environment provides a
grammar-focused approach embedded in meaningful interactions, i.e. the content
of the exercises “talks” about the virtual environment. Thus, it provides a setting
in which to carry out comparative evaluations along the lines of Nagata (1996) to
assess, for instance, the effectiveness of a contextualised setting to learn lexicon,

morphology and syntax ([Macwhinney, 1995]).

5.2.4 Beyond grammar exercises

NLG has been used in GramFEz for the generation of lexico-syntactic controlled gram-

mar exercises. More precisely, GramFEz supports the specification of pedagogical goals

136

5.2. Future work and research directions

in terms of lexico-syntactic features and the type of exercise activity (i.e. Fill-in-the-
blank, Suffle or sentence transformation). However, the possibility to control how a
given content is verbalised, and in particular, the paraphrase generation and selection
mechanisms of the SemTAG-based generator, could be exploited in other ways for
language learning. For instance, in a game or interactive task embedded in a virtual
environment (e.g. [Denis et al., 2010]), instructions could be adapted in syntax to
the learner language skills as well as reformulations used to make communication ef-
fective or provide reinforcement feedback. In a dialogue setting, reformulations could
be used to correct learner utterances or to rephrase some content not understood by
the learner. In these cases, the set of constraints for generation (e.g. pedagogical
goals) would be determined automatically (based on some knowledge) rather than
predefined in the grammar exercise specifications. The parameters manipulated in
those constraints could involve: learner language skills, the task or activity and the
teaching goals.

Towards the creation of situated learning activities where emphasis is placed on
communication rather than focused on grammar, a necessary extension would be to
couple generated sentences with communicative goals (e.g. [Zock and Quint, 2004]).
This could be done either by integrating into SemTAG a functional dimension de-
scribing the functional alternatives associated to syntactic forms ([Halliday, 1985;
McCoy et al., 1992]) or by using machine learning techniques to associate commu-

nicative goals with SemTAG generated sentences.

137

Chapter 5. Conclusions

138

Appendices

139

Appendix A

GramEx pedagogical goals and

exercise 1tems

A.1 Excerpt of pedagogical goals

In what follows, we give an extract of the pedagogical goals defined with GramFEx in
Section 4.3.1. For each of them, we give a sort of header with its definition, i.e., how
they are defined in GramFEz, then, we give an excerpt of the concrete exercise items
generated by GramFEz. Each pedagogical goal is defined by a linguistic phenomena
to be practiced and an activity type. The field Pedagogical goal gives the name
of the pedagogical goal. The field GramEx query (stem) gives the syntactic and
morpho-syntactic specification written in the GramFEx boolean constraints language
(cf. Section 4.2.2). This specification serves to retrieve sentences and might describe
the linguistic phenomena to practice as well as other (morpho-)syntactic constraints
desired for the teaching goal (cf. Sections 4.1 and 4.2.2). The field Activity type
indicates the type of exercise that will be built from the selected sentences. In
Table A.1, we list exercise types defined in GramFEx. Finally, in some cases, depending
on the type of exercise, additional configuration is specified. For instance, in the case
of Fill-in-the-blank exercises the field Config FIB _LexicalFeatures specifies the
conditions to identify the blank to build the exercise question. Indeed, this field
specifies a set of (morpho-)syntactic constraints in the form of a feature structure.
These (morpho-)syntactic constraints are defined over and evaluated against the
linguistic information that is associated by the generation process with the output
sentences (cf. Section 4.2.1).

In Table A.1 we detail all the exercise types that are available in GramFz. As
discussed in Section 4.3 GramFEz supports three different types of FIB questions

141

Appendix A. GramEz pedagogical goals and exercise items

Description activity Type

Syntax Scramble SYNTAX_SCRAMBLE

Fill in the blank -morphology on a given lemma MORPHOLOGY_FIB
Transformation TRANSFORMATION

Fill in the blank -missing word SYNTAX_FIB

Morphology Scramble MORPHOLOGY_SCRAMBLE

Fill in the blank -from a set of hint features SYNTAX_FIB_FEATURES

Fill in the blank -from a given lemma and a set of hints | MORPHOLOGY_FIB_FEATURES

Table A.1: List of activity types implemented in GramEx.

which correspond with some of the activity types listed in Table A.1. All Fill-in-
the-blank questions remove a word from the selected sentence, but GramFEz provides
three different ways of building the final Fill-in-the-blank exercise. One consists in
replacing the chosen word by a blank (FIBBLNK), this corresponds to the SYNTAX_FIB
activity type, the other replaces the chosen word by a lemma (FIBLEM), implemented
by the MORPHOLOGY_FIB activity type, and the last one consists in replacing the word
by a set of features used to help the learner guess the solution (FIBHINT), this
corresponds to the SYNTAX_FIB_FEATURES activity type.

The Shuffle questions (MSHUF) of Section 4.3 correspond to the SYNTAX_SCRAMBLE
and MORPHOLOGY_SCRAMBLE activity types. The difference between them is whether
the words or the lemmas of the original sentence are shuffled.

The TRANSFORMATION activity type corresponds to the transformation exercises
discussed in Section 4.4. This activity type is further specialised into ACTIVE_PASIVE,
INTERROGATIVE_ADJECTIVE, INTERROGATIVE_PRONQUN, PERSONAL_PRONQUN,
YNQUESTION_EST_CE_QUE_NEST_CE_PAS. They correspond to the transformation-based
exercises Active/Passive, Wh-Questions, Pronominalisation and YN-Questions, re-

spectively, of Section 4.4.

Pedagogical goal (15): Preposition - Fill in the blank -missing word

Activity type: SYNTAX_FIB

Config FIB LexicalFeatures: [cat=p]

GramEx query (stem): ((PREP_S_ARG_SUBCAT A (cat : p V cat : ¢))
V (PREP_N_ARG_SUBCAT A cat:p) V (?PREP_MOD A cat : p))

(Q) 1les chemises propres sont sorties Tex du lave linge
(S) par

(Q) ¢’ est Tex qui verse du lait le bol

(S) dans

(Q) 1les assiettes sont le placard

(8) dans

142

A.1. Excerpt of pedagogical goals

(Q) Tex préte la bouilloire Tom

(5 a

(Q) 1la pendule est accrochée Tex au mur

(8) par

(Q) 1le réfrigérateur est montré & Tom Tex

(S) par

(Q) ¢’ est Tex qui montre la cuisiniére Tom

(%) a

(Q) ¢’ est Tex qui s’ occupe la plante qui meurt
(8) de

(Q) les chemises propres sont sorties Tex du lave linge
(8) par

(Q) Tex s’ assied la chaise

(8) sur

Pedagogical goal (22): Noun number: singular and plural - Fill in the blank -morphology
on a given lemma

Activity type: MORPHOLOGY_FIB

Config FIB LexicalFeatures: [cat=n; nomPropre=-]

GramEx query (stem): [noun A num :pl] A ?BASIC_CLAUSE_1FV

(Q) ¢’ est Tex qui a lavé les (table)
(S) tables
(Q) Tex adore les (bibliothéque) anglaises

(S) bibliothéques

(Q) ¢’ est Tex qui sortit des (livre) de la bibliothéque
(S) livres

(Q) ¢’ est Tex qui a éteint les (lampe)

(S) lampes

(Q) Tex range les (tasse) dans le placard

(S) tasses

(Q) ce sont les (assiette) blanches que j’ aime beaucoup

(S) assiettes

(Q) Tex adore les vieux (réfrigérateur)

(8) réfrigeérateurs

(Q) ¢’ est Tex qui a arrosé les (plante)

143

Appendix A. GramEz pedagogical goals and exercise items

(S) plantes

(Q) ce sont des (livre) que Tex sortit de la bibliothéque
(S) livres

(Q) Tex enléve les (tasse) de la table

(S) tasses

Pedagogical goal (79): Noun gender: masculine and feminine - Fill in the blank - from a
set of hint features

Activity type: SYNTAX_FIB_FEATURES

Config FIB LexicalFeatures: [cat=d; def = +-; num=sg]|

GramEx query (stem): [noun A det: —] A [cat:d A wh:— A —possessiveDetSem]
A 7BASIC_CLAUSE_ 1FV

(Q ¢’ est Tex qui alluma (article défini) radio

(%) 1a

Q@ c”est (article défini) lampe que Tex montre & Tom
(3) 1a

(Q) il arrose (article défini) plante

() 1a

(Q) 1les assiettes sont sur (article défini) table

(3) 1a

(Q) ¢’ est Tex qui poussait (article défini) chaise

(%) 1a

(@ c” est (article défini) réfrigérateur que Tex ouvrit
(8) 1le

(Q) ce sont les assiettes qui sont sur (article défini) table
() 1a

(Q) Tex sort des livres de (article défini) bibliothéque
(3) 1a

(Q) ¢’ est Tex qui rangea (article défini) placard

(8) 1le

(Q) ¢’ est Tex qui décroche (article défini) téléphone
(8) 1le

Pedagogical goal (14): Adjective morphology - Fill in the blank -morphology on a given

lemma

144

A.1. Excerpt of pedagogical goals

Activity type: MORPHOLOGY_FIB
Config FIB _LexicalFeatures: [cat=adj]
GramEx query (stem): [cat : adj]

(Q) est-ce que la plante (vert) est arrosée par Tex ?
(S) verte
(Q les (petit) poéles sont préférées par Tex

(S) petites

(Q) 1la lampe est (moderne)

(S) moderne

(Q) est ce que Tex essuie les (petit) cuilléres
(S) petites

(Q) 1les bouilloires sont (rouge)
(8) rouges

(Q) est ce qu’ il est (blanc)
(8) blanc

(Q) 1la pizza est (délicieux)

(S) délicieuse

(Q) 1le lave vaisselle est (vide)
(S) vide
(Q) Tex déteste des machines a café (italien)

(S) italiennes

(Q) est-ce que les (petit) cuilléres sont essuyées par Tex ?
(S) petites

Pedagogical goal (23): Adjectives that precede the noun - Fill in the blank -morphology
on a given lemma

Activity type: MORPHOLOGY_FIB

Config FIB _LexicalFeatures: [cat=adj]

GramEx query (stem): (EpithAnte V n0vAAnte)

(Q) Tex range les (petit) tasses
(S) petites

(Q) Tex aime les (vieux) radios
(S) vieilles

(Q) Tex adore les (grand) tables
(S) grandes

145

Appendix A. GramEz pedagogical goals and exercise items

(Q) la petite assiette qui est (joli) est blanche
(8) jolie

(Q) la jolie assiette qui est (petit) est blanche
(S) petite

(Q) Tex préfére les (ancien) machines a café

(S) anciennes

(Q) le petit évier qui est propre est (blanc)
(8) blanc
(Q) c’ est Tex qui adore les (vieux) réfrigérateurs

(S) vieux

(Q) ¢’ est Tex qui allumera le (petit) radiateur
(S) petit
(Q) c’ est Tex qui déteste les (petit) pendules

(S) petites

Pedagogical goal (54): Attributive adjectives - Syntax Scramble
Activity type: SYNTAX_SCRAMBLE
GramEx query (stem): (EpithAnte V EpithPost)

(Q) petite / la / lampe / Tex / préfére
(S) Tex préfére la petite lampe

(Q) Tex / adore / grandes / tables / les
(S8) Tex adore les grandes tables

(Q) ouvre / le / Tex / linge / vieux / lave

(S) Tex ouvre le vieux lave linge

(Q) les / range / tasses / Tex / petites

(S8) Tex range les petites tasses

(Q ? / t-i1 / arrose / la / plante / Tex / verte

(S) Tex arrose t-il la plante verte ?

(Q) adore / Tex / bouilloire / anglaise / la

(S) Tex adore la bouilloire anglaise

(Q) aime / blanches / les / assiettes / j’ / beaucoup

(S) j’aime beaucoup les assiettes blanches

(Q) bibliothéques / anglaises / Tex / adore / les

(S) Tex adore les bibliothéques anglaises

(Q) beaucoup / éviers / aime / j’ / les / blancs

(S) j’aime beaucoup les éviers blancs

146

A.1. Excerpt of pedagogical goals

(Q) pizza / la / briile / cuit / qui / petite

(S) la petite pizza qui cuit brile

Pedagogical goal (24): Irregular adjectives - Fill in the blank -morphology on a given
lemma

Activity type: MORPHOLOGY_FIB

Config FIB _LexicalFeatures: [cat=adj; flexion=irreg]

GramEx query (stem): [cat : adj A flexion : irreg]

(Q) Tammy a une voix (doux)
(S) [doucel

(Q) Tammy avait une voix (doux)
(S) [doucel

(Q) ¢’ est une voix (doux) que Tammy avait
(8) [doucel

(Q ¢’ est Tammy qui avait une voix (doux)
(S) [douce]

Pedagogical goal (24): Participles as adjectives - Fill in the blank -morphology on a given
lemma

Activity type: MORPHOLOGY_FIB

Config FIB LexicalFeatures: [cat=v; mode=ppart/ppst]

GramEx query (stem): [cat : v A (mode : ppst V mode : ppart) A nOvAPredicative]

(Q) Tammy est (épuisant)

(S) épuisante

(Q ¢’ est Tammy qui est (épuisant)

(S) épuisante

(Q) Tammy est (épuisé)

(S8) épuisée

(Q ¢’ est Tammy qui est (épuisé)

(S) épuiseée

Pedagogical goal (28): Prepositions with infinitives - Fill in the blank -missing word
Activity type: SYNTAX_FIB
GramEx query (stem): —AbstractModifier A\[?PREP_INF_COMPL]A?BASIC_CLAUSE_1FV

147

Appendix A. GramEz pedagogical goals and exercise items

(Q) il a commencé écrire un livre

(5) a

(Q) il oublie fermer la bibliothéque
(8) de

(Q) il vient réparer la machine & café
(8) de

(Q ¢’ est lui qui a commencé écrire un livre
(5) a

(Q) il vient allumer les radiateurs

s a

(Q@ il a refusé répondre au téléphone
(8) de

(Q) tu essayes éteindre la radio

s a

(Q il promet réparer la chaise

(8) de

Pedagogical goal (29): Subject pronouns - Fill in the blank - from a set of hint features
Activity type: SYNTAX_FIB_FEATURES
Config FIB _LexicalFeatures: [cat=cl; func=suj; refl= -]

GramEx query (stem): [pronounQuantifierSem A cat : ¢l]

(Q) ¢’ est le bol que (gen:m; num:sg; pers:1) prends

(8) je

(Q) ce sont les plantes qu’ (gen:m; num:sg; pers:3) arrose
(8) il

Q") I (pers:3) est la plante que Tex lui donne

(S) ¢

() (gen:f; num:sg; pers:3) est arrosée par Tex

(S) elle

Q") I (pers:3) est Tex qui la range

(S) ¢’

() (gen:m; num:sg; pers:3) vient de fermer le four a micro-ondes
(8) il

@ ... (gen:m; num:sg; pers:3) range les tasses

(8) i1

148

A.1. Excerpt of pedagogical goals

@ ... (pers:3) est la pizza qu’ il fait

(8) c?

Q@ oo (pers:3) est le téléphone que je décroche

(s) c?

@ ... (gen:m; num:sg; pers:3) s’ occupe d’ une plante
(8) i1

Pedagogical goal (52): Adjective order - Syntax Scramble
Activity type: SYNTAX_SCRAMBLE
GramEx query (stem): [cat : adj]

(Q) assiette / 7 / est / blanche / quelle
(S) quelle assiette est blanche ?

(Q) rouge / la / bouilloire / est / qui

(S) la bouilloire qui est rouge

(Q) ? / elle / est / blanche
(S) elle est blanche 7

(Q) grandes / Tex / aime / les / assiettes

(S) Tex aime les grandes assiettes

(Q) ? / la / plante / Tex / verte / arrose / t-il

(S) Tex arrose t-il la plante verte ?

(Q) blanche / elle / t-elle / est / ?
(S) elle est t-elle blanche ?

(Q) adore / bouilloire / que / Tex / anglaise / la

(S8) la bouilloire anglaise que Tex adore

(Q) rouge / la / bouilloire / est / qui

(S) 1la bouilloire qui est rouge

(Q) bruyants / sont / réfrigérateurs / les

(S) les réfrigérateurs sont bruyants

(Q) beaucoup / aime / blanches / assiettes / j’ / les

(S) j’aime beaucoup les assiettes blanches

Pedagogical goal (56): Verb conjugation: simple past - fill in the blank -morphology on
a give lemma and a set of hints
Activity type: MORPHOLOGY_FIB_FEATURES

149

Appendix A. GramEz pedagogical goals and exercise items

Config FIB LexicalFeatures: [cat=v;mode=ind;tense=past]

GramEx query (stem): [cat : v A tense:past A mode : ind]

()
(€))

()
(€))

()
(€))

(®
(€))

(@
(€))

(®
(€))

(@
(€))

(®
(€))

(@
(€))

(®
(€))

c’ est Tex qui (éteindre; tense:simple past; mood:indicative) la lampe
éteignit

c’ est la bouilloire que Tex (ranger; tense:simple past; mood:indicative)
rangea

Tex (vider; tense:simple past; mood:indicative) le lave linge

vida

c’ est la bouilloire que Tex (remplir; tense:simple past; mood:indicative)
remplit

c’ est la table que Tex (mettre; tense:simple past; mood:indicative)
mit

c’ est Tex qui (éteindre; tense:simple past; mood:indicative) la lampe
éteignit

ce sont les tables que Tammy (décorer; tense:simple past; mood:indicative)
décora

le four & micro-ondes (etre; tense:simple past; mood:indicative) ouvert par Tex
fut

c’ est le réfrigérateur que Tex (laver; tense:simple past; mood:indicative)
lava

le téléphone (etre; tense:simple past; mood:indicative) décroché par Tex
fut

Pedagogical goal (57): Verb conjugation: simple future - fill in the blank -morphology

on a give lemma and a set of hints
Activity type: MORPHOLOGY_FIB_FEATURES

Config FIB _LexicalFeatures: [cat=v;mode=ind;tense=fut]

GramEx query (stem): [cat : v A tense: fut A mode : ind]

(®
(€))

(@
(€))

(®
(€))

()

150

c’ est la radio que Tex (allumer; tense:future; mood:indicative)
allumera

tu ...l (mettre; tense:future; mood:indicative) la table
mettras

c’ est la table que Tex (laver; tense:future; mood:indicative)
lavera

c’ est Tex qui (pousser; tense:future; mood:indicative) la chaise

A.1. Excerpt of pedagogical goals

(8) poussera

(Q ¢’ est Tex qui (ranger; tense:future; mood:indicative) le placard

(S) rangera

(Q) ¢’ est la table que Tex (mettre; tense:future; mood:indicative)

(S) mettra

(Q) des livres (etre; tense:future; mood:indicative) sortis de la bibliothéque par Tex
(S) seront

(Q) 1la lampe (etre; tense:future; mood:indicative) allumée par Tex

(S) sera

@@ Texovn.. (nettoyer; tense:future; mood:indicative) la poéle

(S) nettoiera

(Q) c¢?” est Tex qui (décrocher; tense:future; mood:indicative) le téléphone

(S) décrochera

Pedagogical goal (37): -ir verbs in present - Fill in the blank -morphology on a given

lemma

Activity type: MORPHOLOGY_FIB

Config FIB _LexicalFeatures: [cat=v; group=ir; lemanchor=none]

GramEx query (stem): [VerbSem A cat:v A tense:pres A group:ir A mode : ind]

(Q ¢’ est lui qui (venir) de réparer la machine & café
(S) vient
@ Tex (choisir) les petites poéles

(S) choisit

(Q) ce sont les petites poé&les que Tex (choisir)
(8) choisit

(@ ¢’ est lui qui (venir) de fermer le four & micro-ondes

(S) vient

Pedagogical goal (71): Pronominal verbs - Syntax Scramble
Activity type: SYNTAX_SCRAMBLE
Config FIB LexicalFeatures:

[cat=v;

pronominal= +; mode=ind; tense=pres; aspect= indet; lemanchor=nonel]

GramEx query (stem): [cat : v A pronominal : + A mode : ind A tense : pres A aspect :

indet]

(Q) Tex / s’ / chaise / la / sur / assied

151

Appendix A. GramEz pedagogical goals and exercise items

(S) Tex s’assied sur la chaise

(Q) s’ / pizzas / Tex / intéresse / aux

(S) Tex s’intéresse aux pizzas

(Q) plante / est / lui / une / 4’ / s’ / occupe / ¢’ / qui

(8) ¢’ est lui qui s’occupe d’une plante

(Q s’ / ¢’ / pizzas / intéresse / Tex / est / aux / qui

(S) ¢’ est Tex qui s’intéresse aux pizzas

(Q) Tex / pizza / intéresse / la / s’ / a

(S) Tex s’intéresse & la pizza

(@) en / Tex / occupe / s’

(S) Tex s’en occupe

(Q en / qui / ¢’ / Tex / occupe / s’ / est

(8) ¢’ est Tex qui s’en occupe

(Q) occupe / s> / il / en

(S) il s’en occupe

(Q) 1la / appelle / tatou / Tammy / s’
(S) 1la tatou s’appelle Tammy

(Q) occupe / des / s’ / plantes / Tex

(S) Tex s’occupe des plantes

Pedagogical goal (81): verb conjugation: present* - fill in the blank -morphology on a
give lemma and a set of hints

Activity type: MORPHOLOGY_FIB_FEATURES

Config FIB _LexicalFeatures: [cat=v;mode=ind;tense=pres]

GramEx query (stem): [cat : v A tense:pres A mode : ind]

(Q) 1les petites cuilléres (etre; tense:present; mood:indicative) t-elles essuyées par Tex
(S) sont

(Q) 1les lave vaisselle (avoir; tense:present; mood:indicative) été vidés par Tex

(S) ont

(Q) ¢’ est Tex qui s’ en (occuper; tense:present; mood:indicative)

(S) occupe

@@ Texvonn. (adorer; tense:present; mood:indicative) les grandes tables

(S) adore

45Here we provide the “verb conjugation: present” instead of the subjunctive one. The definition of
the Pedagogical goal “verb conjugation: subjunctive” differ only in the Config FIB _LexicalFeatures
and GramEx query (stem) in that it has the mode=subj speficifation rather than mode=pres.

152

A.2. Excerpt of transformation-based grammar exercices

Q) ¢’ est lui qui (promettre; tense:present; mood:indicative) de réparer la chaise
(S) promet

@ ¢ i (etre; tense:present; mood:indicative) la chaise que Tex poussait

(S) est

(Q) ce sont les tasses que Tex (avoir; tense:present; mood:indicative) rangées

(S) a

(Q ¢’ est lui qui (avoir; tense:present; mood:indicative) oublié de débarasser la table
(8) a

(Q) Tex réve de la pizza qui (bruler; tense:present; mood:indicative)

(S) brule

(Q) les vieux réfrigérateurs (etre; tense:present; mood:indicative) adorés par Tex
(S) sont

The figures below show examples of interactions within I-FLEG. The exercises
are generated by GramFEz and correspond to some of the teaching goals previously
detailed. Figure A.1 show a question of the type “Preposition - Fill in the blank
-missing word” given to the learner and Figure A.2 the answer entered by her with
the feedback returned by I-FLEG. The other pair of figures, namely Figure A.3 and
Figure A.4 show an interaction for the Adjective order - Syntaz Scramble pedagogical
goal. In the first case, the learner enters an incorrect answer and therefore I-FLEG
shows the expected correct answer. In the second case, the answer entered by the

learner is correct, then [-FLEG gives a positive message that confirms this.

A.2 Excerpt of transformation-based grammar exercices

In what follows, we give an excerpt of the exercises generated by GramFEx for the

pedagogical goals defined in Section 4.4 concerning Reformulation type of exercises.

Pedagogical goal (19): Passive voice - Transformation

Activity type: TRANSFORMATION

Config TASType: ACTIVE_PASIVE

GramEx query (stem): [activeVerbMorphology A (binaryRel V ternaryRel)
A SubjectSem A ObjectSem A tense : pres]

(Q) il les adore

(S) 1ils sont adorés par lui

153

Appendix A. GramEz pedagogical goals and exercise items

Aeheter L ¥ A

[EXERCISE

il a oublié

Figure A.1: An example of exercise of the “(15) Preposition - Fill in the blank -missing
word” pedagogical goal given to the learner.

il B 13 ®) 15

eterLy | A

[EXERCISE | [

Et non: 11 a oublié de laver le bol !

Figure A.2: Answer entered by the learner and feedback given by I-FLEG to the learner
for the preposition exercise question in Figure A.1.

154

A.2. Excerpt of transformation-based grammar exercices

ing Game - FLEG, Alsgro FLEG - Gensral (5

Figure A.3: An example of exercise of the “(52) Adjective order - Syntax Scramble” ped-
agogical goal given to the learner.

il B t3 4) 1530 %G

1o nteracive french Learming Game - IFLEG, Alearo FLEG - Général [

|EXERCISE 0000001

Figure A.4: Answer entered by the learner and feedback given by I-FLEG to the learner
for the adjectives exercise question in Figure A.3.

155

Appendix A. GramEz pedagogical goals and exercise items

(Q) ¢’ est lui que Tammy adore
(8) ¢’ est lui qui est adorée par Tammy

(S) ¢’ est par Tammy qu’ il est adoré

(Q) Tex présente Tammy & Tom
(8) Tammy est présentée par Tex a Tom

(8) Tammy est présentée a Tom par Tex

(Q) qui présente Tammy & Tom ?

(S) par qui Tammy est présentée & Tom ?

(Q) Tex a fait la tarte
(S) 1la tarte a été faite par Tex

(Q) il adore la petite tatou
(S) 1la petite tatou est adorée par lui

(Q) ¢’ est lui que Tex aime beaucoup

(8) ¢’ est lui qui est aimé beaucoup par Tex

(Q) Tammy adore t-elle la petite tatou ?
(S) 1la petite tatou est t-elle adorée par Tammy ?

(Q) est ce que c’ est Tammy qui adore la petite tatou ?

(S) est ce que c’ est par Tammy que la petite tatou est adorée 7

(Q) Tammy sait que Tom a fait la tarte

(S) Tammy sait que la tarte a été faite par Tom

(Q) ¢’ est Tammy qui sait que Tom a fait la tarte

(8) ¢’ est Tammy qui sait que la tarte a été faite par Tom

Pedagogical goal (44): Personal pronouns - Transformation
Activity type: TRANSFORMATION
Config TASType: PERSONAL_PRONQUN

GramEx query (stem): (propername V noun) A [tense:pres A mode : ind]

(Q) ¢’ est lui que Tammy adore

(S) ¢’ est lui que elle adore

(Q) Tammy 1’ adore
(S) elle 1’ adore

(Q) ¢’ est lui qui adore la tatou

(S) ¢’ est lui qui 1’ adore

(Q) Tammy parle avec Tex

(8) Tammy parle avec lui

(Q) ¢’ est Tammy qui parle avec Tex

(S) ¢’ est Tammy qui parle avec lui

156

A.2. Excerpt of transformation-based grammar exercices

(Q) adore t-il la petite tatou ?
(8) 1’ adore t-il ?

(Q) Tex aime beaucoup le café

(S) il aime beaucoup le café

(Q) quelle petite tatou dort 7
(S) qui dort ?

(Q) 1la tatou dort
(S) elle dort

(Q) 1la petite tatou qui chante dort
(8) elle dort

(Q) Tammy dort
(S) elle dort

(Q) ¢’ est Tammy qui dort n’ est ce pas ?

(S) ¢’ est lui qui dort n’ est ce pas ?

Pedagogical goal (45): yes/no questions (est-ce que or n’est-ce pas) - Transformation
Activity type: TRANSFORMATION

Config TASType: YNQUESTION_EST_CE_QUE_NEST_CE_PAS

GramEx query (stem): —(questionSem V questionmarkSem V whPronoun V questionCliticSem
V UnboundedQuestion V qtilSem) A [tense : pres A mode : ind)

(Q) ¢’ est lui qu’ elles adorent

(8) est ce que ¢’ est lui qu’ elles adorent 7

(Q) il 1’ adore
(S) il 1’ adore 7

(Q) il 1’ adore

(8) est-ce qu’ il 1’ adore 7

(@) il 1’ adore

(S) il 1’ adore n’ est ce pas 7

(Q) 1la tatou dort beaucoup

(8) est-ce que la tatou dort beaucoup 7

(Q) Tammy parle avec Tex

(S) Tammy parle avec Tex n’ est ce pas ?

(Q) Tammy leur sourit

(8) est-ce que Tammy leur sourit ?

(Q) ¢’ est la petite tatou qui chanta qui dort

(S) est-ce que ¢’ est la petite tatou qui chante qui dort ?

157

Appendix A. GramEz pedagogical goals and exercise items

(Q) elle dort
(S) est-ce qu’ elle dort ?

Pedagogical goal (46): Interrogative pronouns - Transformation

Activity type: TRANSFORMATION

Config TASType: INTERROGATIVE_PRONOUN

GramEx query (stem): —(questionSemVquestionmarkSemVwhPronounVquestionCliticSemV
UnboundedQuestion V qtilSem) A [tense : pres A VerbSem)]

(Q) Tammy est présentée a Tom par Tex

(S) & qui Tammy est présentée par Tex ?

(Q) ma tatou dort
(8) qui dort 7

(Q) elles sont adorées par Tammy

(S) qui est adoré par Tammy 7

(Q) Tammy leur sourit

(S) qui leur sourit ?

(Q) Tammy adore le petit tatou

(S) qui Tammy adore ?

(Q) 1la petite tatou qui chante dort
(8) qui dort 7

(Q) Tammy sourit a Tex

(S) & qui sourit Tammy 7

(Q) elle dort
(8) qui dort 7

(Q) 1la petite tatou est adorée par Tammy

(S) qui est adoré par Tammy 7

Pedagogical goal (48): interrogative adjective quel - Transformation

Activity type: TRANSFORMATION

Config TASType: INTERROGATIVE_ADJECTIVE

GramEx query (stem): —(questionSem Vv questionmarkSem V whPronoun
V questionCliticSem V UnboundedQuestion V qtilSem) A tense: pres A noun

(Q) 1la petite tatou qui chante dort
(S) quelle tatou dort ?

(Q) 1la petite tatou qui chante dort
(8) quelle petite tatou dort 7

158

A.2. Excerpt of transformation-based grammar exercices

(®
(€))

(@
(€))

la tatou dort beaucoup

quelle tatou dort beaucoup 7

la petite tatou dort

quelle tatou dort

?

159

Appendix A. GramEz pedagogical goals and exercise items

160

Bibliography

[Abeillé and Rambow, 2000] Anne Abeillé and Owen Rambow. Tree Adjoining
Grammars: Formalisms, Linguistic Analysis and Processing, chapter Tree Ad-

joining Grammar: An Overview. Cambridge University Press, 2000.

[Alahverdzhieva, 2008] Katya Alahverdzhieva. XTAG using XMG. A Core Tree-
Adjoining Grammar for English. Master’s thesis, Universitit des Saarlandes, Ger-

many and Université Nancy 2, France, 2008.

[Aldabe et al., 2006] Itziar Aldabe, Maddalen Lopez de Lacalle, Montse Maritxalar,
Edurne Martinez, and Larraitz Uria. Arikiturri: an automatic question genera-
tor based on corpora and nlp techniques. In Proceedings of the 8th international
conference on Intelligent Tutoring Systems, ITS’06, pages 584-594, Berlin, Heidel-
berg, 2006. Springer-Verlag.

[Amaral and Meurers, 2011| Luiz a. Amaral and Detmar Meurers. On using intel-
ligent computer-assisted language learning in real-life foreign language teaching
and learning. ReCALL, 23(1):4-24, January 2011.

[Amaral, 2011] Luiz Amaral. Revisiting current paradigms in computer assisted

language learning research and development. Ilha do Desterro, 2011.

[Amoia et al., 2012] Marilisa Amoia, Treveur Bretaudiere, Alexandre Denis, Claire
Gardent, and Laura Perez-Beltrachini. A Serious Game for Second Language
Acquisition in a Virtual Environment. The Journal on Systemics, Cybernetics
and Informatics (JSCI), pages 24-34, 2012.

[Bachman and Palmer, 1996] Lyle F. Bachman and Adrian S. Palmer. Language
Testing in Practice: Designing and Developing Useful Language Tests. Oxford
University Press, 1996.

[Bangalore and Joshi, 1999] Srinivas Bangalore and Aravind K. Joshi. Supertagging:
An approach to almost parsing. Computational Linguistics, 25:237-265, 1999.

161

Bibliography

[Bangalore and Rambow, 2000a] S. Bangalore and O. Rambow. Using TAGs, a tree
model and a language model for generation. In Proceedings of TAG+5, Paris,
France, 2000.

[Bangalore and Rambow, 2000b| Srinivas Bangalore and Owen Rambow. Exploit-
ing a probabilistic hierarchical model for generation. In Proceedings of the 18th
conference on Computational linguistics - Volume 1, COLING ’00, pages 42-48,
Stroudsburg, PA, USA, 2000. Association for Computational Linguistics.

[Banik et al., 2012] Eva Banik, Eric Kow, Vinay Chaudhri, Nikhil Dinesh, and
Umangi Oza. Natural language generation for a smart biology textbook. In Pro-
ceedings of the Seventh International Natural Language Generation Conference,
INLG ’12, pages 125-127, Stroudsburg, PA, USA, 2012. Association for Compu-

tational Linguistics.

[Belz et al., 2011] A. Belz, M. White, D. Espinosa, E. Kow, D. Hogan, and A. Stent.
The first surface realisation shared task: Overview and evaluation results. In Proc.

of the 13th European Workshop on Natural Language Generation, 2011.

[Biber and Conrad, 2010] Douglas Biber and Susan Conrad. Corpus linguistics and
grammar teaching. Newsletter : Pearson Longman English Language Teaching,
May 2010.

[Bick, 2005| Eckhard Bick. Grammar for Fun: IT-based Grammar Learning with
VISL. In P. Juel, editor, CALL for the Nordic Language, pages 49—64, Copenhagen,
2005.

[Billot and Lang, 1989] Sylvie Billot and Bernard Lang. The structure of shared
forests in ambiguous parsing. In Proceedings of the 27th annual meeting on Asso-
ciation for Computational Linguistics, ACL 89, pages 143-151, Stroudsburg, PA,
USA, 1989. Association for Computational Linguistics.

[Bodirsky et al., 2005] Manuel Bodirsky, Marco Kuhlmann, and Mathias Mohl.
Well-nested drawings as models of syntactic structure. In In Tenth Conference
on Formal Grammar and Ninth Meeting on Mathematics of Language, pages 88—
1. University Press, 2005.

[Bonfante et al., 2004] Guillaume Bonfante, Bruno Guillaume, and Guy Perrier. Po-
larization and abstraction of grammatical formalisms as methods for lexical disam-

biguation. In Proceedings of the 20th international conference on Computational

162

Linguistics, COLING ’04, Stroudsburg, PA, USA, 2004. Association for Compu-

tational Linguistics.

[Bos, 1995] Johan Bos. Predicate logic unplugged. In In Proceedings of the 10th
Amsterdam Colloguium, pages 133-143, 1995.

[Bresnan et al., 1982| Joan Bresnan, Ronald M. Kaplan, Stanley Peters, and Annie
Zaenen. Cross-Serial Dependencies in Dutch. In Linguistic Inquiry, volume 13,
pages 613-635. The MIT Press, 1982.

[Brew, 1992] Chris Brew. Letting the cat out of the bag. In Proceedings of COLING,
1992.

[Callaway, 2003| Charles B. Callaway. Evaluating coverage for large symbolic NLG
grammars. In 18th IJCAI, pages 811-817, Aug 2003.

[Candito and Kahane, 1998] Marie-Héléne Candito and Sylvain Kahane. Can the
TAG derivation tree represent a semantic graph? An answer in the light of
Meaning-Text Theory. In Fourth International Workshop on Tree Adjoining Gram-

mars and Related Frameworks, 1998.

[Carroll and Oepen, 2005] J. Carroll and S. Oepen. High efficiency realization for a
wide-coverage unification grammar. 2nd IJCNLP, 2005.

[Carroll et al., 1999] John Carroll, Dan Flickinger, Ann Copestake, and Victor
Poznanski. An Efficient Chart Generator for (Semi-)Lexicalist Grammars. In

In Proceedings of the 7th European Workshop on Natural Language Generation
(EWNLG’99, Toulouse, France, 1999.

[Chandrasekar and Srinivas, 1997] R. Chandrasekar and B. Srinivas. Automatic in-
duction of rules for text simplification. Knowledge-Based Systems, pages 183-190,
1997.

[Chao-Lin et al., 2005] Liu Chao-Lin, Wang Chun-Hung, Gao Zhao-Ming, and
Huang Shang-Ming. Applications of lexical information for algorithmically com-
posing multiple-choice cloze items. In Proceedings of the second workshop on Build-
1ng Educational Applications Using NLP, EdAppsNLP 05, pages 1-8, Stroudsburg,
PA, USA, 2005. Association for Computational Linguistics.

[Chen et al., 1999] John Chen, Srinivas Bangalore, and K. Vijay-Shanker. New mod-
els for improving supertag disambiguation. In Proceedings of the ninth conference

on European chapter of the Association for Computational Linguistics, EACL ’99,

163

Bibliography

pages 188-195, Stroudsburg, PA, USA, 1999. Association for Computational Lin-

guistics.

[Chen et al., 2006] Chia-Yin Chen, Hsien-Chin Liou, and Jason S. Chang. Fast:
an automatic generation system for grammar tests. In Proceedings of the COL-
ING/ACL on Interactive presentation sessions, COLING-ACL ’06, pages 1-4,
Stroudsburg, PA, USA, 2006. Association for Computational Linguistics.

[Chomsky, 1957] N. Chomsky. Syntactic Structures. Mouton, 1957.

[Cohn and Lapata, 2009] T. Cohn and M. Lapata. Sentence compression as tree
transduction. Journal of Artificial Intelligence Research, 34:637-674, 2009.

[Comon et al., 1997] H. Comon, M. Dauchet, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Technical report,
1997.

[Coniam, 1997] David Coniam. A preliminary inquiry into using corpus word fre-
quency data in the automatic generation of english language cloze tests. CALICO
Journal, 14:15-33, 1997.

[Copestake et al., 2001] Ann Copestake, Alex Lascarides, and Dan Flickinger. An
algebra for semantic construction in constraint-based grammars. In In Proceedings
of the 39th Annual Meeting of the Association for Computational Linguistics (ACL
2001, pages 132-139, 2001.

[Copestake et al., 2005] A. Copestake, D. Flickinger, C. Pollard, and I.A. Sag. Mini-
mal recursion semantics: An introduction. Research on Language €& Computation,
3(2):281-332, 2005.

[Copestake, 2008] Ann Copestake. Dependency and (R)MRS. Technical report,
2008.

[Copestake, 2009] Ann Copestake. Slacker semantics: why superficiality, dependency
and avoidance of commitment can be the right way to go. In Proceedings of the
12th Conference of the European Chapter of the Association for Computational

Linguistics, pages 1-9. Association for Computational Linguistics, 2009.

[Crabbé, 2005] Benoit Crabbé. Représentation informatique de grammaires d’arbres
fortement lexicalisées : le cas de la grammaire d’arbres adjoints. PhD thesis,

Nancy University, 2005.

164

[Crabbé et al., 2012] B. Crabbé, D. Duchier, C. Gardent, J. Leroux, and Y. Par-
mentier. XMG, eXtendible Meta Grammar. Computational Linguistics, 2012.

[De Groote, 2002] P. De Groote. Tree-adjoining grammars as abstract categorial
grammars. In Proceedings of TAG+6, pages 145-150, 2002.

[Dechter, 1990] Rina Dechter. Enhancement schemes for constraint process-
ing: Backjumping, learning, and cutset decomposition. Artificial Intelligence,
41(3):273-312, 1990.

[DeJong and Mooney, 1986] Gerald DeJong and Raymond Mooney. Explanation-
based learning: An alternative view. Machine learning, 1(2):145-176, 1986.

[Denis et al., 2010] Alexandre Denis, Marilisa Amoia, Luciana Benotti, Laura Perez-
Beltrachini, Claire Gardent, and Tarik Osswald. The GIVE-2 Nancy Generation
Systems NA and NM. Technical report, GIVE challenge, 2010.

[Denis et al., 2012] Alexandre Denis, Ingrid Falk, Claire Gardent, and Laura Perez-
Beltrachini. Representation of linuguistic and domain knowledge for second lan-
guage learning in virtual worlds. In LREC 2012: Posters, Istanbul, Turkey, May
2012.

[Duchier and Debusmann, 2001| Denys Duchier and Ralph Debusmann. Topolog-
ical dependency trees: A constraint-based account of linear precedence. In In
Proceedings of the 39th ACL, 2001.

[Earley, 1970] Jay Earley. An efficient context-free parsing algorithm. Commun.
ACM, 13(2):94-102, February 1970.

[Elhadad et al., 1997] Michael Elhadad, Jacques Robin, et al. Surge: a comprehen-
sive plug-in syntactic realization component for text generation. Computational
Linguistics, 99(4), 1997.

[Espinosa et al., 2008] Dominic Espinosa, Michael White, and Dennis Mehay. Hy-
pertagging: Supertagging for surface realization with CCG. In Proceedings of
ACL-08: HLT, pages 183-191, Columbus, Ohio, June 2008. Association for Com-

putational Linguistics.

[Franconi et al., 2010] Enrico Franconi, Paolo Guagliardo, and Marco Trevisan. An
intelligent query interface based on ontology navigation. In Workshop on Visual
Interfaces to the Social and Semantic Web, VISSW. Citeseer, 2010.

165

Bibliography

[Gardent and Kallmeyer, 2003] C. Gardent and L. Kallmeyer. Semantic construction
in Feature-Based TAG. In 10th EACL, Budapest, Hungary, 2003.

[Gardent and Kow, 2005] Claire Gardent and Eric Kow. Generating and selecting
grammatical paraphrases. In In Proceedings of the 10th European Workshop on
Natural Language Generation, 2005.

[Gardent and Kow, 2006] Claire Gardent and Eric Kow. Three reasons to adopt
TAG-based surface realisation. In Proceedings of the Eighth International Work-
shop on Tree Adjoining Grammar and Related Formalisms, TAGRF 06, pages
97-102, Stroudsburg, PA, USA, 2006. Association for Computational Linguistics.

[Gardent and Kow, 2007] Claire Gardent and Eric Kow. A symbolic approach to
near-deterministic surface realisation using tree adjoining grammar. In Proceed-
ings of the 45th Annual Meeting of the Association of Computational Linguistics,
pages 328-335, Prague, Czech Republic, June 2007. Association for Computational

Linguistics.

[Gardent and Kruszewski, 2012] Claire Gardent and German Kruszewski. Genera-
tion for grammar engineering. In 11th International Conference on Natural Lan-
guage Generation (ENLG), 2012.

[Gardent and Narayan, 2012| Claire Gardent and Shashi Narayan. Error mining on
dependency trees. In ACL, pages 592-600, 2012.

[Gardent and Perez-Beltrachini, 2010] C. Gardent and L. Perez-Beltrachini. RTG
based surface realisation for TAG. In Proceedings of COLING, Beijing, China,
2010.

[Gardent and Perez-Beltrachini, 2012] Claire Gardent and Laura Perez-Beltrachini.
Using FB-LTAG Derivation Trees to Generate Transformation-Based Grammar
Exercises. In TAG+11: The 11th International Workshop on Tree Adjoining

Grammars and Related Formalisms, Paris, France, September 2012.

[Gardent and Thater, 2001] C. Gardent and S. Thater. Generating with a grammar
based on tree descriptions: a constraint-based approach. In Proceedings of the
39th Annual Meeting on Association for Computational Linguistics, pages 212—
219. Association for Computational Linguistics, 2001.

[Gardent et al., 2010] Claire Gardent, Benjamin Gottesman, and Laura Perez-

Beltrachini. Comparing the performance of two TAG-based surface realisers using

166

controlled grammar traversal. In Proceedings of the 23rd International Conference
on Computational Linguistics: Posters, pages 338-346. Association for Computa-

tional Linguistics, 2010.

[Gardent et al., 2011a] C. Gardent, B. Gottesman, L. Perez-Beltrachini, et al. Using
regular tree grammars to enhance sentence realisation. Natural Language Engi-
neering, 17(2):185, 2011.

[Gardent et al., 2011b| Claire Gardent, Yannick Parmentier, Guy Perrier, and Syl-
vain Schmitz. Lexical Disambiguation in LTAG using Left Context. In Proceedings
of the 5th Language and Technology Conference - LTC’11, 2011.

[Gardent, 2008] Claire Gardent. Integrating a unification-based semantics in a large
scale lexicalised tree adjoining grammar for french. In COLING’08, Manchester,
UK, 2008.

[Gottesman, 2009] B. Gottesman. Generating examples. Master’s thesis, Erasmus
Mundus Master Language and Communication Technology, Saarbrucken/Nancy,
2009.

[Hallett et al., 2007] Catalina Hallett, Donia Scott, and Richard Power. Composing
questions through conceptual authoring. Computational Linguistics, 33(1):105-
133, 2007.

[Halliday, 1985] Michael A. K. Halliday. An introduction to functional grammar.
Edward Arnold Press, 1985.

[Harbusch and Kempen, 2010] Karin Harbusch and Gerard Kempen. Automatic on-
line writing support for 12 learners of german through output monitoring by a
natural-language paraphrase generator. WorldCall: International Perspectives on

Computer-Assisted Language Learning, 5:128, 2010.

[Harbusch et al., 2007] Karin Harbusch, Camiel Van Breugel, Ulrich Koch, and Ger-
ard Kempen. Interactive sentence combining and paraphrasing in support of in-
tegrated writing and grammar instruction: a new application area for natural
language sentence generators. In Proceedings of the Eleventh European Workshop
on Natural Language Generation, ENLG 07, pages 65-68, 2007.

[Harbusch et al., 2008a] Karin Harbusch, Gergana Itsova, Ulrich Koch, and Chris-
tine Kiihner. The Sentence Fairy: a natural-language generation system to support
children’s essay writing. Computer Assisted Language Learning, 21(4):339-352,
2008.

167

Bibliography

[Harbusch et al., 2008b] Karin Harbusch, Gerard Kempen, and Theo Vosse. A
natural-language paraphrase generator for on-line monitoring and commenting
incremental sentence construction by 12 learners of german. Proceedings of the
WorldCALL 2008: Bridging the World through Technology Enhanced Language
Learning, 2008.

[Harbusch et al., 2009] Karin Harbusch, Gergana Itsova, Ulrich Koch, and CHRIS-
TINE Kiihner. Computing accurate grammatical feedback in a virtual writing
conference for german-speaking elementary-school children: An approach based
on natural language generation. CALICO Journal, 20:626-643, 2009.

[Harbusch et al., 2012] Karin Harbusch, Christine Franz, and Ulrich Koch. The
teacher mode of the sentence fairy system: How to create your own e-learning writ-
ing lessons for german elementary school pupils. ICERI2012 Proceedings, pages
112-122, 2012.

[Harris, 1957] Z.S. Harris. Co-occurrence and transformation in linguistic structure.
Language, 33(3):283-340, 1957.

[Heilman and Eskenazi, 2007] Michael Heilman and Maxine Eskenazi. Application of
automatic thesaurus extraction for computer generation of vocabulary questions.
In Proceedings of Speech and Language Technology in Education (SLaTE2007),
pages 65-68, 2007.

[Heilman et al., 2008] Michael Heilman, Le Zhao, Juan Pino, and Maxine Eskenazi.
Retrieval of reading materials for vocabulary and reading practice. In Proceedings
of the Third Workshop on Innovative Use of NLP for Building Educational Appli-
cations, pages 80-88, Columbus, Ohio, June 2008. Association for Computational

Linguistics.

[Hockenmaier and Steedman, 2007] Julia Hockenmaier and Mark Steedman. Cecg-
bank: A corpus of ccg derivations and dependency structures extracted from the
penn treebank, 2007.

[Hwa, 2000] Rebecca Hwa. Sample selection for statistical grammar induction. In
Proceedings of the 2000 Joint SIGDAT conference on Empirical methods in natu-
ral language processing and very large corpora: held in conjunction with the 38th
Annual Meeting of the Association for Computational Linguistics - Volume 13,
EMNLP 00, pages 45-52, Stroudsburg, PA, USA, 2000. Association for Compu-

tational Linguistics.

168

[Joshi and Schabes, 1997] A. Joshi and Y. Schabes. Handbook of Formal Languages,
chapter Tree-Adjoining Grammars. Springer, 1997.

[Joshi et al., 1975] Aravind K. Joshi, Leon S. Levy, and Masako Takahashi. Tree
adjunct grammars. J. Comput. Syst. Sci., 10(1):136-163, February 1975.

[Joshi, 1985] Aravind K. Joshi. How Much Context-Sensitivity is Necessary for
Characterizing Structural Descriptions—Tree Adjoining Grammars. In L.; Dowty,
D.; Karttunen and A. Zwicky, editors, Natural Language Processing— Theoretical,
Computational and Psychological Perspective. Cambridge University Press, New
York, NY, 1985. Originally presented in 1983.

[Joshi, 1987] Aravind K. Joshi. The relevance of tree adjoining grammar to gener-
ation. In Gerard Kempen, editor, Natural Language Generation, pages 233-252.
Martinus Nijhoff Press, Dordrect, The Netherlands, 1987.

[Kallmeyer, 2013] Laura Kallmeyer. Linear context-free rewriting systems. Language
and Linguistics Compass, 7(1):22-38, 2013.

[Kanazawa, 2007] M. Kanazawa. Parsing and generation as datalog queries. In
Proceedings of ACL, pages 176-183, 2007.

[Kanazawa, 2011] MAKOTO Kanazawa. Parsing and generation as datalog query

evaluation. To appear, 2011.

[Kaplan and Bresnan, 1981] Ronald M Kaplan and Joan Bresnan. Lezical-
Functional Grammar: A formal system for grammatical representation. Mas-

sachusetts Institute of Technology, Center for Cognitive Science, 1981.

[Karamanis et al., 2006] Nikiforos Karamanis, Le An Ha, and Ruslan Mitkov. Gen-
erating multiple-choice test items from medical text: A pilot study. In Proceedings

of the Fourth International Natural Language Generation Conference, pages 111—
113, Sydney, Australia, 2006.

[Kay, 1986] M Kay. Readings in natural language processing. chapter Algorithm
schemata and data structures in syntactic processing, pages 35-70. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1986.

[Kay, 1996] Martin Kay. Chart generation. In Proceedings of the 34th Annual Meet-
ing of the Association for Computational Linguistics, pages 200-204, Morristown,
NJ, USA, 1996.

169

Bibliography

[Kempen and Harbusch, 2002] Gerard Kempen and Karin Harbusch. Performance
grammar: A declarative definition. Language and Computers, 45(1):148-162, 2002.

[Kern, 2006] Richard Kern. Perspectives on technology in learning and teaching
languages. TESOL Quarterly, 2006.

[Koller and Hoffmann, 2010] A. Koller and J. Hoffmann. Waking up a sleeping rab-
bit: On natural-language generation with FF. In Proceedings of the 20th ICAPS
(Short Papers), Toronto, Canada, 2010.

[Koller and Stone, 2007] A. Koller and M. Stone. Sentence generation as planning.
In Proceedings of 45th Annual Meeting of the Association for Computational Lin-
guistics, Prague, 2007.

[Koller and Striegnitz, 2002] A. Koller and K. Striegnitz. Generation as dependency
parsing. In Proceedings of the 40th Annual Meeting on Association for Computa-
tional Linguistics, Philadelphia, 2002.

[Kow, 2007| Eric Kow. Surface realisation: ambiguity and determinism. PhD thesis,

Université Henri Poincaré, 2007.

[Krashen, 1982] Stephen D. Krashen. Principles and Practice in Second Language

Acquisition. Pergamon Press, 1982.

[Kuhlmann, 2007] Marco Kuhlmann. Dependency Structures and Lezicalized Gram-
mars. PhD thesis, Saarland University, 2007.

[Langkilde-Geary, 2002] I. Langkilde-Geary. An empirical verification of coverage
and correctness for a general-purpose sentence generator. In Proceedings of the
INLG, 2002.

[Langkilde, 2000] Irene Langkilde. Forest-based statistical sentence generation. In
Proceedings of the 1st North American chapter of the Association for Compu-
tational Linguistics conference, NAACL 2000, pages 170-177, Stroudsburg, PA,
USA, 2000. Association for Computational Linguistics.

[Lee and Seneff, 2007] John Lee and Stephanie Seneff. Automatic generation of cloze
items for prepositions. Proceedings of Interspeech, pages 2173-2176, 2007.

[Levin and Evans, 1995| Lori S. Levin and David A. Evans. Alice-chan: A case study
in icall theory and practice. Intelligent language tutors: Theory shaping technology,
pages 77-97, 1995.

170

[Levy and Hubbard, 2005 Mike Levy and Philip Hubbard. Why call CALL “CALL”?
Computer Assisted Language Learning, 2005.

[Levy, 1997] Mike Levy. CALL: context and conceptualisation. Oxford University
Press, 1997.

[Li and Topolewski, 2002] Rong-Chang Li and David Topolewski. ZIP & TERRY: a
new attempt at designing language learning simulation. Simulation and Gaming,
33(2):181-186, June 2002.

[Lin et al., 2007] Yi-Chien Lin, Li-Chun Sung, and Meng Chang Chen. An Au-
tomatic Multiple-Choice Question Generation Scheme for English Adjective Un-
derstandings. In Workshop on Modeling, Management and Generation of Prob-

lems/Questions in eLearning, the 15th International Conference on Computers in
Education (ICCE 2007), pages 137-142, 2007.

[Long, 1991] Michael H. Long. Focus on form: A design feature in language teaching

methodology. Foreign Language Research in Cross-cultural Perspective, 1991.

[Long, 1996] Michael H. Long. The role of the linguistic environment in second
language acquisition. Handbook of Second Language Acquisition, 1996.

[Macwhinney, 1995| Brian Macwhinney. Evaluating Foreign Language Tutoring Sys-
tems. In Intelligent Language Tutors: Theory Shaping, 50:317-326, 1995.

[Matthiessen and Bateman, 1991] Christian Matthiessen and John A. Bateman.
Text generation and systemic-functional linguistics: experiences from English and

Japanese. Pinter, 1991.

[McCoy et al., 1992] Kathleen F. McCoy, K. Vijay-Shanker, and Gijoo Yang. A func-
tional approach to generation with tag. In Proceedings of the 30th annual meeting
on Association for Computational Linguistics, ACL '92, pages 48-55, Stroudsburg,
PA, USA, 1992. Association for Computational Linguistics.

[McKeown, 1992] Kathleen McKeown. Text Generation. Cambridge University
Press, 1992.

[Melcuk, 1988| Igor A. Melcuk. Dependency syntaz : theory and practice. SUNY

series in linguistics. State University Press of New York, 1988.

[Meurers et al., 2010] Detmar Meurers, Ramon Ziai, Luiz Amaral, Adriane Boyd,

Aleksandar Dimitrov, Vanessa Metcalf, and Niels Ott. Enhancing authentic web

171

Bibliography

pages for language learners. In Proceedings of the NAACL HLT 2010 Fifth Work-
shop on Innovative Use of NLP for Building Educational Applications, IUNLPBEA
10, pages 10-18, Stroudsburg, PA, USA, 2010. Association for Computational

Linguistics.

[Meurers, 2012] Detmar Meurers. Natural language processing and language learn-
ing. In Carol A. Chapelle, editor, Encyclopedia of Applied Linguistics. Blackwell,
2012. to appear.

[Michaud and McCoy, 2000] Lisa N. Michaud and Kathleen F. McCoy. Supporting
intelligent tutoring in call by modeling the user’s grammar. In IN PROCEED-
INGS OF THE 13TH ANNUAL INTERNATIONAL FLORIDA ARTIFICIAL
INTELLIGENCE RESEARCH SYMPOSIUM, pages 50-54. AAAI Press, 2000.

[Michaud et al., 2000] Lisa N. Michaud, Kathleen F. McCoy, and Christopher A.
Pennington. An intelligent tutoring system for deaf learners of written english. In

Proceedings of the fourth international ACM conference on Assistive technologies,
Assets "00, pages 92-100, New York, NY, USA, 2000. ACM.

[Mitchell et al., 2011] Margaret Mitchell, Aaron Dunlop, and Brian Roark. Semi-
supervised modeling for prenominal modifier ordering. In Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics: Human Lan-
guage Technologies: short papers - Volume 2, HLT ’11, pages 236-241, Strouds-
burg, PA, USA, 2011. Association for Computational Linguistics.

[Mitkov et al., 2006] Ruslan Mitkov, Le An Ha, and Nikiforos Karamanis. A
computer-aided environment for generating multiple-choice test items. Natural
Language Engineering, 12(2):177-194, 2006.

[Nagata, 1996] Noriko Nagata. Computer vs. workbook instruction in second lan-
guage acquisition. CALICO journal, 14(1):53-75, 1996.

[Nakanishi et al., 2005] Hiroko Nakanishi, Yusuke Miyao, and Jun’ichi Tsujii. Proba-
bilistic models for disambiguation of an hpsg-based chart generator. In Proceedings
of the Ninth International Workshop on Parsing Technology, Parsing ’05, pages
93-102, Stroudsburg, PA, USA, 2005. Association for Computational Linguistics.

[Nerbonne, 2003] John Nerbonne. Handbook of Computational Linguistics, chapter
Natural language processing in computer-assisted language learning. Oxford Uni-

versity Press, 2003.

172

[Oepen and Carroll, 2000] Stephan Oepen and John Carroll. Ambiguity packing in
constraint-based parsing: practical results. In Proceedings of the 1st North Ameri-
can chapter of the Association for Computational Linguistics conference, NAACL
2000, pages 162-169, Stroudsburg, PA, USA, 2000. Association for Computational

Linguistics.

[Ott et al., 2010] Niels Ott, Detmar Meurers, and Universitat Tiibingen. Informa-
tion retrieval for education: Making search engines language aware. themes in
science and technology education. special issue on computer-aided language anal-
ysis, teaching and learning: Approaches, perspectives and applications 3(1-2),
9-30. Technical report, 2010.

[Pereira and Warren, 1983] Fernando C. N. Pereira and David H. D. Warren. Pars-
ing as deduction. In Proceedings of the 21st annual meeting on Association for
Computational Linguistics, ACL '83, pages 137-144, Stroudsburg, PA, USA, 1983.

Association for Computational Linguistics.

[Perez-Beltrachini et al., 2012] Laura Perez-Beltrachini, Claire Gardent, and Ger-
man Kruszewski. Generating Grammar Exercises. In NAACL-HLT 7th Work-
shop on Innovative Use of NLP for Building Educational Applications, Montreal,
Canada, June 2012.

[Perez-Beltrachini, 2009] Laura Perez-Beltrachini. Using regular tree grammars to
reduce the search space in surface realisation. Master’s thesis, European Masters

Program in Language and Communication Technologies, Nancy/Bolzano, 2009.

[Pienemann, 1998] Mamfred Pienemann. Language processing and second language
development: Processability theory, volume 15. John Benjamins Publishing Com-

pany, 1998.

[Pietquin et al., 2011] O. Pietquin, L. Daubigney, M. Geist, et al. Optimization of
a tutoring system from a fixed set of data. In Proceedings of the ISCA workshop
on Speech and Language Technology in Education, pages 1-4, 2011.

[Piwek and Boyer, 2012| P. Piwek and K. E. Boyer. Varieties of question generation.

Dialogue and Discourse, Special Issue on Question Generation, 2012.

[Pogodalla, 2004] S. Pogodalla. Computing semantic representations: towards ACG
abstract terms as derivation trees. In Proceedings of TAG+7, pages 64-71, 2004.

173

Bibliography

[Pollard and Sag, 1988] Carl Pollard and Ivan A. Sag. Information-based syntax
and semantics: Vol. 1: fundamentals. Center for the Study of Language and

Information, 1988.

[Power, 2011] Richard Power. Deriving rhetorical relationships from semantic con-
tent. In Proceedings of the 13th European Workshop on Natural Language Gener-

ation, pages 82-90. Association for Computational Linguistics, 2011.

[Power, 2012] Richard Power. OWL Simplified English: A Finite-State Language
for Ontology Editing. In Tobias Kuhn and Norbert E. Fuchs, editors, Third Inter-
national Workshop, CNL 2012, Lecture Notes in Computer Science, pages 44—60,
Zurich, Switzerland, August 2012. Springer-Verlag Berlin Heidelberg.

[Pravec, 2002] Norma A Pravec. Survey of learner corpora. ICAME journal,
26(81):114, 2002.

[Rambow and Joshi, 1994] Owen Rambow and Aravind Joshi. A Formal Look at
Dependency Grammars and Phrase-Structure Grammars, with Special Consider-

ation of Word-Order Phenomena. Current issues in meaning-text theory, 1994.

Reiter and Dale, 1997] Ehud Reiter and Robert Dale. Building applied natural lan-
g
guage generation systems. Natural Language Engineering, 3:57-88, 1997.

[Reiter, 1994] Ehud Reiter. Has a consensus nl generation architecture appeared,
and is it psychologically plausible. In Proceedings of the Seventh International
Workshop on Natural Language Generation, pages 163170, Kennebunkport ME,
1994.

[Rypa and Feuerman, 1995| Marikka Rypa and Ken Feuerman. Calle: An ex-
ploratory environment for foreign language learning. Intelligent language tutors:

theory shaping technology, pages 55-76, 1995.

[Schabes et al., 1988] Yves Schabes, Anne Abeille, and Aravind K. Joshi. Parsing
strategies with ’lexicalized’ grammars: Application to tree adjoining grammars.
In IN PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON
COMPUTATIONAL LINGUISTICS (COLING’88), pages 578-583, 1988.

[Schmidt, 1995] Richard Schmidt. Consciousness and foreign language: A tutorial
on the role of attention and awareness in learning. Attention and awareness in

foreign language learning, 1995.

174

[Schmitz and Le Roux, 2008] S. Schmitz and J. Le Roux. Feature unification in TAG
derivation trees. In C. Gardent and A. Sarkar, editors, Proceedings of TAG+S8,
pages 141-148, Tiibingen, Germany, 2008.

[Scott et al., 1998] Donia Scott, Richard Power, and Roger Evans. Generation as a
solution to its own problem. In Proceedings of the 9th International Workshop on

Natural Language Generation, pages 256—265, 1998.

[Segond et al., 2005] Frédérique Segond, Thibault Parmentier, Roberta Stock, Ran
Rosner, and Mariola Usteran Muela. Situational language training for hotel re-
ceptionists. In Proceedings of the Second Workshop on Building Educational Ap-
plications Using NLP, pages 85-92, Ann Arbor, Michigan, June 2005. Association

for Computational Linguistics.

[Shieber et al., 1995] Stuart M. Shieber, Yves Schabes, and Fernando C. N. Pereira.
Principles and implementation of deductive parsing. JOURNAL OF LOGIC PRO-
GRAMMING, 1995.

[Shieber, 1985] S.M. Shieber. Evidence against the context-freeness of natural lan-
guage. Linguistics and Philosophy, 8(3):333-343, 1985.

[Shieber, 1993] Stuart M. Shieber. The problem of logical-form equivalence. Comput.
Linguist., 19(1):179-190, March 1993.

[Shieber, 2006] S. Shieber. Unifying Synchronous Tree Adjoining Grammars and
Tree Transducers via Bimorphisms. In Proceedings of EACL, pages 377-384, 2006.

[Siddharthan, 2010] A. Siddharthan. Complex lexico-syntactic reformulation of sen-
tences using typed dependency representations. In Proceedings of the 6th In-
ternational Natural Language Generation Conference, INLG ’10, pages 125-133,
Stroudsburg, PA, USA, 2010. Association for Computational Linguistics.

[Siddharthan, 2011] A. Siddharthan. Text simplification using typed dependencies:
a comparison of the robustness of different generation strategies. In Proceedings of
the 13th European Workshop on Natural Language Generation, ENLG 11, pages
2-11, Stroudsburg, PA, USA, 2011. Association for Computational Linguistics.

[Simon et al., 2010| Smith Simon, Avinesh P.V.S, and Kilgarriff Adam. Gap-fill Tests
for Language Learners: Corpus-Driven Item Generation. In Proceedings of ICON-

2010: 8th International Conference on Natural Language Processing, 2010.

175

Bibliography

[Smedt, 1990] Koenraad Jan Maria Johanna De Smedt. INCREMENTAL SEN-
TENCE GENERATION - A COMPUTER MODEL OF GRAMMATICAL EN-
CODING. PhD thesis, 1990.

[Srinivas and Joshi, 1995] Bangalore Srinivas and Aravind K Joshi. Some novel ap-
plications of explanation-based learning to parsing lexicalized tree-adjoining gram-
mars. In Proceedings of the 33rd annual meeting on Association for Computational

Linguistics, pages 268-275. Association for Computational Linguistics, 1995.

[Steedman, 2000a] Mark Steedman. Information structure and the syntax-phonology
interface. Linguistic inquiry, 31(4):649-689, 2000.

[Steedman, 2000b| Mark Steedman. The syntactic process. MIT press, 2000.

[Sumita et al., 2005] Eiichiro Sumita, Fumiaki Sugaya, and Seiichi Yamamoto.
Measuring non-native speakers’ proficiency of english by using a test with
automatically-generated fill-in-the-blank questions. In Proceedings of the second
workshop on Building Educational Applications Using NLP, EdAppsNLP 05, pages
61-68, Stroudsburg, PA, USA, 2005. Association for Computational Linguistics.

[Sykes et al., 2008] Julie M. Sykes, Ana Oskoz, and Steven L. Thorne. Web 2.0, Syn-
thetic Immersive Environments, and Mobile Resources for Language Education.
CALICO Journal, 25(3):528-546, 2008.

[Vijay-Shanker and Joshi, 1988] K. Vijay-Shanker and AK Joshi. Feature Structures
Based Tree Adjoining Grammars. Proceedings of the 12th conference on Compu-

tational linguistics, 55:v2, 1988.

[Vijay-Shanker et al., 1987] K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi.
Characterizing Structural Descriptions Produced by Various Grammatical For-
malisms. In Proceedings of the 25th ACL, pages 104-111, Stanford, California,
USA, 1987.

[Vygotsky, 1986] Lev Vygotsky. Thought and Language. Cambridge, Mass.: The
MIT Press, 1986.

[White, 2004] M. White. Reining in CCG chart realization. In INLG, pages 182-191,
2004.

[Whitelock, 1992] P. Whitelock. Shake-and-bake translation. In Proceedings of the
14th conference on Computational linguistics-Volume 2, pages 784-791. Associa-

tion for Computational Linguistics, 1992.

176

[Williams and Power, 2010] Sandra Williams and Richard Power. Grouping axioms
for more coherent ontology descriptions. In Proceedings of the 6th International
Natural Language Generation Conference, pages 197-201. Association for Compu-

tational Linguistics, 2010.

[Winke and MacGregor, 2001| Paula Winke and David MacGregor. Review of Hot
Potatoes, 2001.

[XTAG Research Group, 2001] XTAG Research Group. A Lexicalized Tree Adjoin-
ing Grammar for English. Technical Report TRCS-01-03, University of Pennsylva-
nia, 2001.

[Yao et al., 2012] X. Yao, G. Bouma, and Y. Zhang. Semantics-based question gen-
eration and implementation. Dialogue and Discourse, Special Issue on Question
Generation, 2012.

[Zamorano-Mansilla, 2004] Juan Rafael Zamorano-Mansilla. Text generators, error
analysis and feedback. In InSTIL/ICALL 2004 Symposium on Computer Assisted
Learning, Venice, Italy, 2004.

[Zock and Quint, 2004] Michael Zock and Julien Quint. Converting an electronic
dictionary into a drill tutor. In InSTIL/ICALL 2004 Symposium on Computer
Assisted Learning, Venice, Italy, 2004.

[Zock, 1996] Michael Zock. Computational linguistics and its use in real world: the
case of computer assisted-language learning. In Proceedings of the 16th confer-
ence on Computational linguistics - Volume 2, COLING ’96, pages 1002-1004,
Stroudsburg, PA, USA, 1996. Association for Computational Linguistics.

177

	Génération automatique de phrases pour l’apprentissage des langues
	Optimisation du module de réalisation de surface
	Génération automatique de texte pour l'apprentissage des langues
	Conclusions

	Introduction
	Background and related work
	Natural Language Generation
	The SemTAG grammar
	Computer Assisted Language Learning

	Optimising surface realisation
	Introduction
	RTGen surface realisation algorithm
	Evaluation
	Related work on efficient surface realisation
	Conclusions and perspectives

	Natural language generation for language learning
	Introduction
	Generating exercise stems
	Building Fill-in-the-blank and Shuffle exercises
	Transformation-based grammar exercises
	Comparison with previous work on (semi-)automatic grammar exercises generation
	Conclusions and perspectives

	Conclusions
	Summing up and concluding
	Future work and research directions

	Appendices
	GramEx pedagogical goals and exercise items
	Excerpt of pedagogical goals
	Excerpt of transformation-based grammar exercices

	Bibliography

