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ABSTRACT

Thework reportedin this paperwasthe resultof the needto la-
bel a large corpusof spontaneoustask-orienteddialoguewith
prosodicprominencesA computationamodelusingonly word
duration,partof speechanda dictionarylookup of eachword’s
canonicalphonemiccontentswas trained againstthe resultsof
a humancoder marking prominence. Becauseword durations
werenormalisedit waspossibleo setacommorthresholdor all
memberf aform classabose which thelexically stressedylla-
bleswereclassedsprominent. Themethoduseds presente@nd
the relative importanceof durationinformation, phonemiccon-
tents,syllabic context andpartof speechnformationis explored.
The automaticcoderwas validatedagainstunseermmaterialand
achieved a 58% agreementvith a humancoder Furtherinves-
tigation shoved that threehumanscodersagreedno betterwith
eachotherthaneachagreedvith the computationamodel. Thus,
althoughthe automaticsystemdid not conformvery well to the
performanceof ary one humancoder it conformedas well as
anothethumancodermight.

1. INTRODUCTION

This paperpresentsa practical approachto the assignmenbf
prosodigprominenceso alargetask-orienteaorpusof dialogues
(the HCRC Map TaskCorpus[1]). Thesizeof the corpus- 128
dialoguesgeachseveralminuteslong - madeit desirableio assign
prominencesautomatically Our aim wasto producea promi-
nenceassignmentmodelwhich would mimic the perceptionof
a group of subjectsas closely as possible. For the purposesof
this study, a word wasclassedasprominentif it containeda pri-
mary stresseayllable,andnon-prominentf it did not. It would,
however, be quite possibleto alter the constraintsof the model
to accountfor the more corventionalnotionsof pitch-accenor
nuclearstress.

TheHCRC Map TaskCorpushasheenword segmentedby hand
giving all word durations. Otheracousticfactorssuchasampli-

tude, pitch andvowel quality (All of which affect the perception
of vowel quality) arenotasreadilyavailable.For thisreasordura-
tion wasusedasour primary acousticneasuremerfor automati-
cally determiningprominence Themodelpredictsa durationfor

the stressedorm of eachword and assessethe probability the

obsenedword is stressedby comparingts durationwith the pre-
diction.

2. BASIC MODEL

Thebasicmodeluseda combinedog distribution modelof each
phonemicsegment(asin [5]), andassumedhata changen the

durationof aword is divided equallyamongthe segmentsof that
word in termsof z-scoresfor duration. Therefore,the change
betweena word’s predicteddurationand actual durationcould

be measuredn termsof a single z-scorecalculatedfor all of a

word’s sggments.This value,calledherethe 'k-score’, wasused
asameasureof how muchaword hadbeen’stretched’or 'com-

pressedfrom acitationform.

Thepredictedduration,d, of ary word maybe expresseds:

n

d = Zexp(u(i)‘i'k‘f(i)) M (1)

=1
where:
n = thenumberof phonemedn aword,
k = a constanfunctionof averagesegmentlength,
u =themeanlog durationof asegment,
o = the standarddeviation of the log distribution of a seg-

ments duration
M = anoptionalmultiplier which defaultsto 1. (seeTable
1)

K-scoreswere calculatedby assumingan initial k-scoreof 0 for

eachsggmentin a word. If theresultingvaluefor the predicted
word duration(accordingto the equationabose) washigherthan
the obsered word duration,a lower k-score(-0.001) wasused.
If the predictedword durationwaslower thanthe obseneddura-
tion, ahigherk-score(+0.001)wasused.This processvascontin-
ueduntil the predictedandactualword durationswerethe same.
The valueof the k-scoreat this point wastakenasa measureof

thedifferencebetweerpredictedandobsenedworddurations A

thresholdk-scorewassetseparatelyfor eachform classto max-
imise agreemenvith a singlehumancoder Wordsfalling belov

thethresholdfor their form werelabelledasunstressed.

Thereweretwo majorconstraint®ntheresourcesvailableto us.

Firstly the amountof phoneticallylabelledspontaneouspeech
waslimited to only two dialogues Secondlythe onlinedictionary
we hadavailable(CELEX [2]) is basedon standardEnglishpro-

nunciation,whereasnostof the Speakersn the maptask have

Glasweian or otherScottishaccents.In orderto explorethe ef-

fectsof differentfactorson the succes®f themodelandto work

within theseconstraintssix differentmodelswere tested. Two

werecontrolsandanotherfour madedifferentuseof syllabicand

phonemidnformation.



2.1. Control mode

This modelactedasa control. If aword wasopenclass(in this
caseeitheranadjective, nounor verb - adwerbswereregardedas
closedclass)thenit wasautomaticallystressedIf the word was
closedclass(anything else)it wasregardedas unstressed.The
succes®f this model gives an indication of possiblesuccessn
assigningstresawithoutary durationinformation.

2.2. Simple y, o model

One log distribution was used (u = —2.7478(64ms)o =
0.5702(—1sd = 36ms, +1sd = 113ms)) for all phonemesso

that therewas effectively no differentiationbetweenphonemes.

Expectedword durationsthereforedependedn how mary seg-
mentstherewerein ary given word. Again this modelactedas
a control shaving how good a modelwith no knowledgeof ei-
ther the phonemiccontentsor the syllabic structurewould be at
predictingprominence.

2.3. Syllabic M mode

M in equationl wasvariedto accountfor syllabic information
whereag: andos wereasabove (the samefor all phonemes)Ta-
ble 1 shows the valuesfor M usedwhich dependedn syllabic
contet. Thesevalues basedn durationsestablishedby [3] from
measurementskenfromaphoneticallybalanceaeadcorpud4],
are proportionswith regardto the meansegmentalduration of
a sgmentin a threesggmentstressednonosyllabicword. For
exampleif a sggmentis predictedto be 100msin a 3 segment
stressednonosyllabicword then, if it is in anunstressed seg-
mentmonosyllabiovord, the durationis reducedo 36.6ms.

SyllabicMultipliers
SyllabicContext
mono initial middle final
Stressed 1sg 1.632 1.088 1.008 1.600
2sq 1.163 0.775 0.718 1.140
3sg 1.000 0.680 0.630 1.000
4sq 0.949 0.632 0.586 0.930
5plusseg | 0.887 0.592 0.548 0.870
Unstressed 1se 0.549 0.522 0.585 0.900
2sqg 0.390 0.371 0.416 0.640
3sg 0.366 0.348 0.390 0.600
4sq 0.366 0.348 0.390 0.600
5plusseg | 0.366 0.348 0.390 0.600

Table 1. Multipliers for differentsyllabic context. For example
if a segmentis in a three sgmentstressednono-syllabicword
the multiplier is 1.000,if it is in a four sgmentunstressedinal
syllablein a polysyllabicword the multiplier is 0.6 (seeequation
1).

24. Syllabic i, 0 mode

Insteadof M, p ando werevariedto accountfor syllabic con-
text. Datawascollectedfrom two phoneticallyhandsggmented
spontaneouslialogues. For eachsyllabic context (for example
stressedsggmentin 3 sgmentmonosyllabicword) a log distri-

bution of sggmentaldurationswascalculatedyiving a different

ando for eachcontext. Whenestimatingthe k-scoreof a word
thesevaryingu ando wereusedin Equationl. A problemwith

the syllabicmultipliersdescribedabove (The Syllabic A model)
wasthat they were calculatedon the basisof a phoneticallybal-
ancedreadcorpus. This modelexploredthe advantageof using
distributionscalculatedrom spontaneouspeech.

2.5. Phonemic i, c model

u ando now dependedn a log distribution of segmentaldura-
tionsfor eachphonemeasobsenedin the balancedtorpusin [4].

The CELEX onlinedictionary[2] wasthenusedto establishithe
likely phonemiccontentof eachwordin thecorpus.Theproblem
thatresultedrom this waswhetherit wasvalid to modeldifferent
Scottishaccentswith StandarcEnglishdata. However, whatwas
importantherewasnot the precisephoneticquality of ary given

segment but ratherits generaktlass.As long asary differencesn

pronunciatioraresmallenoughthattheir correspondingurations
arealsosimilar, the predictedword durationsshouldberelatively

reliable.

2.6. Combined modd

This modelcombinedthe Syllabic M modelwith the Phonemic
u, o modelso that both sggmentalcontentand syllabic context
wererepresented.

3. METHOD FOR
MANUALLY-LABELLING THE TEST
DIALOGUES

Two test dialogueswere selectedfrom the Map Task Corpus.
Three subjectsa,b,c who were experiencedphoneticianswere
presentedvith thedialoguesThey couldseeaspeectwaveform,
and hearselectedsegmentsof speechas muchasthey felt nec-
essary However, subjectsvereencouragetio makedecisionsas
quickly aspossible.

The subjectsvereaskedo decidefor eachwordin the dialogues
whetherthatword soundedrominentin ary way. They werenot
askedto makespecificjudgementsaboutstress. If a word was
perceved asprominentthe subjectamarkedthe mostprominent
syllablein thatword. All word andsyllableboundariesadpre-
viously beenmarkedfor the subjects.

The word segmentationusedby the subjectsandthe automatic
model were not identical (See Figure 1). The subjectsused
word and syllable sgmentationfrom the phoneticallylabelled
dialogueswhereaghe automaticcoderusedword segmentation
availablefor thewholecorpus(its intendeddomain)andpredicted
syllable boundarien the basisof which sggmentalmodelwas
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Figure 1: An exampleof someprominencesodersby three humansubjects(a,b,c)and the automaticcoder(A). w marksword
boundariessinter word syllableboundariesanda circledp prominencesnthespeechright, you gotamapwith anextinct volcano”.

Thespeechwaveformis shavn atthetop. subjectavereaskedo markprominencestthestartof thesyllablenucleus

used. The errorin word boundaryplacementvaslow (meanof
Oms and standarddeviation of 17ms)and althoughthe syllable
boundaryerror was higher (a meanvarying from 11msto 23ms
with anstandardieviationvaryingfrom 37msto 42msdepending
onthemodel)85%of wordsin theMap Corpusaremonosyllabic.
Mosterrorscausedy differencesn syllabicandwordboundaries
were avoidedby settinga thresholdfor matchingstressmarkers
(within 30msof eachother). A dynamicprogrammingalgorithm
wasusedto countagreemenbetweerthe automaticand human
coders.

4. RESULTSOF A COMPARISON OF
DIFFERENT MODELS

Eachmodelwasrun on a testdialogue,and evaluatedin terms
of the numbersof stresseswhich agreedwith or differed from

the stressesnarkedin the manually-labelledestdialogue. The

resultswvereasshovnin Table2. Themodelswerethenappliedto

anunseertdialoguecodedby codera. Thenew dialoguecontained
speecHrom onespeakefrom thetrainingdialogueandonenewn

speake(SeeTable3).

The combinedmodelwasthe mostsuccessfulvith the training
databut notwith unseerdata.For the unseerdatathe syllabic M

modelis mostsuccessfuagreeingwith the humancoder58% of

thetime. It would seemthat this modelgeneralisesnore effec-

tively acrossspeakers&ndnew data. For this reasonthe syllabic
M modelwasselectedasourfinal model. A comparisorbetween
the syllabic M model,A, andall threehumancoderswho coded
thetrainingsetis showvnin Table4.

Thereis good agreemenbetweena-A, b-A, andb-a. In other
words,the modelpredictedstresplacementmuchlike two of the
subjectsThethird subjectc, seemedo agreeequallypoorly with
the othersubjectsaswith themodel.

5. CONCLUSION

As statedat the beginning of this paper our primary objective

wasto solve acodingproblemover alarge corpus.Theautomatic
coderselectedalthoughits resultshave to betreatedwith caution,
wasa fairly goodapproximationto a humancoder Apart from

solving a practical problemtheseresultshave someinteresting
implications.

Phonemiccontentwasnot asimportantassyllabic context when
normalisingduration. This was particularly true for long words
where segmentsare significantly reduced. The syllabic context
wasa fundamentafactorin this reduction. More surprisingwas
thatcombiningphonemicandsyllabicinformationproducecbnly
a minor improvementin results when using the training data
andappearedo be worseat generalisingdurationchangeacross
speakerandunseerdata. Phonemiccontentis notindependent
of syllabic context. For examplethe phonemes occursmostly
as“th” in theword “the”. Becauseof this thedistribution calcu-
latedfrom alargenumberf obsenationsof 8 will underestimate
the durationof this significantlyin a stressedpenclasscontext
e.g. the“th” in “mother”. This lack of independencéetween
phonemiccontentsandsyllabic structureis widespread.Taking
the stopssk we find a markeddifferencein the frequeng that
syllablescontainingthem are of a particular sggmentallength.
53%of syllablescontaings are2 or 3 segmentsn lengthwhereas
73%of k syllablesarethis lengthandanenormou94%of § are
2 or 3 sggmentslong. Becauseof syllabic structure,vowel and
consonantlistributionsarealsomarkedlydifferent. For example
74%o0f syllablescontainingthedipthongal (The'i’ in ’bite”) are
3 sgmentsyllables. This lack of independenceetweerphone-
mic contentandsyllabic structuretogethemwith the fundamental
importantof syllabic structurein word durationmeanshat gen-
eralisingdurationaleffectson the basisof syllabic context rather
thanphonemiccontentappearso be moreeffective.

Despitethe considerablalifferencesbetweenthe ATR database
(usedto calculatesyllabic postmodifiersand the phonemicdis-



tributions)andthe spontaneou&laswejianspeechn thecorpus,
the modelsthat usedthis datadid betterthanthe model which
usedthe spontaneouspeechto calculatedistributions for seg-
mentalandsyllabiccontet. Possiblythe phoneticallymarkedup
datawastoo sparseio modelsuchdurationeffects. However an-
otherpossibleexplanationis thatthereadspeectwaslessvariable
meaningthat, in small cell sizes,the meansand standarddevia-
tions calculatedwere moreaccurate. Thus, althoughthe model
overestimatedhe expecteddurationof thewordsin spontaneous
speechjt did so consistently Whenthresholdswvere generated
by comparingto humancodingdecisionsthesemore consistent
resultsled to betterperformance.

ComparisorbetweerModels: Training Data
hits misses falsealarms %accurag
Control 252 323 132 35.64
Simpley, o 367 208 158 50.07
Syllabic M 420 155 196 54.47
Syllabicy, o 381 194 169 51.21
Phonemiq:, o | 397 178 177 52.79
Combined 427 155 196 55.45

Table 2. Comparisonof six modelsusedto determinestress
placementagainstodera). Accurag = hit/(hits + missest false
alarms)asapercentage.

ComparisorbetweerModels: UnseerData
hits misses falsealarms %accurayg
Control 365 336 127 44.08
Simpleu, o 462 239 181 52.38
Syllabic M 538 163 220 58.41
Syllabicu, o 467 234 180 53.01
Phonemiq:, 0 | 493 208 214 53.88
Combined 531 170 249 55.89

Table 3. How well all six modelsperformedvhenpresentedvith
unseendataand a new speaker(againstcodera). Accurag =
hit/(hits + missest falsealarms)asapercentage.

ComparisorbetweerModel andSubjects
hits misses falsealarms %accurag
a-A | 420 155 196 54.47
b-A | 400 104 216 55.56
c-A | 2563 63 363 37.26
b-a | 390 114 185 56.60
c-a | 260 56 315 41.20
c-b | 262 54 242 46.95

Table 4. Cross-comparisonf eachsubjects stressassignments
andthe assignmentsf the syllabic A/ modelto thetraining data

(WhereA is theautomatianodel,anda, b, andc arethesubjects).

Accurag = hit/(hits + missest falsealarms)asa percentage.

Giventhe disagreemerttetweercodersit might be worthasking
whethemakinga simplebinarydecisionon prominencen spon-
taneousspeechis possible. Perhapsa graduatectoding would

have producedbetterresults. Although this may presentprob-
lem in termsof intonationalphonologyit seemdifficult to jus-

tify a codingsystemwhich leadsto suchpoor agreementWork

carriedout by Grover et al [6] suggestghat althoughboundary
strengthcan be reliably codedon a four point scale,a magni-
tudeestimatiorscaleproducesetterresultsfor thejudgementof

prominence.

However the resultshereare far from conclusve. We had only
two phoneticallysegmenteddialoguesavailable to produceand
testour model. Individual differencesin thesedialoguesmay
well have confoundedour results. Practicalproblemssuchas
the unavailability of an on-line dictionary for Scottish(or even
rhotic) pronunciationand differencesn word sggmentationmay
alsohave causedsignificantproblems.

Overall the automaticcoderwassufficient for our own purposes
andthedurationnormalisatiordescribedere despitecleardrav-
backs offereda practicalsolutionfor comparingword durations.
Theresultsfrom thehumancodersraisequestiongoncerninghe
overall practicality of markingbinary prominencebut given the
limited scaleof the study further work would be requiredto ex-
plorethisissue. The contritutionsof syllabic contect, phonemic
contentsandword classto a modelof durationchangewerenot
entirely predictable. Our resultssuggesthat syllabic contet is
theprimaryfactorin awordsdurationespeciallywhengeneralis-
ing acrossspeakers.
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