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ABSTRACT

Thework reportedin this paperwasthe resultof theneedto la-
bel a large corpusof spontaneous,task-orienteddialoguewith
prosodicprominences.A computationalmodelusingonly word
duration,part of speechanda dictionarylookup of eachword’s
canonicalphonemiccontentswas trainedagainstthe resultsof
a humancodermarking prominence. Becauseword durations
werenormalised,it waspossibleto setacommonthresholdfor all
membersof a form classabovewhich thelexically stressedsylla-
bleswereclassedasprominent.Themethodusedispresentedand
the relative importanceof durationinformation,phonemiccon-
tents,syllabiccontext andpartof speechinformationis explored.
The automaticcoderwasvalidatedagainstunseenmaterialand
achieved a 58% agreementwith a humancoder. Furtherinves-
tigation showed that threehumanscodersagreedno betterwith
eachotherthaneachagreedwith thecomputationalmodel.Thus,
althoughthe automaticsystemdid not conformvery well to the
performanceof any one humancoder, it conformedas well as
anotherhumancodermight.

1. INTRODUCTION

This paperpresentsa practical approachto the assignmentof
prosodicprominencesto alargetask-orientedcorpusof dialogues
(theHCRC Map TaskCorpus[1]). Thesizeof thecorpus- 128
dialogues,eachseveralminuteslong - madeit desirableto assign
prominencesautomatically. Our aim was to producea promi-
nenceassignmentmodelwhich would mimic theperceptionsof
a groupof subjectsas closelyas possible. For the purposesof
this study, a word wasclassedasprominentif it containeda pri-
marystressedsyllable,andnon-prominentif it did not. It would,
however, be quite possibleto alter the constraintsof the model
to accountfor the moreconventionalnotionsof pitch-accentor
nuclear-stress.

TheHCRCMap TaskCorpushasbeenword segmentedby hand
giving all word durations.Otheracousticfactorssuchasampli-
tude,pitch andvowel quality (All of which affect theperception
of vowelquality)arenotasreadilyavailable.For thisreasondura-
tion wasusedasourprimaryacousticmeasurementfor automati-
cally determiningprominence.Themodelpredictsadurationfor
the stressedform of eachword andassessesthe probability the
observedword is stressedby comparingits durationwith thepre-
diction.

2. BASIC MODEL

Thebasicmodelusedacombinedlog distribution modelof each
phonemicsegment(asin [5]), andassumedthat a changein the
durationof aword is dividedequallyamongthesegmentsof that
word in termsof z-scoresfor duration. Therefore,the change
betweena word’s predicteddurationand actualdurationcould
be measuredin termsof a singlez-scorecalculatedfor all of a
word’s segments.This value,calledherethe’k-score’,wasused
asa measureof how mucha word hadbeen’stretched’or ’com-
pressed’from acitationform.

Thepredictedduration,d, of any wordmaybeexpressedas:
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where:
n = thenumberof phonemesin aword,
k = aconstantfunctionof averagesegmentlength,� = themeanlog durationof asegment,� = the standarddeviation of the log distribution of a seg-
ment’s duration�

= an optionalmultiplier which defaultsto 1. (seeTable
1)

K-scoreswerecalculatedby assumingan initial k-scoreof 0 for
eachsegmentin a word. If the resultingvaluefor the predicted
word duration(accordingto theequationabove) washigherthan
the observed word duration,a lower k-score(-0.001)wasused.
If thepredictedword durationwaslower thantheobserveddura-
tion,ahigherk-score(+0.001)wasused.Thisprocesswascontin-
ueduntil thepredictedandactualword durationswerethesame.
The valueof thek-scoreat this point wastakenasa measureof
thedifferencebetweenpredictedandobservedworddurations.A
thresholdk-scorewassetseparatelyfor eachform classto max-
imiseagreementwith asinglehumancoder. Wordsfalling below
thethresholdfor their form werelabelledasunstressed.

Thereweretwo majorconstraintsontheresourcesavailableto us.
Firstly the amountof phoneticallylabelledspontaneousspeech
waslimited to only two dialogues.Secondlytheonlinedictionary
we hadavailable(CELEX [2]) is basedon standardEnglishpro-
nunciation,whereasmostof the Speakersin the maptask have
Glaswegianor otherScottishaccents.In orderto exploretheef-
fectsof differentfactorson thesuccessof themodelandto work
within theseconstraintssix different modelswere tested. Two
werecontrolsandanotherfour madedifferentuseof syllabicand
phonemicinformation.



2.1. Control model

This modelactedasa control. If a word wasopenclass(in this
caseeitheranadjective,nounor verb- adverbswereregardedas
closedclass)thenit wasautomaticallystressed.If theword was
closedclass(anything else)it wasregardedasunstressed.The
successof this modelgivesan indicationof possiblesuccessin
assigningstresswithoutany durationinformation.

2.2. Simple � ��! model

One log distribution was used " � �$#&%(' )+*,)+- "/. *�02143 � �5 ' 6) 5 % " #8741��9�;: . 0<1=?>@7A1A�2�B77C:�021+3D3 for all phonemes,so
that therewaseffectively no differentiationbetweenphonemes.
Expectedword durationsthereforedependedon how many seg-
mentstherewerein any given word. Again this modelactedas
a control showing how gooda modelwith no knowledgeof ei-
ther the phonemiccontentsor the syllabicstructurewould be at
predictingprominence.

2.3. Syllabic E model�
in equation1 wasvariedto accountfor syllabic information

whereas� and � wereasabove (thesamefor all phonemes).Ta-
ble 1 shows the valuesfor

�
usedwhich dependedon syllabic

context. Thesevalues,basedondurationsestablishedby [3] from
measurementstakenfromaphoneticallybalancedreadcorpus[4],
are proportionswith regard to the meansegmentaldurationof
a segmentin a threesegmentstressedmonosyllabicword. For
exampleif a segmentis predictedto be 100msin a 3 segment
stressedmonosyllabicword then, if it is in an unstressed4 seg-
mentmonosyllabicword,thedurationis reducedto 36.6ms.

SyllabicMultipliers
SyllabicContext

mono initial middle final
Stressed 1 seg 1.632 1.088 1.008 1.600

2 seg 1.163 0.775 0.718 1.140
3 seg 1.000 0.680 0.630 1.000
4 seg 0.949 0.632 0.586 0.930
5 plusseg 0.887 0.592 0.548 0.870

Unstressed 1 seg 0.549 0.522 0.585 0.900
2 seg 0.390 0.371 0.416 0.640
3 seg 0.366 0.348 0.390 0.600
4 seg 0.366 0.348 0.390 0.600
5 plusseg 0.366 0.348 0.390 0.600

Table 1. Multipliers for differentsyllabiccontext. For example
if a segmentis in a threesegmentstressedmono-syllabicword
themultiplier is 1.000,if it is in a four segmentunstressedfinal
syllablein a polysyllabicword themultiplier is 0.6 (seeequation
1).

2.4. Syllabic �F��! model

Insteadof
�

, � and � werevariedto accountfor syllabic con-
text. Datawascollectedfrom two phoneticallyhandsegmented
spontaneousdialogues. For eachsyllabic context (for example
stressedsegmentin 3 segmentmonosyllabicword) a log distri-
bution of segmentaldurationswascalculatedgiving adifferent �
and � for eachcontext. Whenestimatingthe k-scoreof a word
thesevarying � and � wereusedin Equation1. A problemwith
thesyllabicmultipliersdescribedabove (TheSyllabic

�
model)

wasthat they werecalculatedon thebasisof a phoneticallybal-
ancedreadcorpus.This modelexploredtheadvantageof using
distributionscalculatedfrom spontaneousspeech.

2.5. Phonemic � ��! model� and � now dependedon a log distribution of segmentaldura-
tionsfor eachphonemeasobservedin thebalancedcorpusin [4].
TheCELEX onlinedictionary[2] wasthenusedto establishthe
likely phonemiccontentsof eachwordin thecorpus.Theproblem
thatresultedfrom thiswaswhetherit wasvalid to modeldifferent
Scottishaccentswith StandardEnglishdata.However, whatwas
importantherewasnot theprecisephoneticquality of any given
segment,but ratherits generalclass.As longasany differencesin
pronunciationaresmallenoughthattheircorrespondingdurations
arealsosimilar, thepredictedworddurationsshouldberelatively
reliable.

2.6. Combined model

This modelcombinedtheSyllabic
�

modelwith the Phonemic� = � modelso that both segmentalcontentand syllabic context
wererepresented.

3. METHOD FOR
MANUALLY-LABELLING THE TEST

DIALOGUES

Two test dialogueswere selectedfrom the Map Task Corpus.
Threesubjectsa,b,c who were experiencedphoneticianswere
presentedwith thedialogues.They couldseeaspeechwaveform,
andhearselectedsegmentsof speechasmuchasthey felt nec-
essary. However, subjectswereencouragedto makedecisionsas
quickly aspossible.

Thesubjectswereaskedto decidefor eachword in thedialogues
whetherthatwordsoundedprominentin any way. They werenot
askedto makespecificjudgementsaboutstress. If a word was
perceivedasprominent,thesubjectsmarkedthemostprominent
syllablein thatword. All word andsyllableboundarieshadpre-
viouslybeenmarkedfor thesubjects.

The word segmentationusedby the subjectsandthe automatic
model were not identical (See Figure 1). The subjectsused
word and syllable segmentationfrom the phoneticallylabelled
dialogueswhereasthe automaticcoderusedword segmentation
availablefor thewholecorpus(its intendeddomain)andpredicted
syllableboundarieson the basisof which segmentalmodelwas



a

b

c

A

Figure 1: An exampleof someprominencescodersby threehumansubjects(a,b,c)and the automaticcoder(A). w marksword
boundaries,s interwordsyllableboundaries,andacircledp prominencesonthespeech“right, yougotamapwith anextinct volcano”.
Thespeechwaveformis shown at thetop. subjectswereaskedto markprominencesat thestartof thesyllablenucleus

used. The error in word boundaryplacementwaslow (meanof
0msand standarddeviation of 17ms)and althoughthe syllable
boundaryerror washigher(a meanvarying from 11msto 23ms
with anstandarddeviationvaryingfrom 37msto 42msdepending
onthemodel)85%of wordsin theMapCorpusaremonosyllabic.
Mosterrorscausedby differencesin syllabicandwordboundaries
wereavoidedby settinga thresholdfor matchingstressmarkers
(within 30msof eachother).A dynamicprogrammingalgorithm
wasusedto countagreementbetweenthe automaticandhuman
coders.

4. RESULTS OF A COMPARISON OF
DIFFERENT MODELS

Eachmodelwasrun on a testdialogue,andevaluatedin terms
of the numbersof stresseswhich agreedwith or differed from
the stressesmarkedin the manually-labelledtestdialogue. The
resultswereasshown in Table2. Themodelswerethenappliedto
anunseendialoguecodedby codera. Thenew dialoguecontained
speechfrom onespeakerfrom thetrainingdialogueandonenew
speaker(SeeTable3).

The combinedmodelwasthe mostsuccessfulwith the training
databut notwith unseendata.For theunseendatathesyllabic

�
modelis mostsuccessfulagreeingwith thehumancoder58%of
the time. It would seemthat this modelgeneralisesmoreeffec-
tively acrossspeakersandnew data.For this reasonthesyllabic�

modelwasselectedasourfinalmodel.A comparisonbetween
thesyllabic

�
model,A, andall threehumancoderswho coded

thetrainingsetis shown in Table4.

Thereis good agreementbetweena-A, b-A, andb-a. In other
words,themodelpredictedstressplacementmuchlike two of the
subjects.Thethirdsubject,c, seemedto agreeequallypoorlywith
theothersubjectsaswith themodel.

5. CONCLUSION

As statedat the beginning of this paper, our primary objective
wasto solveacodingproblemovera largecorpus.Theautomatic
coderselected,althoughits resultshaveto betreatedwith caution,
wasa fairly goodapproximationto a humancoder. Apart from
solving a practicalproblemtheseresultshave someinteresting
implications.

Phonemiccontentwasnot asimportantassyllabiccontext when
normalisingduration. This wasparticularlytrue for long words
wheresegmentsaresignificantly reduced. The syllabic context
wasa fundamentalfactor in this reduction.More surprisingwas
thatcombiningphonemicandsyllabicinformationproducedonly
a minor improvement in results when using the training data
andappearedto beworseat generalisingdurationchangeacross
speakersandunseendata. Phonemiccontentis not independent
of syllabic context. For examplethe phonemeG occursmostly
as“th” in theword “the”. Becauseof this thedistribution calcu-
latedfromalargenumbersof observationsof G will underestimate
thedurationof this significantlyin a stressedopenclasscontext
e.g. the “th” in “mother”. This lack of independencebetween
phonemiccontentsandsyllabic structureis widespread.Taking
the stopss,k we find a markeddifferencein the frequency that
syllablescontainingthem are of a particularsegmentallength.
53%of syllablescontaings are2 or 3 segmentsin lengthwhereas
73%of k syllablesarethis lengthandanenormous94%of G are
2 or 3 segmentslong. Becauseof syllabic structure,vowel and
consonantdistributionsarealsomarkedlydifferent.For example
74%of syllablescontainingthedipthongaI (The’i’ in ’bite”) are
3 segmentsyllables.This lack of independencebetweenphone-
mic contentandsyllabicstructuretogetherwith thefundamental
importantof syllabicstructurein word durationmeansthat gen-
eralisingdurationaleffectson thebasisof syllabiccontext rather
thanphonemiccontentappearsto bemoreeffective.

Despitethe considerabledifferencesbetweenthe ATR database
(usedto calculatesyllabic postmodifiersandthephonemicdis-



tributions)andthespontaneousGlaswegianspeechin thecorpus,
the modelsthat usedthis datadid betterthan the model which
usedthe spontaneousspeechto calculatedistributions for seg-
mentalandsyllabiccontext. Possiblythephoneticallymarkedup
datawastoo sparseto modelsuchdurationeffects.However an-
otherpossibleexplanationis thatthereadspeechwaslessvariable
meaningthat, in small cell sizes,the meansandstandarddevia-
tions calculatedweremoreaccurate.Thus,althoughthe model
overestimatedtheexpecteddurationof thewordsin spontaneous
speech,it did so consistently. Whenthresholdsweregenerated
by comparingto humancodingdecisionsthesemoreconsistent
resultsled to betterperformance.

ComparisonbetweenModels:TrainingData
hits misses falsealarms %accuracy

Control 252 323 132 35.64
Simple � = � 367 208 158 50.07
Syllabic

�
420 155 196 54.47

Syllabic � = � 381 194 169 51.21
Phonemic� = � 397 178 177 52.79
Combined 427 155 196 55.45

Table 2. Comparisonof six modelsusedto determinestress
placement(againstcodera). Accuracy = hit/(hits+ misses+ false
alarms)asapercentage.

ComparisonbetweenModels:UnseenData
hits misses falsealarms %accuracy

Control 365 336 127 44.08
Simple � = � 462 239 181 52.38
Syllabic

�
538 163 220 58.41

Syllabic � = � 467 234 180 53.01
Phonemic� = � 493 208 214 53.88
Combined 531 170 249 55.89

Table 3. How well all six modelsperformedwhenpresentedwith
unseendataand a new speaker(againstcodera). Accuracy =
hit/(hits+ misses+ falsealarms)asapercentage.

ComparisonbetweenModelandSubjects
hits misses falsealarms %accuracy

a-A 420 155 196 54.47
b-A 400 104 216 55.56
c-A 253 63 363 37.26
b-a 390 114 185 56.60
c-a 260 56 315 41.20
c-b 262 54 242 46.95

Table 4. Cross-comparisonof eachsubject’s stressassignments
andtheassignmentsof thesyllabic

�
modelto thetrainingdata

(WhereA is theautomaticmodel,anda,b,andc arethesubjects).
Accuracy = hit/(hits+ misses+ falsealarms)asapercentage.

Giventhedisagreementbetweencodersit might beworthasking
whethermakingasimplebinarydecisionon prominencein spon-
taneousspeechis possible. Perhapsa graduatedcoding would
have producedbetterresults. Although this may presentprob-
lem in termsof intonationalphonologyit seemsdifficult to jus-
tify a codingsystemwhich leadsto suchpooragreement.Work
carriedout by Grover et al [6] suggeststhat althoughboundary
strengthcan be reliably codedon a four point scale,a magni-
tudeestimationscaleproducesbetterresultsfor thejudgementof
prominence.

However the resultsherearefar from conclusive. We hadonly
two phoneticallysegmenteddialoguesavailable to produceand
test our model. Individual differencesin thesedialoguesmay
well have confoundedour results. Practicalproblemssuchas
the unavailability of an on-line dictionary for Scottish(or even
rhotic) pronunciationanddifferencesin word segmentationmay
alsohavecausedsignificantproblems.

Overall theautomaticcoderwassufficient for our own purposes
andthedurationnormalisationdescribedhere,despitecleardraw-
backs,offereda practicalsolutionfor comparingword durations.
Theresultsfrom thehumancodersraisequestionsconcerningthe
overall practicalityof markingbinary prominencebut given the
limited scaleof thestudyfurther work would be requiredto ex-
plore this issue.Thecontributionsof syllabiccontext, phonemic
contentsandword classto a modelof durationchangewerenot
entirely predictable.Our resultssuggestthat syllabic context is
theprimaryfactorin awordsdurationespeciallywhengeneralis-
ing acrossspeakers.
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