Resilience of random graphs with respect to Hamiltonicity.

Padraig Condon

University of Birmingham

joint work with
Alberto Espuny Díaz, António Girão, Jaehoon Kim, Daniela Kühn and Deryk Osthus

April 2019
Question: Given a Hamiltonian graph G, how many edges must you remove to destroy Hamiltonicity?
Question: Given a Hamiltonian graph G, how many edges must you remove to destroy Hamiltonicity?

-What if you can only delete a proportion of the edges at each vertex?
Question: Given a Hamiltonian graph G, how many edges must you remove to destroy Hamiltonicity?

-What if you can only delete a proportion of the edges at each vertex?

Definition (Local resilience)

The local resilience of a graph G with respect to some property \mathcal{P} is the maximum number r such that for any subgraph $H \subseteq G$ with $\Delta(H) < r$, the graph $G \setminus H$ satisfies \mathcal{P}.

This talk: G will be random and \mathcal{P} will be Hamiltonicity.
Dirac’s theorem: resilience version

Theorem (Dirac, 1952)

If G is an n-vertex graph with $\delta(G) \geq n/2$, then G contains a Hamilton cycle.

Equivalently, we can state Dirac’s theorem in the language of resilience.

Theorem (Dirac)

The complete graph K_n is $\lfloor n/2 \rfloor$-resilient with respect to Hamiltonicity.
Dirac’s theorem: resilience version

Theorem (Dirac, 1952)

If G is an n-vertex graph with $\delta(G) \geq n/2$, then G contains a Hamilton cycle.

Equivalently, we can state Dirac’s theorem in the language of resilience.

Theorem (Dirac)

The complete graph K_n is $\lfloor n/2 \rfloor$-resilient with respect to Hamiltonicity.
Hamiltonicity in the binominal random graph $G_{n,p}$ is well studied.

Theorem (Pósa, 1976; Koršunov, 1976)

For $p \gg \log n/n$ we have that $G_{n,p}$ contains a Hamiltonian cycle asymptotically almost surely.

Note: $p \ll \log n/n \implies G_{n,p}$ will contain isolated vertices a.a.s.
Hamiltomicity in the binomial random graph $G_{n,p}$ is well studied.

Theorem (Pósa, 1976; Koršunov, 1976)

For $p \gg \log n / n$ *we have that* $G_{n,p}$ *contains a Hamiltonian cycle asymptotically almost surely.*

Note: $p \ll \log n / n \implies G_{n,p}$ will contain isolated vertices a.a.s.

Dirac’s theorem for random graphs

Theorem (Lee and Sudakov, 2012)

For $p \gg \log n / n$, *the random graph* $G_{n,p}$ *is a.a.s. $(1/2 - o(1))np$-resilient with respect to Hamiltonicity.*
Hamiltonicity in the binomial random graph $G_{n,p}$ is well studied.

Theorem (Pósa, 1976; Koršunov, 1976)

For $p \gg \log n/n$ we have that $G_{n,p}$ contains a Hamiltonian cycle asymptotically almost surely.

Note: $p \ll \log n/n \implies G_{n,p}$ will contain isolated vertices a.a.s.

Dirac’s theorem for random graphs

Theorem (Lee and Sudakov, 2012)

For $p \gg \log n/n$, the random graph $G_{n,p}$ is a.a.s. $(1/2 - o(1))np$-resilient with respect to Hamiltonicity.

Note that the above threshold is tight: if we could delete anymore edges we could disconnect the graph.
Dirac’s theorem for random regular graphs

We generate a random regular graph via the model $G_{n,d}$ by choosing a graph uniformly at random among the set of d-regular graphs on n vertices.

The following result follows from the work of Robinson and Wormald; Cooper, Frieze, Reed; Krivelevich, Sudakov, Vu, Wormald.

Theorem ($G_{n,d}$ is Hamiltonian)

For all $3 \leq d \leq n - 1$ we have that $G_{n,d}$ is Hamiltonian a.a.s.

Theorem (Ben-Shimon, Krivelevich and Sudakov, 2011)

For every $\varepsilon > 0$ and d sufficiently large, a.a.s. $G_{n,d}$ is $(1 - \varepsilon)\frac{d}{6}$-resilient with respect to Hamiltonicity.

They conjectured that the true value should be closer to $\frac{d}{2}$.

Padraig Condon
Resilience of random graphs with respect to Hamiltonicity
We generate a random regular graph via the model $G_{n,d}$ by choosing a graph uniformly at random among the set of d-regular graphs on n vertices.

The following result follows from the work of Robinson and Wormald; Cooper, Frieze, Reed; Krivelevich, Sudakov, Vu, Wormald.

Theorem ($G_{n,d}$ is Hamiltonian)

For all $3 \leq d \leq n-1$ we have that $G_{n,d}$ is Hamiltonian a.a.s.
Dirac’s theorem for random regular graphs

We generate a random regular graph via the model $G_{n,d}$ by choosing a graph uniformly at random among the set of d-regular graphs on n vertices.

The following result follows from the work of Robinson and Wormald; Cooper, Frieze, Reed; Krivelevich, Sudakov, Vu, Wormald.

Theorem ($G_{n,d}$ is Hamiltonian)

For all $3 \leq d \leq n-1$ we have that $G_{n,d}$ is Hamiltonian a.a.s.

Theorem (Ben-Shimon, Krivelevich and Sudakov, 2011)

For every $\varepsilon > 0$ and d sufficiently large, a.a.s. $G_{n,d}$ is $(1-\varepsilon)d/6$-resilient with respect to Hamiltonicity.
Dirac’s theorem for random regular graphs

We generate a random regular graph via the model $G_{n,d}$ by choosing a graph uniformly at random among the set of d-regular graphs on n vertices.

The following result follows from the work of Robinson and Wormald; Cooper, Frieze, Reed; Krivelevich, Sudakov, Vu, Wormald.

Theorem ($G_{n,d}$ is Hamiltonian)

For all $3 \leq d \leq n-1$ we have that $G_{n,d}$ is Hamiltonian a.a.s.

Theorem (Ben-Shimon, Krivelevich and Sudakov, 2011)

For every $\varepsilon > 0$ and d sufficiently large, a.a.s. $G_{n,d}$ is $(1-\varepsilon)d/6$-resilient with respect to Hamiltonicity.

They conjectured that the true value should be closer to $d/2$.
Dirac’s theorem for random regular graphs.

Theorem (Condon, Espuny-Díaz, Girão, Kühn and Osthus, 2019+)

For every $\varepsilon > 0$ there exists D such that, for every $d > D$, the random graph $G_{n,d}$ is a.a.s. $(1/2 - \varepsilon)d$-resilient with respect to Hamiltonicity.

Theorem (Condon, Espuny-Díaz, Girão, Kühn and Osthus, 2019+)

For any odd $d > 2$, the random graph $G_{n,d}$ is not a.a.s. $\left(\frac{d - 1}{2}\right)$-resilient with respect to Hamiltonicity.
Dirac’s theorem for random regular graphs.

Theorem (Condon, Espuny-Díaz, Girão, Kühn and Osthus, 2019+)

For every \(\varepsilon > 0 \) there exists \(D \) such that, for every \(d > D \), the random graph \(G_{n,d} \) is a.a.s. \((1/2 - \varepsilon)d\)-resilient with respect to Hamiltonicity.

Our result is best possible: firstly, the minimum degree bound cannot be improved, and secondly, the condition that \(d \) is large cannot be omitted.
Dirac’s theorem for random regular graphs.

Theorem (Condon, Espuny-Díaz, Girão, Kühn and Osthus, 2019⁺)

For every $\varepsilon > 0$ there exists D such that, for every $d > D$, the random graph $G_{n,d}$ is a.a.s. $(1/2 - \varepsilon)d$-resilient with respect to Hamiltonicity.

Our result is best possible: firstly, the minimum degree bound cannot be improved, and secondly, the condition that d is large cannot be omitted.

Theorem (Condon, Espuny-Díaz, Girão, Kühn and Osthus, 2019⁺)

For any odd $d > 2$, the random graph $G_{n,d}$ is not a.a.s. $(d - 1)/2$-resilient with respect to Hamiltonicity.
Beyond Dirac

Theorem (Pósa, 1962)

Let G have degree sequence $d_1 \leq d_2 \leq \ldots \leq d_n$ such that $d_i \geq i + 1$ for all $i < n/2$. Then, G is Hamiltonian.

Theorem (Chvátal, 1972)

Let G have degree sequence $d_1 \leq d_2 \leq \ldots \leq d_n$ such that, for all $i < n/2$, we have that $d_i \geq i + 1$ or $d_n - i \geq n - i$. Then, G is Hamiltonian.

Question: Do Pósa's and Chvátal's results have corresponding analogues in $G_{n,p}$, like Dirac's result?

Answer: YES for Pósa, NO for Chvátal.
Beyond Dirac

Theorem (Pósa, 1962)

Let G have degree sequence $d_1 \leq d_2 \leq \ldots \leq d_n$ such that $d_i \geq i + 1$ for all $i < n/2$. Then, G is Hamiltonian.

Theorem (Chvátal, 1972)

Let G have degree sequence $d_1 \leq d_2 \leq \ldots \leq d_n$ such that, for all $i < n/2$, we have that $d_i \geq i + 1$ or $d_{n-i} \geq n-i$. Then, G is Hamiltonian.

Question:
Do Pósa's and Chvátal's results have corresponding analogues in $G_{n,p}$, like Dirac's result?

Answer:
YES for Pósa, NO for Chvátal.

Padraig Condon

Resilience of random graphs with respect to Hamiltonicity
Beyond Dirac

Theorem (Pósa, 1962)

Let G have degree sequence $d_1 \leq d_2 \leq \ldots \leq d_n$ such that $d_i \geq i + 1$ for all $i < n/2$. Then, G is Hamiltonian.

Theorem (Chvátal, 1972)

Let G have degree sequence $d_1 \leq d_2 \leq \ldots \leq d_n$ such that, for all $i < n/2$, we have that $d_i \geq i + 1$ or $d_{n-i} \geq n-i$. Then, G is Hamiltonian.

Question: Do Pósa’s and Chvátal’s results have corresponding analogues in $G_{n,p}$, like Dirac’s result?
Beyond Dirac

Theorem (Pósa, 1962)

Let G have degree sequence $d_1 \leq d_2 \leq \ldots \leq d_n$ such that $d_i \geq i + 1$ for all $i < n/2$. Then, G is Hamiltonian.

Theorem (Chvátal, 1972)

Let G have degree sequence $d_1 \leq d_2 \leq \ldots \leq d_n$ such that, for all $i < n/2$, we have that $d_i \geq i + 1$ or $d_{n-i} \geq n-i$. Then, G is Hamiltonian.

Question: Do Pósa’s and Chvátal’s results have corresponding analogues in $G_{n,p}$, like Dirac’s result?
Answer: YES for Pósa, NO for Chvátal.
Beyond Dirac: $G_{n,p}$

Pósa’s theorem for random graphs.

Theorem (Condon, Espuny Díaz, Kim, Kühn, Osthus, '18+)

For every $\varepsilon > 0$, there exists $C > 0$ such that, for $p \geq C\log n/n$, a.a.s. every subgraph G of $G_{n,p}$ with degree sequence (d_1, \ldots, d_n) with $d_i \geq (i + \varepsilon n)p$ for all $i < n/2$ is Hamiltonian.
Beyond Dirac: $G_{n,p}$

Pósa’s theorem for random graphs.

Theorem (Condon, Espuny Díaz, Kim, Kühn, Osthus, ’18+)

For every $\varepsilon > 0$, there exists $C > 0$ such that, for $p \geq C \log n / n$, a.a.s. every subgraph G of $G_{n,p}$ with degree sequence (d_1, \ldots, d_n) with $d_i \geq (i + \varepsilon n)p$ for all $i < n/2$ is Hamiltonian.

There exist counterexamples to Chvátal for random graphs.

Theorem (Condon, Espuny Díaz, Kim, Kühn, Osthus, ’18+)

For $p \gg \log n / n$, a.a.s. there exist subgraphs G of $G_{n,p}$ with degree sequence (d_1, \ldots, d_n) satisfying $d_i \geq (i + \varepsilon n)p$ or $d_{n-i} \geq (n-i + \varepsilon n)p$ for all $i < n/2$ which are not Hamiltonian.

In fact, there exist subgraphs not containing a perfect matching.
Proof ideas: Dirac in $G_{n,d}$

Consider $G = G_{n,d}$.

Definition (3-expander) An n-vertex graph G is called a 3-expander if it is connected and, for every $S \subseteq \left[\frac{n}{400}\right]$ with $|S| \leq \frac{n}{400}$, we have $|N_G(S)| \geq 3|S|$.

We show there exists a 'sparse' subgraph $R \subseteq G'$ which is a 3-expander.
Proof ideas: Dirac in $G_{n,d}$

- Consider $G = G_{n,d}$.
- Let $H \subseteq G$ be such that $\Delta(H) \leq (1/2 - \varepsilon)d$ and let $G' := G \setminus H$.

Definition (3-expander)
An n-vertex graph G is called a 3-expander if it is connected, and, for every $S \subseteq [n]$ with $|S| \leq n/400$, we have $|N_G(S)| \geq 3|S|$.

We show there exists a 'sparse' subgraph $R \subseteq G'$ which is a 3-expander.
Proof ideas: Dirac in $G_{n,d}$

- Consider $G = G_{n,d}$.
- Let $H \subseteq G$ be such that $\Delta(H) \leq (1/2 - \varepsilon)d$ and let $G' := G \setminus H$.
- We use that G' has good expansion properties.
Proof ideas: Dirac in $G_{n,d}$

- Consider $G = G_{n,d}$.
- Let $H \subseteq G$ be such that $\Delta(H) \leq (1/2 - \varepsilon)d$ and let $G' := G \setminus H$.
- We use that G' has good expansion properties.

Definition (3-expander)

An n-vertex graph G is called a 3-expander if it is connected and, for every $S \subseteq [n]$ with $|S| \leq n/400$, we have $|N_G(S)| \geq 3|S|$.

 Padraig Condon

Resilience of random graphs with respect to Hamiltonicity
Proof ideas: Dirac in $G_{n,d}$

- Consider $G = G_{n,d}$.
- Let $H \subseteq G$ be such that $\Delta(H) \leq (1/2 - \varepsilon)d$ and let $G' := G \setminus H$.
- We use that G' has good expansion properties.

Definition (3-expander)

An n-vertex graph G is called a **3-expander** if it is connected and, for every $S \subseteq [n]$ with $|S| \leq n/400$, we have $|N_G(S)| \geq 3|S|$.

- We show there exists a ‘sparse’ subgraph $R \subseteq G'$ which is a 3-expander.
Proof outline: finding boosters

- We consider longest paths in R.
Proof outline: finding boosters

- We consider longest paths in R.
- By a theorem of Pósa a 3-expander has many of such paths, with different endpoints.
Proof outline: finding boosters

- We consider longest paths in R.
- By a theorem of Pósa a 3-expander has many of such paths, with different endpoints.

\Rightarrow there is a ‘large’ set edges whose inclusion would make R Hamiltonian, or increase the length of a longest path.
Proof outline: finding boosters

- We consider longest paths in R.
- By a theorem of Pósa a 3-expander has many of such paths, with different endpoints.

\implies there is a ‘large’ set edges whose inclusion would make R Hamiltonian, or increase the length of a longest path.

In fact, we consider ‘booster’ pairs of edges, which have the same effect.
By passing from R to G' we argue that some of these booster pairs must exist.
By passing from R to G' we argue that some of these booster pairs must exist.

We add these edges to R to make it Hamiltonian or else to increase the length of a longest path.
By passing from R to G' we argue that some of these booster pairs must exist.

We add these edges to R to make it Hamiltonian or else to increase the length of a longest path.

We iterate this process at most n times.
Open problems: $G_{n,p}$

Shifted Chvátal resilience.

Conjecture (Condon, Espuny Díaz, Kim, Kühn, Osthus, ’18+)

For $p \gg \log n/n$, a.a.s. every subgraph G of $G_{n,p}$ with degree sequence (d_1, \ldots, d_n) satisfying $d_i \geq (i + \varepsilon n)p$ or $d_{n-i-\varepsilon n} \geq (n - i + \varepsilon n)p$ for all $i < n/2$ is Hamiltonian.
Open problems: $G_{n,p}$

Shifted Chvátal resilience.

Conjecture (Condon, Espuny Díaz, Kim, Kühn, Osthus, ’18+)

For $p \gg \log n / n$, a.a.s. every subgraph G of $G_{n,p}$ with degree sequence (d_1,\ldots,d_n) satisfying $d_i \geq (i + \varepsilon n)p$ or $d_{n-i-\varepsilon n} \geq (n-i + \varepsilon n)p$ for all $i < n/2$ is Hamiltonian.

The conjecture holds for perfect matchings.

Theorem (Condon, Espuny Díaz, Kim, Kühn, Osthus, ’18+)

For every $\varepsilon > 0$, there exists $C > 0$ such that, for $p \geq C \log n / n$, a.a.s. every subgraph G of $G_{n,p}$ with degree sequence (d_1,\ldots,d_n) satisfying $d_i \geq (i + \varepsilon n)p$ or $d_{n-i-\varepsilon n} \geq (n-i + \varepsilon n)p$ for all $i < n/2$ contains a perfect matching.
Can we obtain bounds on the resilience for small d?
Open problems: $G_{n,d}$

Can we obtain bounds on the resilience for small d?

Question

Given any fixed even d, determine whether the graph $G_{n,d}$ is a.a.s. $(d/2 - 1)$-resilient with respect to Hamiltonicity.
Open problems: $G_{n,d}$

Can we obtain bounds on the resilience for small d?

Question

Given any fixed even d, determine whether the graph $G_{n,d}$ is a.a.s. $(d/2 - 1)$-resilient with respect to Hamiltonicity.

Question

What is the likely resilience of $G_{n,4}$ with respect to Hamiltonicity? Is a graph obtained from $G_{n,4}$ by removing any matching a.a.s. Hamiltonian?