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We use sheaf models to undertake a constructive 
analysis of the effects of admitting non-construc- 
tive choice sequences to mathematics. 

01 PREAMBLE 

“A choice sequence is an infinite sequence of 
natural numbers whose terms are generated in 
succession; inthe process of generating them, 
free choices may play a part. At one extreme, 
the selection of each term may be totally de- 
termined in advance by some effective rule: a 
sequence generated by such a rule is a lawlike 
sequence. At the other extreme, we have a se- 
quence the selection of each term of which is 
totally unrestricted: these are the lawless se- 
quences. In between are those choice sequences 
the selection of whose terms is partially re- 
stricted in advance, but not completely deter- 
mined. ” Dummett (Elements, p. 415) 

The general notion of choice sequence allows that future choices need 
not be entirely free: they may be subjected to effective restrictions 
laid down at any stage. For example, we may impose the condition 
that the finite initial segments of our sequence should belong to 
some subtree S of the tree of all finite sequences, or that they 
should be generated by applying some function to the results of some 
other generating process. Different notions of choice sequence arise 
from differing types of restriction. Following Troelstra (CS) and 
Dummett, we shall consider in turn various different notions. 

Our analysis starts, not from a conception of a particular notion of 
choice sequence but rather, from a particular conception of the data 
which may be available at some stage. This then determines a notion 
of choice sequence. Our aim is to provide a formalization for various 
notions of data which will allow the informal but rigorous discussions 
found in Troelstra and Dummett to be replaced by calculations. For 
those who understand the jargon, we say immediately that sites codify 
particular conceptionsof data. Formally, a type of data is a site; a 
category equipped with a Grothendieck topology. The forcing definition 
for these sites formalizes the type of conceptual analysis described 
by Troelstra. We give the basic definitions below. For the general 
theory we refer the reader to Makkai & Reyes (1977) and Kock (1981). 

1.1 Representation of data by a site. A category is a collection 
of states (objects) and arrows representing incoming data: 
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f 

Note that, incoming data may transport one from one state to another - 
backwards along the arrow, or may leave one in the same state. In a 
given state only certain items of data may be received. Data may be 
received cumulatively (provided the associated states match up) so we 
have a partial operation *, obviously associative. The identities 
required by the definition of a category correspond to giving no 
information < > :  V + V. We normally call the arrows morphisms. 

By introspection, we may recognize a truth whose verification seemingly 
requires more data bv observina that. no matter which of an exhaustive 
coilection of possibilities fo; extra data transpires, the verification 
will occur. We call such exhaustive collections of possibilities for 
future data covering families. Formally we require that these satisfy 
the axioms for a Grothendieck pretopology: 

1) I < > )  covers U for each state U, 
2) If K = f: Vf + U I fEK 1 covers U, and e: W -t U 

then I g 1 e*g factors through some feK } covers U. 
These are clearly valid for the intuitive notion to hand. 

1.2 Remarks. Our models are similar to the familiar Beth and Kripke 
models. Formally, the forcing definition for sites is that for Beth 
models with bars replaced by abstract covers, and passage to a later 
stage, 5,  replaced by arrows representing incoming data, +. 
We make a distinction between a constructive explanation of meaning, 
given in terms of a notion of proof, and an intuitionistic explanation 
of meaning which we shall give in terms of data. Unlike Dummett, 
(Elements p. 403) we do not view these as rival accounts. We assume 
a basic conception of the mathematics of lawlike or constructive 
objects. (We discuss later the minimum demands we make on this 
metatheory - which may be classical.) We introduce various notions 
of data and representations for non-contructive objects based on 
these notions. Our analysis of the meaning of predicates involving 
non-constructive parameters leads us to the justification of various 
intuitionistic principles; it does not affect the mathematics of law- 
like objects. Technically the theory of non-constructive objects is 
a conservative extension of our metatheory. 

Our- project is not novel: Beth models were introduced to formalize 
iust such an explanation of meanins. Our use of catesories in place 
of posets arises from a basic philosophical difference. 
to qive a model of the activities of a sinqle idealized mathematician, 

We aim; not 

but-rather, to analyse the objective mathematical truths which may be 
justified on the basis of a particular conception of data. Thus, for 
us, the information to hand at a particular time is not, in general, 
part of the state, but part of the representation of a particular non- 
constructive object. 
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Two extreme examples of categories are posets and monoids. In a poset, 
there is, for each pair of objects <p,q>, at most one morphism p5q 
from p to q. Posets represent a totally subjective conception of 
data, which identifies the state with the information to hand. A 
monoid is a category with only one object, only the morphisms and the 
(total) operation of composition matters. We use them to represent 
objectively conceptions of data for which we can recognize that 
future possibilities for data are independent of the information to 
hand. 

Some types of restriction on future data compel us to consider sepa- 
rate states to represent the differing data which is acceptable. In 
these cases an objective viewpoint amounts to being able to juxtapose 
two states given independently to give a single process. Formally, 
given two states A and B, there is a state A X B accessible from A 
and B by morphisms 

TA nB A -A X B- B 
which are covers and for each pair e: C- A and f: D- B there is 
a unique e x f making the diagram commute 

A k 

f 
1 e x f  A X B-C 

3 
B b 

C 

t 
I 
x D  

D 

Note that, A x B is not a categorical product since we have no pair- 
ing in general. The requirement that the “projection“ maps cover 
says that, we can always introduce a new process independent of that 
under consideration. 

1.3 Definitions. 
infinite: if aES then a*ns.S for some nsN. For a:N+ N, we say ~ E S  
iff Va. ( m a  4 aES). If S and T are spreads, a neighbourhood 
function F: S + T is a monotone function such that for each nsN, the 
set of nodes aaS such that Lth (F(a))zn is an inductive bar of S. 
Given ass  and F: S- T we define F(a) by asa + F(a) E F(a). 

Spreads represent subsets of 78 ,  neighbourhood functions represent 
continuous functions. Composition of neighbourhood functions gives 
the composition of the associated functions. Some functions are 
canonically represented: in particular, the open inclusion corres- 
ponding to a finite sequence e is represented canonically by Xa.e*a 
(and in many other ways by merely deferring the information); more 
generally, if f is an open map it has a canonical representation 

Countable dependent choice and a suitable form of Bar Induction imply 
that every continuous function has a neighbourhood function. We 
write B for the universal spread of all sequences. 

A spread is a subtree S c N4N with every branch 

F(a) = A {  b I aEf-’(b) 1 .  

12 TYPES OF DATA 

The examples which follow should make clearer the translation from 
the informally rigorous description of a notion of choice sequence to 
the appropriate site. 
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2.1 Open Data. The simplest data we shall consider, open data, 
consists of finite sequences a of natural numbers. We can construct 
a sequence a from such data in many ways, the simplest of which is 
to consider the information thus far received as an initial segment 
aEa. We have decided in advance that, having received the informa- 
tion a we will treat subsequent data (another finite sequence, b) in 
a particular way: we concatenate a*b. Thus there are various states 
which in this example may be identified with the information to hand. 
Incoming information takes us from one state to another. 

Abstractly, we have a category whose objects are the states and whose 
morphisms represent finite amounts of information. In our present 
example this structure is represented abstractly as the tree of 
finite sequences or, more concretely, as the category of basic opens 
of Baire space and open inclusions between them. 

Since, to recognize that aEa*n for some nEN it suffices to recognize 
that aca, we must let { a*n I nEN 3 cover a for each finite sequence 
a. These covers generate the open cover topology for formal Baire 
space (see Fourman & Grayson (this volume) ) . Our analysis has merely 
served to reconstruct the Scott (1968) - Moschovakis (1973) model. 

From a more objective view of mathematics the distinction between 
various states seems unjustified: it portrays the activity of a 
particular idealized mathematician rather than the mathematics which 
results from reflection on the general nature of such activity. A 
more satisfactory model (from this point of view) is given by the 
monoid of finite sequences. We can picture this concretely as the 
monoid of neighbourhood functions canonically representing open 
inclusions. Again the appropriate topology is the open cover topol- 
ogy. This model corresponds to the liberation of the idealized 
mathematician: realizing her situation, she can transcend it and is 
free . 

?b - 
This conception of open data allows that all possible data can be 
coded up in a single choice sequence. 

2.2 Independent Open Data. We modify our model to consider not a 
single generating process but a potentially infinite collection. It 
is essential to distinguish this from a potentially infinite sequence 
of processes, which we could code as a single choice sequence. The 
force of this distinction is that, at any stage, the information we 
have is just the collection of initial segments to hand. They are 
not taken in any particular order. 

The subjective states for this notion consist of finitely much infor- 
mation about finitely many sequences. Concretely we represent such a 
state by a basic open UcBn modulo any action by a permutation of n. 



Notions of choice sequence 95 

Actually it is more convenient to consider basic opens as states. At 
any stage we may introduce finitely many independent generating 
processes as well as obtaining more information about those already 
considered. We represent such information by a map 

u-v 

which is induced by the projection corresponding to some injection 
n r+ m. The morphisms induced by permutations of n have the effect 
of identifying states which represent different orderings of the 
same collection. In addition to allowing open covers as before, we 
stipulate that the projection 

u - T ( U )  
ni ni 
Bm- Bn 

is a cover. This reflects the possibility of adding finitely many 
independent processes to any discussion. In general, a family of 
morphisms covers iff the union of the images is an (open) cover of 
V. All the morphisms here are open maps and we shall later consider 
them as represented canonically by neighbourhood functions. 

Again, we have arrived at a well-known model: according to Hyland 
(personal communication), the forcing definition for this model 
corresponds to the Kreisel-Troelstra elimination of lawless sequences. 

A more objective representation of this type of data is obtained by 
identifying states in which the same number of generating processes 
are considered. The site we use to represent this type of data has 
as objects, the various Bn, and as morphisms, compositions of pro- 
jections Bm-Bn induced by n-m and open inclusions Bn-Bn 
induced by n finite sequences. Once more, all the morphisms are open 
maps canonically represented by neighbourhood functions and we use 
the topology in which a family of morphisms covers iff its images 
cover. 

2.3 Lawless Data. This conception of*data was motivated by the 
following passage from Troelstra (CS p. 16) : 

"Suppose we have started two lawless sequences a 
and 0, alternately selecting values: a0, 00, 
al, 01, 1x2, 02, ... . Now we may also regard this 
as a single process y, with y(2n) = an, y(2n+l) = 
On. However, we cannot regard cx,B,y as all being 
lawless within the same context: either we have 
to decide a and 0 to be lawless, and then y is a 
sequence . . . which is not itself lawless . . .; 
or we consider y as lawless, inwhich case a,B are 
sequences (not lawless ones) constructed from y." 

This discussion cannot be expressed in the Kreisel-Troelstra 
formalisation of choice sequences. This is because, their notion of 
lawlessness is not an objective one. In our previous example, all the 
states are, in fact, remarkably similar: Bn is homeomorphic to B. 
Essentially, the differences between the states arise because we have 
chosen a coding B Bn in term of which we choose which maps to put in 
our category. We now take the point of view that different codings 
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simply reflect different ways of considering the same reality. Thus 
the controversy as to which of a, B and y are lawless, in our 
example above, arises from the difference in viewpoint formalized 
by the pairing B = B x B. 

We now consider an abstract view of the same kind of data, which is 
independent of such codings. We call this lawless data, it consists 
of those endomorphisms e: B + B which can be decomposed as "pro- 
jections modulo some coding": 

e = j -1 .r,i Bm& Bn 
for some homeomorphisms UI UI 
i and j. u-v 

i\ 4 
B 

A s  usual, all our morphisms are open maps and we use the topology in 
which surjective families cover. 

We shall see that lawless sequences for this conception of data 
behave more sociably than is traditional. For example, two views of 
the world may at some stage turn out to be the same so equality is 
not decidable. To formalize our discussion of this type of lawless- 
ness, we shall introduce a notion of independence: basically, a and 
B are independently lawless iff y = < a , % >  is lawless. Returning to 
Troelstra's example, a, B and y are lawless a and 4 are independent 
and y is independent of neither of them. 

2.4 Spread Data. Here we attempt to formalize Brouwer's description 
of the generation of a free choice sequence. 

" . . . the freedom of proceeding, without being 
completely abolished, may at some time p, undergo 
some restriction, and later on further restric- 
tions. " 

Brouwer (Cambridge p. 13) 

The restrictions discussed by Brouwer demand that future choices be- 
long to some spread. Spreads correspond to certain sublocales of B. 
We consider such sublocales F s Bn and morphisms between them induced 
by projections. We take as covers projections and open covers. This 
gives us (in this example) the topology in which a family covers iff 
the interiors of its images cover. 

This topology involves no new insights, many stronger topologies 
(more covers) are conceivable: It is certainly plausible that we 
might justify the conclusion that every member of a spread S belongs 
to one of the spreads Ti without showing that the interiors of the Ti 
cover S ,  by appealing to particular properties of S. This would be 
reflected in our models by adopting a stronger topology. What we 
will show is that it is consistent to assume that the only covers are 
those we have built into the definition of the topology. 

The main insights justified by this conception of data are the 
relativisation of V a  3 %  choice and continuity for lawless a to 
lawless elements of some spread and the extension of Bar Induction 
to give induction over arbitrary spreads. 

Brouwer's conception of choice sequence has been criticizad for not 
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be ing  c losed  under cont inuous  o p e r a t i o n s .  The sp reads  w e  have i n t r o -  
duced a r e  b lank  o r  naked s p r e a d s ,  which, f o r  Brouwer, simply provide  a 
framework f o r  t h e  g e n e r a t i o n  of mathemat ica l  e n t i t i e s .  By a t t a c h i n g  
" f i g u r e s "  t o  some nodes of a sp read  S w e  produce new o b j e c t s .  I n  
p a r t i c u l a r ,  any neighbourhood f u n c t i o n  F: S + T produces f o r  each  
choice sequence a€S a sequence F ( ~ ) E T .  The i n f i n i t e  sequences gen- 
e r a t e d  i n  t h i s  way a r e  c l e a r l y  c l o s e d  under t h o s e  cont inuous  opera- 
t i o n s  which have neighbourhood f u n c t i o n s .  We s h a l l  s e e  t h a t  ( i n  our  
models) a l l  l awl ike  f u n c t i o n s  have neighbourhood f u n c t i o n s .  Fu r the r -  
more us ing  such d res sed  sp reads  (wi th  S E  < S , F >  i n t e r p r e t e d  a s ,  f o r  
some ~ E S ,  5 = F ( a ) ) ,  we s h a l l  see t h a t  an axiom of "spread  d a t a "  i s  
v a l i d  f o r  t h e s e  sequences.  

2 . 5  Continuous d a t a .  W e  s t a r t  from Brouwer's  1933 d e s c r i p t i o n  of 
a d re s sed  sp read  a s  r e p o r t e d  by van Dalen (Cambridge p . 1 7  1 .  Here A 
gene ra t e s  a l awles s  sequence and B a p p l i e s  t o  it a neighbourhood 
func t ion  t o  o b t a i n  a sequence F ( a )  a s d e s c r i b e d  e a r l i e r .  W e  modify 
t h i s  p i c t u r e  by no longe r  r e q u i r i n g  t h a t  A ' s  sequence be l awles s :  
it may i n  f a c t  be gene ra t ed  a s  a cont inuous  f u n c t i o n  of some sequence 
genera ted  by X who, i n  t u r n ,  r e f e r s  t o  Y ,  and s o  on. W e  r e q u i r e  t h a t  
a l though t h i s  cha in  of dependence may be p o t e n t i a l l y  i n f i n i t e ,  a l l  
t h a t  B can be aware of a t  any g iven  s t a g e  i s  a f i n i t e  cha in  of de- 
pendencies ,  r e s u l t i n g  i n  t h e  knowledge t h a t  B = r ( a )  f o r  some n 
genera ted  by someone down t h e  l i n e ,  and some neighbourhood func t ion  
r .  
We r e p r e s e n t  such d a t a  by a neighbourhood f u n c t i o n  r :  S + T between 
sp reaas .  Note t h a t ,  a l t hough  i n  p r i n c i p l e  w e  should  want t o  cons ide r  
dependence on more t h a n  one sequence, such d a t a  reduces  t o  dependence 
on a s i n g l e  sequence by means of  t h e  p a i r i n g  B x B c. B. We g i v e  t h i s  
ca tegory  t h e  "open cover  topology" i n  which t h e  canon ica l  r ep resen ta -  
t i v e s  of a cove r ing  f ami ly  of open i n c l u s i o n s  form a cover .  Of a l l  
our models w e  b e l i e v e  t h a t  t h i s  one b e s t  r e p r e s e n t s  t h e  no t ion  of 
choice sequence. Neve r the l e s s ,  w e  d i s c u s s  two v a r i a n t s .  

F i r s t l y ,  i f  w e  a r e  concerned on ly  w i t h  e x t e n s i o n a l  p r o p e r t i e s ,  w e  can 
use cont inuous  f u n c t i o n s  i n  p l a c e  of neighbourhood f u n c t i o n s .  
Secondly, i f  i n s t e a d  of u s i n g  a r b i t r a r y  sp reads  w e  cons ide r  t h e  
monoid of cont inuous  f u n c t i o n s  B + B ,  w i th  t h e  open cover  topology,  
w e  o b t a i n  a model f o r  Kreisel and T r o e l s t r a ' s  t heo ry  C S .  (Th i s  was 
observed independent ly  by Moerdijk & van d e r  Hoeven (1981) ,  
Grayson ( 1 9 8 1 )  and t h e  au tho r  ( 1 9 8 1 ) ) .  The f o r c i n g  d e f i n i t i o n  f o r  
t h i s  model cor responds  t o  t h e  e l i m i n a t i o n  mapping f o r  choice  sequences 
of Kreisel and T r o e l s t r a  (1970) .  

I n  t h e s e  models w e  v e r i f y  f u l l  V a  3 B  cho ice  and c o n t i n u i t y  p r i n c i -  
p l e s .  The advantage of t h e  ex tended  model i n  which w e  a l low a r b i -  
t r a r y  sp reads  as domains i s  t o  j u s t i f y  r e s t r i c t e d  v e r s i o n s  of t h e s e  
and extended Bar Induc t ion  a s  f o r  sp read  d a t a .  

2 . 6 .  Other  t y p e s  of d a t a .  I n  o u r  pape r  Continuous Tru th  (1982) we 
cons ide r  more g e n e r a l  t y p e s  of d a t a ;  i n  p a r t i c u l a r ,  d a t a  r ep resen ted  
by cont inuous  maps between opens of Rn. W e  a l s o  g i v e  a g e n e r a l  t reat-  
ment of t h e  " e l i m i n a t i o n  mappings" a s s o c i a t e d  wi th  each  type  of d a t a  
and t h e  r e l a t i o n s h i p s  between v a r i o u s  t y p e s  of d a t a  mediated by geo- 
metric morphisms between t h e  cor responding  t o p o i .  
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13 NON-CONSTRUCTIVE OBJECTS 

We now embark on the analysis promised in 2.1. An understanding of a 
collection of objects is merely an understanding of what it is to be 
presented with such an object and of what it is to show that two such 
objects are equal. This does not automatically give rise to a deter- 
minate collection of predicaterrather we must introduce predicates 
by explicitly giving their meanings. Other predicates may, of course, 
be compounded from ones previously understood using the logical con- 
nectives. 

We suppose the meanings of statements involving lawlike parameters, 
quantification over lawlike objects and the meanings of the logical 
connectives applied to such statements, to be understood. Tradition- 
ally, an explanation is given in terms of an informal notion of con- 
struction (for example, Dummett (Elements p .  12ff.)). Our explain- 
ation of the meaning of statements involving non-constructive objects 
is independent of this (and, to a large extent, of its results), 
similar to it in form, and different from it in content. The meaning 
of a statement involving non-constructive objects is given in terms 
of a constructive understanding of which items of data justify a 
given assertion. 

3.1 Non-constructive Objects. Our archetype is given by Brouwer's 
notion of a dressed spread: A partial function $ assigning lawlike 
objects to the nodes of some spread S. The idea is that any choice 
sequence a of the spread S generates successive approximations, $(a) 
for aca, to a non-constructive object $ ( a ) .  Abstractlv, we assume 
that the constructive objects @(a) have a preorder, x < y  if x contains 
"more information" than y, and that $ is monotone, a <?5 implies that 
$(a) c$(b). For example, any neighbourhood function F represents such 
a non-constructive object 5 in that it savs what information F(a) 
about 5 can be justified on the basis of the data ad3. Once the data 
e has been assimilated, further data will be treated differently; 
then,on the basis of data a, we may justify @(eCa)). The assimilation 
o f h e  data e causes us to change our renresentation of 5 :  we call 
this change restriction along e and use $.e to represent$le, as 
(@.e) (a) = $(e(a)). This is why data should be represented concretely 
by neighbouxhood functions. 

In general then, a non-constructive object given in state U is (re- 
presented by) a monotone map 5 :  U + P where P is some partially- 
ordered domain of lawlike objects, and the assimilation of data is 
represented by composition of functions. Abstractly, the non-construc- 
tive objects based on a given poset of lawlike objects form a presheaf. 
(For more examples of suitable domains of lawlike objects, see 
Fourman & Grayson (this volume).) Constructive objects are represented 
by themselves, as sections of constant presheaves. 

3.2 Meaning. For a mathematician in state U, the meaning of a state- 
ment @ involving non-constructive parameters is given by saying which 
items of data e 'ustif @. We write this relation ell- $ and write 
UII- $ for <>( I -  definition is inductive. 

Firstly, we have two basic properties of this notion of justification: 

if K is a cover of u and ell- $for each ecK, then UII- $ 

if VII- @le then ell- $ , 
, 

where e: V + U and @le is the result of restricting each parameter 
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Secondly, we give the meaning of basic (atomic) predicates. The basic 
statements we may make concerning non-constructive objects are few 
(two) : 

intensional equality: 
finite information: 

if ale = Ole then el1-a-B 
if a(e(<>))z p then ell-acp 

For basic predicates involving only constructive parameters, 
if $ then ell-$. 

Finally, we explain the meanings of the logical connectives: 
A if Ull-$ and 1l-i then \ l - $ ~ I j l  

V if Uli-$ or / I -$ then /I-$ v Ijl 

3 if Ull-$(a) then UII- sx.$(x) 
+ if for all e, if ell-$ then ell-$, then Ull-$ +$ 

V if for all e: V +U and each 5 given at V we have 
Vll-$le(a), then U/I -  VX.$(X) 

so at some nodes by virtue of the general clauses above 
(this eventuality does not arise in our present models). 

1 is never explicitly justified, although it may become 

We claim that this definition reflects the intended meaning of state- 
ments involving non-constructive parameters. It coincides with the 
standard forcing definition for sites. We also define quantification 
over independently generated free choice sequences: for e: V +B. 

if UxV/I-$lnl (el.rr2) then U(I- FclEe.4 

if UxWII-$lnl ( B ~ I T ~ )  then UII- ?ase.$ 

(for any 8: W + B which factors through e) 
(In 9 3 . 4  we see how to regard e in general as a subset of 78 . )  

3 . 2 . 1  Lemma. 1) fll-$Ie iff e*fll-$ 

2 )  
3 )  ell-$ iff $, if $ has no non-constructive parameters 
or quantifiers. 

if ell-$ then e*f IF$ 

3 . 3  Basic Types. We have represented non-constructive objects 
abstractly as (local) sections of certain separated presheaves. We 
now see that this representation gives us the higher types defined 
formally in sheaf models. To save space we then treat these 
models more or less formally. We ask the reader to bear in mind that 
the models are intended to reflect the meaning of non-constructive 
mathematics as well as its formalism. 

3.3.1 Lemma. If F, G: U -+ T represent non-constructive objects at 
U then 

UII- F E NN 
Ull- F = G 

iff F is a neighourhood function 
iff F and G represent the same function 

Where = is extensional equality. 

In any sheaf model the discrete spaces N and N<N are represented by 
constant presheaves. In our present models, the (set of points of) 
Baire space is represented by the separated presheaf of continuous 
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Baire - valued functions (see CT). Thus the non-constructive 
sequences we have defined correspond extensionally to the abstract 
sequencesgivenby the higher-order logic in sheaf models, The pre- 
sheaf IB (U) 2 (U,NGN) of neighbourhood functions represents Baire 
space intensionally. The representable presheaf 0 (U) 5 IB (U) 
represents the free choice sequences for the notion of data concerned. 
The idea is that nothing more is known of them than can be given 
directly by data. 

Non-constructive objects are represented extensionally as continuous 
maps to formal spaces (see Fourman & Grayson). Restriction is given 
by composition. The basic predicates are given by 

equality 

finite information if (aIe)-’(p) = T then ell-acp. 
if ale = a l e  then ell-a = B 

For consideration of extensional properties it suffices to consider 
our sites extensionally as categories of continuous maps. 

3.4 Lawlike Objects In general, we think of constant presheaves as 
representing lawlike objects. In most sheaf models there is no can- 
onical way in which to define “the“ collection of lawlike elements 
of a given sheaf. In our present models we define the collection of 
lawlike elements of a sheaf X to be the subsheaf L(X)EX generated by 
global sections of X. We claim that L(X) is a constant sheaf: Sup- 
pose a and b are global sections if A / /-  a=b then AXB 11- a=b whence 
B I/- a=b (as projections are covers). (For monoid models of course 
the topology is irrelevant and we always have a notion of “lawlike“ 
given in this way.) 

Of course, the discrete spaces N and NCN are lawlike. 
some other examples: 

3.4.1. The lawlike elements of Bare given by the constant functions 
in B (u), which are canonical representatives of the constant func- 
tions . 

We now give 

3.4.2. The collection Kx of lawlike operations 
the Yoneda Lemma: r(K,) = X(B) with the action 

0 -t X is given by 

u 11- F(c.) 5 iff F I ~  = 5 
Note that these are given intensionally. However, every lawlike 
operation with non-constructive objects as values is given as a 
neighbourhood function and thus acts extensionally. 

3.4.3. Lawlike data; Morphisms with codomain B may be viewed as 
subobjects of B as follows: For e: U -c B and 5 :  V -+ B 

if 5 factors through e then V (I- Cce 
In each model tce is in fact definable: e may be viewed as an element 

Fe of KU and - 
v ( I -  vg.(tce++ ~c.E;.F,(~) = 5). 

(Where g is the representable presheaf.) 
If u: u w  B is monic then CcX(U) may be viewed as a lawlike function 
defined for all C~EU by 

U IF F (ulB1 = 5 1 B .  
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All sheaf models provide interpretations of HAH. These ones have 
special properties. We view this as justifying certain intuitionistic 
principles on the basis of particular conceptions of data. We assume 
choice principles for lawlike objects, (which is constructively un- 
exceptionable). This allows us to reduce existence on a cover of U 
to existence on U itself for lawlike objects (as every open cover of 
U has a disjoint clopen refinement). For continuous data, existence 
on a cover always reduces to existence on U, as covering families of 
monomorphismsgenerate the topology. 

Below, 5 ,  5 range over non-constructive objects, a, 0 ,  y over free 
choice sequences, e, f over data a, b overB and n-.m over N. We 
use x, y a s  variables for lawlike objects in general, and write 
€,EL to signify that €, is lawlike. 

4.1 Choice Principles. We obtain countable lawlike choice with 
non-constructive parameters. 

ACN* l k v  A( V n 3 x.A(n,x) -t 3 f Vn.A(n,f (n)) ) . 
From the remarks above, this is standard. For continuous data, the 
same proof gives 

ACN&* /I-VA(Vn >€,.A(n,€,) -+ 3 f  Vn.A(n,f(n))). 
It is perhaps surprising that for open data (for example) this is not 
justified. As 8 is representable, we obtain, for those models in 
yhich projections are covers, forms of Va 3 x  choice: 

AC& 11- vAEL(VaEU.3X.A(a, X) -+3fEL. VaEu.A(a,f(x))) 

ACB* \k V A (  yclEU.3X.A(a,X) -+ 3 y 3 f E L  F U E U . A ( U , f ( U , y ) ) )  

For AC& , suppose A is lawlike and U Va3xA(a,x), then 
UxB IF V a3x.A(a,x) whence B It A(id,a) for some E X(B). This 
a re resents the required function as in 3 . 4 .  For A m *  if 
UxV TF 3 x.Al'iT1 (ulap,x) then UxV IF Alal (ul'rrl,a) for some a E X(UXV). 
Now introduce parameters 7 for U and view a as a function of these 
and a m  as in 3 . 4 .  Note that, for continuous data, and V coin- 
cide. 

For continuous data, the same proofs give V a 3 J 5  choice principles: 

AC06 IF VAEL( V~EU,L~~.A(~,E) -+ 3 FEL V~EU.A(~,F(~))) 
A c B ~ *  11- VA(V ~EU.LIE.A(~,S) -+ 3 FEL. 3 7 .  v~Eu.A(~,F(~,~))) 

Forthemonoid model for continuous data,in which we do not allow 
restrictions to arbitrary spreads, we obtain a stronger form: 
ACbb**))-VA('V dE.A(a, 5) -+3fEL. Va.A(a, F(a))) 
Suppose BII- va3E.A(a, €,) then BII- A(id, E ) ,  for some SEX(B) which 
represents the required function. 

In each case above, we may replace V a  by V ai,...an and Y ~ E U  by. 
Ea1Eu1, ..., anLun and obtain the corresponding choice principles with 
the same proofs. The same remark applies to our principles below. 

4.2 Continuity Principles. The first principle,we call Existence of 
Data. - 
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Given aE M(U) with UlI-A(a), view a as an element of D to justify ED. 
We also obtain a stronger form for data in which independent gener- 
ating processes may be introduced: 
ED* 1 ) -  "_i,, . . ,Up(A(Ui ,. . . ,Up) + 3  Ui,. . . ,Up 

( M cliEUi hy'BiE~1,. . . ,BpEUp.A(Ei ,. . .'Bp))) 
Suppose BPxU 
are components of the inclusion. These Ui do the trick: 
WxWxVII-A(ul,. . . ,up) 
isomorphic. 

:'he second general principle is that every lawlike functicn defined on 
0 is given by a neighbourhood function. We have already see (3.4) 
that elements of B (B) represent lawlike functions. Ey 3.2.1.(3) these 
nay also be viewed as neighbourhood functions in the model. The 
application defined in 3.4 is just standard application of neighbour- 
hood functions carried out internally. Thus, 

K 1 1 -  VFEL: 8 + B . "F is given by a neighbourhood function." 

The same remark holds for functions to other non-constructive domains 
and for those defined on subspaces of 63 given by monic data u. Note 
that the F above are a priori given intensionally, it is a consequence 
of K that they act extensionally. This remark is not deep, it shows 
how little intensional information we have taken into account. We 
finish this section with the remark that all objects are lawlike 
functions of a finite number of free choice parameters 

U I ~ V E ~ ~ ~ F E L . ~  a1 ,..., an.S = F(a1 ,..., an) . 
(U is for Uniformization). 

This enables us to make good an earlier promise. Dressed spread data 
holds in all our models as a consequence of the existence of data for 
free sequences because if 3?X,F.S = F ( E )  then for any A we have 
A(S)++A(F(a)). 

WxVIl-Ala(ul, ..., up) where W is a basic open and the ui 
as the two possible orders for considering W are 

4.3 Erouwer's Dogma of Bar Induction is also built into our models. 
We show that 

IF VKCN<N (K monotone A K inductive + (Va3nEK.aEn -+ <>  EK)) 
Note that K is not required to be lawlike. 
monotone, inductive bar". Consider 

Suppose that Ull- "K is a 

IK = {<V,n> I V(I- n KIV with VE @U) , n€NcN} 
IK is monotone and doubly inductive (i.e. IK is a closed crible in 
o(UxB)). Thus if IK covers UXE then <U,<>> E IK and we are done. 

Now UxB l l - V m ~ K l ~ ~ . n ~ ~ m ,  by persistence of forcing so 

M * = {<~,n> I Vxn 11- ZE ~ 1 ~ 1  A I T ~ E ~  - for some rnl covers UXB. But IK * 
,C IK because 

and 

Thus we are done. Clearly, the same proof justifies bar induction 
over any spread which occurs as a state in our representation of data. 

4 . 4  Equality. 
theory LS, lawless data and spread data, which give another kind of 
lawlessness. For all of these, extensional and intensional equality 

Vxn 11- mE Klal iff V 11- mEK as projections cover 

Vxn 11- n2em iff n 7m. - 

We begin by considering open data, which models the 
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coincide : 

l l - . ' d c t , R  (a= B - a: a ) .  
The major difference between them is that, for open data free se- 
quences have decidable equality 

11- V a , B  ( a =  R v l a =  0 )  
Whereas for lawless and spread data, 

11- 1 V a , B  ( a = R  v l a =  B )  . 
In these models we can represent the notion of non-constructive 
objects generated by independent processes. Given XEX(U) and 
YEY(V) let 

uxv 1 1 -  XlTl + YITZ "x is independent of y". 

Then W 11- x $ y iff locally there is a cover p: UXV 
xjp = xlnl and y1p = yqliz for some XE X(U) 

For free sequences, independence is definable: 

-f W with 
and YE Y(V). 

11- v a,B ( a  $ B ++ l a  = B )  for subjective open data, 
11- v a,B ( a  R ++ 3 y . y  = < a , B > )  for lawless and 

spread data. 

Note that for other types of data such a predicate becomes trivial 
since a priori independent processes might later be found to be 
related. 

For these types of data, the quantifiers z, 3 satisfy the axioms 
and rules given by Troelstra (CS,  p. 35). They have the effect of 
quantifying over lawless sequences generated by processes independ- 
ent of any under consideration 

1 1 -  1 a1 r - - - r an( + r * * - tan)) 
For lawlike predicates we have 

I ~ V A E L  ( E E . A ( C L )  + + V E  ($(z)+ A ( G ) ) )  

Thus ED* coincides with the usual form of open data. 

We conclude our discussion 
ing some simple properties 

1 1 -  v a 3 a.aEa 

( I - V ' l V C i (  7 S = a  
For open and lawless data, 

11- V a . l a € L  

of these variations on open data by list- 
whose verification is left to the reader. 

Free sequences are dense. 

+ 5 ~ ~ 1 )  Free sequences are very dense. 
we also have, 

Free sequences are not lawlike. 

For continuous data, extensional and intensional equality do not 
coincide 

11- 3 c1,a ( C Y  = B A  B )  
every sequence is free 

11- v 6 3 a . c  : c1 

4 . 5  Identification of Data. All the data we have used is given by 
neighbourhood functions. As we remarked in 4.2 ,  these just act 
internally as lawlike neighbourhood functions. Thus data is given in 
general as analytic data with a class of functions restricted appro- 
priately for each notion of data. For open and lawless data, this 
reduces internally to open data. For spread data it is just spread 
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data in the tradional sense. For continuous data it is analytic 
data. We know the internal and external characterization coincide 
by 3-2.1 (3)- 

D ik VeeD. 3 a.aee , 
triviaily, as c1 can be taken equal to e. 

For each type of data, we have the property of density 

55 CONCLUDING REMARKS 

5.1 Metatheory. We have been somewhat cavalier in our use of higher 
types. In particular, we have stated many principles in universally 
quantified form, using quantifiers which are constructively unaccept- 
able. The corresponding schemata may be justified by our methods 
using a metatheory equivalent to IDB (CS p. 31). For a discussion 
of this see v.d. Hoeven & Moerdijk (1982). 

5.2 The Other Kind of Lawlessness. The model we presented at the 
Brouwer Symposium, we now view as ad hoc. We considered the monoid 
of local homeomorphisms of Baire space with the open cover topology, 
and picked out a domain of "lawless sequences" represented by the 
local projections. We now view the lawless data presented in 2.3 as 
a better representation of the notion we had in mind. The free sequ- 
ences for this notion of data have all the properties we mentioned in 
our abstract. 

5 . 3  Other Models. Once this project was well-advanced, the author 
realized that few of the ideas here are really new. The elimination 
translations of Kreisel and Troelstra coincide with our models for 
LS (open data) and CS (continuous data) as remarked above. Thus, it 
cannot be said that there is anything more than a difference in view- 
point distinguishing our approach. More concretely, Dragalin (1974) 
uses essentially the same ideas as us to construct essentailly the 
same type of model. We hopethat the presentation of these ideas as 
sheaf models will at least aid progress by providing a mathematically 
apt setting fox comparing various notions of choice sequence. It is 
on the level of philosophical analysis that we hope to have provided 
something novel. For example, we claim that the verification of the 
axioms of CS in the monoid model for continuous data, provides an 
adequate conceptual basis for these axioms: acoherent notion of choice 
sequence and a verification of the axioms based on this notion. 
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