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Non-constructive Objects

Michael P. Fourman

Department of Mathematics Department of Pure Mathematics
Columbia University University of Sydney
New York, N.Y. 10027 N.S.W. 2006
U.S.A. Australia

We give a general theory of the logic of potentially
infinite objects, derived from a theory of meaning for
statements concerning these objects. The paper has two
main parts which may be read independently but are
intended to complement each other. The first part is
essentially philosophical. In it, we discuss the theory
of meaning. We believe that even the staunchest realist
must view potential infinities operationally. The second
part is formal. In it, we consider the interpretation of
logic in the gros topos of sheaves over the category of
separable locales equipped with the open cover topology.
We show that general principles of continuity, local
choice and local compactness hold for these models. We
conclude with a brief discussion of the philosophical
significance of our formal results. They allow us to
reconcile our explanation of meaning with the "equivalence
thesis", that "snow is white is true? iff snow is white.

PROLEGOMENON

Classical mathematics is based on a platonic view of mathematical objects. The
meanings of mathematical statements are determined truth-functionally. This
Fregean explanation of meaning justifies classical logic. The deficiencies of
such a view are amply discussed by Dummett [1978].

A constructive mathematician rejects the completed infinities of classigal mathe-
matics. For him, the objects of mathematics are essentially finite. The meaning
of quantification over infinite domains is given operationally in terms of a
theory of constructions. The resulting logic includes Heyting's predicate cal-
culus and other principles (e.g. choice principles).

As Dummett has stressed, one task of any philosophy of mathematics is to explain
the applicability of mathematics. The potential infinities of experience exceed
the finite objects of the strict constructivist. They demanda mathematics of in-
finite objecte. Naive abstraction leads to the ideal infinite objects of class-
ical mathematics. This idealisation has enjoyed remarkable success. However,
the meaning of statements of classical mathematics remains problematic.

Brouwer [1981] introduced to mathematics potentially infinite objects such as free-
choice sequences. Consideration of these justified, for Brouwer, intuitionistic
logic, including various choice and continuity principles. We shall consider a
general notion of non-constructive object. For us, o present such a notion is to
give a theory of meaning for statements involving non-constructive objects.

Our non-constructive objects are not the platonic ideal objects of classical
mathematics nor the finitary objects of pure constructivism. They are potentially
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infinite objects related to the lawless sequences of Kreisel [1968] and to Brouwer's
free-choice sequences (Troelstra [1977]). The meanings of statements about these
objects cannot be given in terms of truth conditions ?as for classical platonist
mathematics) or in terms of constructions (as for naive constructivism). The
essence of these non-constructive objects lies in their infinite character. They
are not, in general, totally grasped. They are given in terms of partial data
which may later be refined. Meaning for statements about non-constructive objects
is given by saying what data justifies a given assertion.

To describe a particular notion of non-constructive object is to describe the type
of data on which it is based. We consider various such notions. Each conception
of data gives an explanation of meaning which extends the range of meaningful
statements and may be viewed as introducing new objects in that it ascribes mean-
ing to new forms of quantification. In fact for each type of data we introduce a
concrete representation of the non-constructive objects based on it.

Such a project is not novel: Beth [1947] introduced his models to provide just
such an explanation of meaning for choice sequences. Our models generalise Beth's.
Dummett [19771 makes a lengthy critique of the view that the intended meanings of
of the logical constants are faithfully represented on Beth trees. Since our
models generalise Beth's they appear prima facie to be susceptible to the same
criticisms. However, Dummett's remarks on the (non)-consonance of the intended
meanings of the connectives with their interpretation in Beth trees are directed
at a different problem from the one we address. Dummett appears to have overlooked
the possibility of separating the problem of explaining the constructive meaning
of statements concerning lawlike objects from that of explaining the intuition-
istic meaning of statements concerning choice sequences. Although we know of no
satisfactory explanation of constructive truth (in particular, we agree with
Dummett that Beth models do not give one), such a separation appears natural. It
is possible to conceive of constructive truth independently of choice sequences.
Given such a conception, Beth models provide an account of the introduction of
non-lawlike objects. It is this type of account we have generalised. By way of
example we now consider two notions of data closely related to Beth models. They
both arise from the same informal picture.

Imagine receiving from Mars an infinite sequence o of natural numbers. The
picture is of a ticker-tape which produces an indefinitely continued finite
initial segment a of the sequence o. (We write o ¢ a to mean that a is an initial
segment of o.) We want to examine the consequences of treating such undetermined
sequences seriously as sequences. (Later we shall introduce more interesting
examples.)

A naive view of this example considers the stages by which information arises:

at any stage, the possible future data is represented by the collection N<N of

all finite sequences. At the next stage one of the sequences <n> (where n ¢ N)
must appear. Not only do we not yet know which of these possibilities will occur,
it is not yet determined which will occur. On the basis of this data we may con-
struct many sequences. The simplest of these, o is given by transcribing the data
as it arrives. Thus on the basis of data b < a, we are justified in asserting
that a is an initial segment of a. We write this b|la ¢ a. (We order sequences
by setting b < a if a is an initial seqment of b since then b allows fewer possib-
ilities for o.) Another sequence g is given by first writing down a fixed finite
sequence b and then continuing with the incoming data. Schematically, aj~ 8 ¢ b*a
where * denotes concatenation, and hence "obviously", for any ¢ < a, we have

cl8 ¢ b*a. We want to make all such "obvious" assumptions about the nature of
justification explicit;so we give its two basic structural properties. Justific-
ation should be

persistent E%gﬁ:ga
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and

. . a* <n>l-¢ for all ne N
inductive al= ¢

Persistence reflects the idea that knowledge, once justified, is secure. The in-
ductive clause comes from reflection on the infinite character of o. Givena € a,
the collection {a* <n>| ne N} covers all possibilities for future data.

In general, if we stipulate bl ¢ for b e B ¢ N<N, the principles of induction and
persistence will entail other instances all ¢. We call the set {a| alF ¢} the
inductive closure of B and say B covers each such a.

To describe a particular non-constructive object y is to say what information
about it is justified on the basis of each possible item of future data. For ex-

ampie, any monotone function g: NN NN (that is a < b implies g{a) < g(b))
gives a non-constructive sequence vy with all- v ¢ g(a) {together with the consequ-
ences entailed by the principles of persistence and induction). Monotonicity
here embodies the requirement that we should aceunulate information on y. More
generally, we can view any poset P as an abstract representation of data about

some type of object. Then a monotone map N<N + P will represent a non-constructive
object of this type.

We do not wish to introduce technicalities here. Later we shall give a definition
of al ¢, for first-order ¢, by induction on the structure of ¢. For the moment
we just remark that such a definition of al ¢ can be given and that the inter-
pretations of the connectives are completely determined, in the context of our
requirements on justification, by requiring that the rules of positive logic be
valid. In our present case this would amount to giving Beth's semantics for in-
tuitionistic logic with a slightly modified notion of "bar". Beth's semantics are
well known to be equivalent to the topological interpretation over Baire space
exploited by Scott [19681 and Moschovakis [1973]; our modification replaces Baire
space by formal Baire space (Fourman and Grayson [19821).

We now return to our picture of the ticker-tape. What we have done is to give a
representation of the subjective experience of receiving word from Mars, an ex-
ternal view of how the world will look when data a appears on the ticker-tape.
This view is dependent on the contingencies of what data is available. But mathe-
matics should be timeless and absolute. This requirement appears to exclude con-
sideration of potentially infinite objects. We now attempt to resolve this
contradiction.

Picture a room with a ticker-tape,A and various segquences in progress, * o,B,Y
described above for example. Now suppose that on the tape we have the finite
sequence b. We have duly noted that o ¢ b, B € b*b, vy ¢ g(b). Consider now an-
other room A' with a ticker-tape which, as yet, is blank and three non-constructive
objects defined by

¢l a' € b*c

¢l B' € b*b*c
clv' e g(b*c) .

In this room on the basis.of no data we can already note that o' ¢ b, 8' ¢ b*b,

v' ¢ g{b). Furthermore data b*c arriving in room A will always have the same con-
sequences for a,B,y as data ¢ arriving in room A' has for «',8',y'. In fact the
mathematics (and logic) of the two rooms, A with data b and A' with no data, .
should be the same. We want to add this to our formal treatment. This is done by
regarding incoming data not as changing the world but rather as effecting a trans-
formation which changes our view of the world. We consider not a particular
ticker-tape but rather the uses which could be made of such an indeterminate
sequence to generate non-constructive objects. Data just becomes a way of trans-
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forming one such process into another, generally less free: its restriction.

We give a general definition of this transformation as follows:
cl ¢(81b)  $FF brc|- #(8)

(Where § is a non-constructive object given by stipulating what data justifies
o(8) for various ¢.) For example, ofb = o' = 83 81b = 8'; y|b = v'.

This change of viewpoint amounts formally to a change in our representation of data.

Formerly we considered the partially ordered set or tree N<N as representing var-
ious possible states of information. Incoming data changes the world in that it

places us in a new state. Now we consider N<N as a collection of transformations
which act to change our view of the world.

Formally it is convenient to represent the data as the monoid of finite sequences

under concatenation; if g: N<N » P represents a non-constructive object y then
v|b is represented by gob where b: a |+ b*a acts by left concatenation. The

notion of justification is to be stable under such a change of perspective:
all- ¢lb iff b*a|~ ¢
(where 1b is applied to the non-constructive parameters of ¢.)

We now consider examples of a more general type of non-constructive object intend-
ed to represent potential infinities of experience. We base our description, for
the sake of exposition, on a view of classical experimental physics which we as-
cribe to the nineteenth century. Briefly it runs as follows: Physics is based
on measurement. Experiments determine values of parameters a to a certain degree
of precision. Generally some error is inevitable but it may in principle be made
arbitrarily small (this is the assumption which leads us to label this as a nine-
teenth century notion).

Now, we refuse to admit the classical ascription of actual values to these para-
meters. At first consideration this may appear churlish. There is an apparent
difference between a sequence determined only by the free will of a Martian and a
physical value. We leave aside the question of whether this is an actual differ-
ence because this question misses the point. The point is to ask, "How can we
assign meaning to statements concerning such quantities, in particular how should
we understand quantification over such quantities?" OQur refusal amounts to deny-
ing the coherence of any explanation based on the assumption that every sentence
has a determinate truth value, either Zrue or false. We refer to Dummett for
elaboration of this point.

The possible results of experiments are concrete however. In general we may find
by experiment that a ¢ U. These possible U form a poset P. The conceit which
assumes that arbitrary refinement of our methods is in principle possible is re-
presented by saying that the Vi < U representing a certain degree of refinement
cover U.

For example, measurement of a quantity classically represented by a real parameter
could be represented by taking for IP the poset of rational open intervals, with
the stipulation that for each « > 0 an open interval U is covered by the collec-
tion of all subintervals of length < ¢, also that the collection of all proper
subintervals of U covers U.

In general then we consider a poset IP of possible outcomes for an experiment. We
ask, as a technical convenience, that if p and q represent a priori compatible
results (i.e. if there is an r with r < p and r < q? then we can consider the out-
come which consists just of getting these two results (i.e. we have an infinium
pagelP). We also consider no information as a possible result (i.e. IP has a
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top element T). The poset IP is equipped with a notion of covering family. We
demand that this be

reflective {p} covers p
stable If U covers pand g < p then {g A w|w e U} covers g
monotone If V2 U covers p then V covers p.

The notion of a covering family is crucial to our explanation of meaning for in-
complete objects. It formalises the sense in which they are potentially infinite.
We avoid the metaphor of Wright [1981] which represents such a covering family as
embodying the recognition that the state of information is capable of effective
enlargement to one of type a* <n> because it seems to leave open to us the choice
of not performing this enlargement. The idea we have is to introduce consideration
of a particular type of incomplete object by specifying the type of data which
generates it. This specification includes a notion of covering family. Differ-
ences over which is the proper collection of covering families do not affect the
basic conception but merely lead to different types of data.

We are not as mathematicians or logicians interested in the result of a particular
experiment. Rather, we are interested in those properties which would remain in-
variant no matter what the outcome or methodology of a particular experiment. It
is not the result but the uses to which the result might be put in defining mathe-
matical quantities which interest us. Were the temperature scale non-linear, or
the time scale given by the unequal time of the sun, physics would be different
(it was). But mathematics and Togic should be immune to such vagaries.

Our solution is similar to that we employed in giving an objective view of open
data. The possibility we envisage is that of a change of scale which in some
sense refines our possibilities for measurement. The measurements of the old con-
text should be meaningful in the new one but the new one may afford finer distinc-
tions. To describe such a change of scale is to say which new observations q ¢ Q
are to be viewed as refining an old observation p ¢ P. We write this relation

q < f*(p) and demand that it be

monotone q' =q < f*(p) p=p'
RN
e q < f*(p) q = f*(p')
multiplicative qg<f*(paArp)
p; 11«1 coversp r < f*(p)
continuous

{qlqg= f*(pi) some i ¢ [} covers r

The motivation for the first two is clear. Continuity may be viewed as the re-
quirement that a previous conviction that a certain family covers, cannot be over-
turned. The change of viewpoint induced by such a transformation f is given by

pl=¢(8) q < f*(p)
qlF ¢(81f)

Mathematically, our notion of data gives a presentation of a Zocale. Change of
scale is represented by a continuous function between locales. Abstractly we
write such a change f: Y » X.

We now consider a supplement to our notion of justification. Suppose, we consider,
that consideration of a particular type of data would justify ¢, then ¢ is justi-
fied. This is the reflection on which our whole project is based: that we can
Justify talk of incomplete objects by reflecting on hypothetical indefinitely
continued processes.
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We shall formulate this by saying that if f: Y > X represents the introduction of
new distinctions independent of those represented by X then

Y- ¢4f
Xl ¢

or that such an f is a cover.

Our final problem of formalisation is to characterise the introduction of
independent data. A simple example is, given IPand Q with notions of covering, to
consider IPx @ the product poset with coverings

{<p;»9> | i ¢ 1} covers p,q when {p; | i e I} covers p

{<p,q1>| i e I} covers p,q when 9; |1 e 1} covers q.
The projection given by <p,q> < n*(p') iff p < p' represents the introduction of

data of type Q independently of the data P under consideration. We shall require
that all such projections be covers.

In general there are two conditions we require to view a change of scale as the
introduction of independent data. The first is obvious: no new covers should be
introduced between existing observations.

g; < f*(ri) {g; 1 1 « I} covers each g < f*(r)

{ril ie I} covers r
The second is subtle: no new conditional relationships should be introduced be-
tween existing observations. We explain: if w ¢ Q is such that

r < f*(p) r<w
r < f%{q)
(we view w as establishing a conditional relationship between f*(p) and f*(q)),
we demand that w < f*(s) for some s ¢ IP such that

r < r<s
r<aq

(that the relationship be already established in P). Technically, these require-
ments amount to demanding that the continuous map f: Y -~ X be a surjection and
that it be open. The structure of data we have arrived at may be viewed as the
category of Tocales equipped with the topology of covering by open maps.

Before turning to a formal examination of the interpretation of logic over this
site, we sum up our intentions.

We introduce non-constructive objects by explaining the meanings of the connect-
ives for statements concerning them. This is not a matter of characterising a
domain of quantification. We have to explain the connectives anew in terms of
the way such an object is given to us. Moreover, it is not sufficient to merely
paraphrase the new quantifiers VYa and Ja. Such a paraphrase entails a revision
of the interpretations of » and v.

Our aim is to show that it is possible to derive rigorously properties of various
domains of incomplete objects by giving a formal representation of the data which
presents them as a site. We consider that the passage from an informal notion of
data to the corresponding site is simple and natural. (Indeed, for us, to have a
clear conception of a type of data is to be able to describe the corresponding
site.) Once this passage is made, the derivation of properties (choice and con-
tinuity principles, for example) is a mathematical matter. Our hope in presenting
these modeis is Leibnitzian: to eliminate further discussion of the justification
of such principles by reducing the matter to calculation.

In our paper "Notions of Choice Sequence" [1982] we presented various notions of
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choice sequence, including ones satisfying the axioms of LS and CS, with the same
purpose. Unfortunately, as the literature on choice sequences makes clear, clarity
is in the eye of the beholder. Hence the present attempt at a more careful explan-
ation of our informal notion of non-constructive object and its formalisation.

CONTINUOUS TRUTH

We start with a concrete presentation of the interpretation of higher-order logic
in a Grothendieck topos. This material (§§1-3) is well-known to cognoscenti
(tautologously), but is otherwise accessible only through a study of scattered
references. We give some of these sources but make no systematic attempt at a
complete list. Many important and historically significant contributions are not
mentioned. OQur account is fuller than is Togically necessary for the sequel in
order to point out some connections between different approaches. It is not, how-
ever, exhaustive.

51 Frames and Locales

1.1 Definition. A frame is a complete lattice with finite A distributive over
arbitrary . Frame morphisms, "and-or maps", are maps preserving these operations;
TaA,V-

1.2 Example. The lattice 0(X) of open subsets of a topological space is a frame.
If f: ¥ > X is a continuous map then the inverse image f*: O(X) - 0(Y) is an
Ay \-map.

1.3 Definition. The category of locales or generalised spaces is the dual of the
category of frames. We call the morphisms continuous maps f: Y -~ X and write

f*: 0{X) > 0(Y) for the corresponding inverse image maps between the frames of
opens of X and Y (as in the topological case).

Example 1.2 gives a functor g: Top -~ Loc from topological spaces and continuous
maps to locales.

1.4 Discrete spaces.
Spatially P(A) corresponds to the discrete topology on A. An example is the one-
point space with 0(1) = P(1)

1.5 Definition. A topological space X is sober iff Top[L,X] ¥ Loc[I,gX].
1.6 Lemma. On the full subcategory of sober spaces 8 is full and faithful.

We tacitly restrict our attention to sober spaces and henceforth omit mention of B.
We view locales as generalised spaces. (The relationship between Loc and Top is
better expressed in terms of the right adjoint, pt: Loc » Top, to B.)

1.7 Subspaces. Quotient maps of frames induce congruences: if f*: 0(X) - O0(Y) is
surjective Tet p ~ q iff f*p = f*q. Each congruence class [p] has a canonical
representative jp = V{g | p ~ q}. The maps j: 0(X) - 0(X) arising in this way are

monotone p < Jp
idempotent im =1
multiplicative ipAaqg) =3paiq.

Such maps are called nuclei. The quotient may be identified as the image (or
fixed points) of j. The quotients of O(X) are isomorphic (as posets) with the
nuclei on O(X). Spatially we view these quotients as giving rise to subspaces
of X.
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1.8 Surjections. Dually, we view injective inverse image maps as giving rise
to surjections of spaces.

1.9 Right adjoints. Each frame map f* has a right adjoint f,, direct image,
given by

A

fop = Vig| fa<p.

The map q > p A g has a right adjoint r |- p - r defined by

prqgs=sr iff qsp-~>r
where p > r = V{q| p ~ g < r}. Thus frames are complete Heyting algebras (but the
morphisms are different).
1.10 Definition. A map of spaces f: X > Y is open if the inverse image map
TFX: 0(Y) > 0(X) has a left adjoint 3 0(X) » 0(Y§ commuting with a:

() A %) =y A 3e(x)
or, equivalently, if f* preserves -.

1.11 Proposition. The category of locales is complete and cocomplete. Open
surjections are stable (under pull-back).

The theory of locales is developed extensively by Joyal and Tierney [1982].
Johnstone [1982) uses locales systematically and has a comprehensive bibliography.

§2 Sites and Sheaves

2.1 Definitions. Let C be a small categogg. A crible K of A € [C]| is a sub-

functor of the representable functor A « s, that is, for each B ¢ |C] a set
K(B) < [B,Al, stable under composition; for each f ¢ K(B) and g: C ~ B in C, the
composite fog e K(C).

2.2 Llemma. The cribles of A form a frame, P(A).

If f: B ~ A in € we have an <{nverse image map f*: P(A) > P(B) given by

f*K = {g| fog ¢ K} for K € P(A). By abuse we write f: B > A for the correspond-
ing continuous map. This map is open.

2.3 Definition. (Lawvere-Tierney) A Grothendieck topology j on C is a
family of nucTei jA: P(A) -~ P(A), natural in A: that is f*o Jp=Jdgef*for f: B ~A.

2.4 Lemma. If j is a Grothendieck topology on C, the quotient frames @(A) have
induced inverse image maps f*: o(A) > o(B) and the corresponding map of locales,
which we write f: BJ = AJ, is open.

2.5 Definitions. A pretopology J on € is a family J(A) < P(A) for each A ¢ €
which 1s

reflexive A e J(A)
. , K e J(A L ¢ J(A
multiplicative < |(< 2) e J(A; (A)
K e J(A) f: B >-A

stable K < J(BJ

(For example, let K e J(A) iff jK = T).

A crible K ¢ P(A} is inductively closed for J iff
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f: B>A f*K e J(B)
fek

As A is closed and an intersection of closed cribles is closed, each crible
K ¢ P(A) has a elosure JA This gives a topology j on C. We say K inductively

covers A iff jK = A, and write this K ¢ J(A).

2.6 Examples. (1) Let 0O(X) be a frame viewed as a poset viewed as a category.
Let K ¢ JEA; iff /K = A. (Identifying B -~ A with its domain.) Then a(X) ¥ 0(X).
(2) Let € be a small category of locales closed under finite limits and open
inclusions. Let K ¢ J(A) iff K contains some family {fi: By » Ali e 1} of open
maps such that V 3fi(Bi) = A. The crible generated by each open inclusion U < A

is closed for this topology. This assignment gives an a3V map r*: O(A) - a(A),

spatially a surjection r: AJ > A. Each closed crible contains a largest open
inclusion. This assignment gives an a \ map i*: Q(A) » 0(A), spatially we have
an inclusion i: A <, AJ. Furthermore, ro i = id, and r*i* < idQ(A) so A is an
adjoint retract of A’ (Fourman [19821).

2.7 Definition. A presheaf on € is a functor X: ¢ OP . Sets. If f: B +A ¢ Cand
a < X{(A) we use the notation alf, ' a restricted along ', for X(f)(a) « X(B).

Note that a{f1g = a4fo g and aiid = a. The appropr1ate morphzsms between pre-
sheaves F: Y » X are natural transformat1ons, maps Fp: Y(A) + X(A) which commute
with restrictions F (a]f) = ( a)1f.

2.8 Examples. (1) The representable functor [-,A], (or by abuse, justified by
Yoneda's iemma, A) is a presheaf. Restrictions are by composition g1f = gof.
Yoneda's lemma tells us that for any other presheaf, X, we have X(A) T [A,X]. In

)

particular the embedding € - st P is full and faithful. Each crible K ¢ P(A) is a
subpresheaf K > A.

(2) P and @ are presheaves with restrictions given by inverse images K|f = f*(K).

2.9 Definition. A presheaf X on { is a sheaf for the {pre) topology J if when-
ever K ¢ J(A), each natural transformation x: K » X has a unique extension along
K >» A. Equivalently, if K ¢ J(A) and we have a family xf e X(B) for f: B> A ¢ K

such that ng = xf]g for each g: C > B, there is a unique x « X(A) such that
Xe = x4f for each f ¢ K. The cateaorv of sheaves and natural transformations is a
Grothendieck topos.

There is, as yet, no staisfactory introductory text on topos theory. The basic
references are SGA4, Wraith [1975], Johnstone (19771, Freyd [19721].

§3  Forcing over a site

Here we describe Joyal's presentation of interpretations in topoi in terms of a
notion of forcing. Let C and a (pre) topology J be fixed. The basic structures
we consider are diagrams of presheaves on C. Each presheaf A interprets a type
or sort of variable. A morphism f: A1 Y A -+ B interprets an n-ary oper-

ation. A subobject R > A1 %X L., % An interprets an n-ary relation.
3.1 Definitions. Let L be a first-order language (possibly many-sorted) with

equality. An interpretation of L is given by assigning to each sort A of L a
presheaf A, to each operation F from Al""’An to B a natural transformation

F: A1 X .. 0% An + B, and to each relation R on A1 X ... X An a subfunctor

R Ay x ... x A Given such an interpretation, for U e |T] we let L, be the
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expansion of L obtained by adding constants of the appropriate sorts for the ele-
ments of A(U). If f: V > U then for any term 1 or formula ¢ of Ly we obtain a

term t1f or formula ¢1f of LV by restricting any new constants which occur. Now
for U ¢ |C| we define for each closed term t of sort A of L an interpretation
Iy € A(U) by induction:

ﬂcﬂu = ¢ for ¢ ¢ A(U)

[lF(rl,...,Tn)]]U = F([[Tlll,...,ﬁrn]]) .

Note that HT1fﬂV = ﬂrBU1f. Now we define inductively the relation, U forces ¢,
Ul ¢

for ¢ a sentence of LU'

INDUCTIVE DEFINITION OF FORCING

Vflk~¢1f all f: Ve > K

(1) K ¢ J(U)
Ul ¢
(A)7* = Ul
Ul-¢ Ay
(V)+ Ul ¢ Ul v
U6 v ¢ Ul-¢ vy
+ Ull=_Cc/x3d
(3) U= 3. ¢
(_’)+ for all f: V> U, if VI ¢1f then VI y1f
' Vi ¢ >y
(V)+ for all f: V> U, for all c ¢ A(U), VIF ¢1flc/x]
Ul ¥x.¢
o+ [zl = fr,1
(=) Ul =T
<[t fse..slt > e R
(Atomic)+ ‘1 n” c

Ul R(Tla e =TT

n

We now give some "derived rules" for forcing:
3.2 lemma. Basic properties of forcing

Ul-9¢ f: VU
(®) VI o
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- Ull-¢ A 4
{n) UT- ¢ UEv
(v)~ Ul=¢ vy

for each f in some K ¢ J(U) either Vflk-¢1f or Vflk»w1f

(3)- U”— 3X.¢
for each T in some K ¢ J(U) we have Vflk»¢[c/x] for some ¢ ¢ A(VfT
(+)” ViE o > v
for all f: Vo> U if V| ¢ff then V| ¢if
(v)” Vi yx.¢
for all f: ¥V > U and all ¢ ¢ A{U}, we have VI ¢4flc/x]

- Ul By

(=) for each f in some K ¢ J(U) we have H11]1f = ﬂrzﬂ4f
Ul R(Tl""’Tn)

(Atomic) for each f in some K ¢ J{U) we have R EFVIE N EN [ F 2 R(V?)

Our presentation here is non-standard in that the definition of forcing is usually
given by stipulating both positive and negative rules for each connective, (I} and
(P) are then derived. The resulting relation is the same.

3.3 Definition. A sequent r = ¢ is valid (written r F ¢) in the given inter-
pretation iff
Ul yle(x)/x] all y e T
Ul ¢Ce(x}/x1

w?e;e £ is an interpreation of the variables of L by elements of the appropriate
A(U).

3.4 Proposition. If each sort is interpreted by an inkabited presheaf (each
A{UY is inhabited) then the axioms and rules of Heyting's propositional calculus
are valid for [.

(Adaptations for domains which are not inhabited are discussed in Fourman (19771,
Scott [1978], Joyal & Boileau [1981], Makkai & Reyes [19771.)

3.5 Definitions. A presheaf A is separated iff

Ul-a = b
a=>b

A subobject R > A is closed iff

gﬂg—%%%% for a « A(U).
A higher-order type-theory is merely a many-sorted first-order theory with some
structure on the collection of sorts and certain distinguished operations and
relations. One of the insights due to Lawvere and Tierney is that topoi have
such higher-order structure. We consider languages where for any two sorts A and
B we can form the product A x B with appropriate pairing and projection operations,

for a,b ¢ A(U).

the function space BA with an evaluation operation -{-), and also the power type
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P(A) with a membership relation ¢. An interpretation is standard if all this
structure is interpreted by the corresponding structure on Sh(C).

3.6 Proposition. In any standard interpretation the following schemata, which
combine comprehension and extensionality, are valid.

x e A 3ly e B.g(x,y) <> I1f e BM W « A.o(x,f(x))

JNze P(A)Yx e A (x ez o(x)). 0
Thus power-types and function spaces behave as they should. The categorical

characterisation of this higher-aorder structure in terms of adjoints is very
simple, products are categorical products,

¢ gh C > P(A)
AxC~B SUb(AXC)

We shall not describe this structure in general here. We shall be dealing primar-
ily with sorts interpreted by representables. These are particularly simple to
deal with because they have generic elements. A well-known consequence of this is
the Yoneda Lemma:

0
F(U) = (u,F1 for Fe (SC] and Ue fg| .

We use this to calculate some examples of the higher-order structure. For this

exercise, we suppose that € has finite products and that each representable

functor is a sheaf.

3.7 Lemma. If F is a sheaf and U,V are representable

(1) FYu) = F(u = c)
with evaluation for u: V -~ U and £ ¢ F(U x V) given by g(u) = £]<u,V>.

(2) (PU)(V) = a(U x V) with U-a ¢ R iff Rf{<a,V> = V.
Proof. FU(V) = tv,FY1 % [Uxv,F1 = FUxY)

(PUY(V) = [V,PU] = Sub{UxV) = a(UxV). 0O
A logical counterpart to Yoneda's lemma is the following.

3.8 Lemma. Generic elements for representables.
If U is representable then V|-V¥x e U.¢ iff V x U\F—¢1n1[nz/x].
Proof. In one direction this is immediate from (V) . In the other, suppose

f: W-> Vwith a: W > U e U(W) then <f,a>: W >V x U and, by persistence, if
V x U[F—¢1n1[n2/x] then W[ ¢1fla/x1. So by (¥)* we have V| ¥x.¢ . O

We give an example of the use of generic elements in the simple case of a category
of presheaves.
3.9 Proposition. Choice holds for representables in categories of presheaves.
Proof. Let U be a representable and suppose

VI ¥x e U.3y ¢ F.o{x,y)

then
Ux V”’“ 3y € F-¢1"2(1T1,.Y)
Ux V|F—¢1n2(nl,g) for some £ ¢ F(Ux V)
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regarding £ as an element of FU(V) this gives
Ux Vi ¢‘|“2(“1=(€1“Z)(ﬂ1)) .
Since & <myamp> = & Thus
ViE vx e U.g(x,6(x)),
and so
Vi 3. ¥4 (x,F(x)). O

From a category-theoretic viewpoint this result is well-known in the form,
"Representables are internally projective".

54 POINTS, LOCAL CHOICE, CONTINUITY

Now we let € be a category of Tocales closed under finite limits and open inclu-
sions, equipped with the open cover topology, J. We write I for the topos Sh{(C,J).
For each locale X we define an internal Tocale X by

00X} (V)= O(xx ud).
This is generated internally by the basis given by

B(X)(U)= 0(xxU)
or even by the constant basis

B,(K)(U) = 0(X),

with the inclusions BO(X) o B(X) < 0(X) induced by the projections
Xx W XxU=X (In the terminology of Joyal & Tierney X = P*(X).)

The internal space of points of X is given by
(ptx) (V) = crud,x1.
This is the space of E-valued models of X. For a: Uj + X and W e O(X xUj)
. Uba e W iff <037l = 7.
For a: U > X and V € 0(XxU)
Uk o e V iff C(Xxr) <a,u9>1"

P X xao ilTly=T

since i*: O(Uj) > 0(U) reflects T.

by -t

4.1 Proposition. For any X ¢ |¢|/the internal locale X has enough points.
Proof. We must show for W ¢ O(X) that

Ul K covers pt W Ul K is an inductive crible .
UlEW e K

We assume the hypotheses, and let
K = (W« U, | Ui”_wi € K1U1.}
Clearly K is a doubly inductive crible of O(W) x O(U), that is an open of W x U.

We show that KK covers W x U that is that W x U € K, which is evidently sufficient
since then Ul W e K.

By persistence
W x U|F—K1n2 covers
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that is
Wx U3V e K11r2.111 e V.
So
K* = {W; = Uj|for some V; e O(W) we have W; x Ugl-V; e Kimy A my e Vi)
covers W x U. I[Because, if p: X - Y is an open surjection and X/ VeK|paolp ¢ V

then Y[V « KA 8 ¢ V: the basic opens of X are constant and thus descend open
surjections.] But now we claim IK* ¢ K because, by definition

”1‘ xU_i“—ﬂle Vi ‘iffwﬁ EV.-|
and, as projections are covers,

W_i x U'i“— V'i € K'l'nz iff U, I+ V'i € K1U,i. 0

Special cases of this are worthy of mention. When X is Baire space NN, Cantor

space ZN, Dedekind reals R, to say that X has enough points is the internal
statement of Bar induction, Fan theorem, Heine Borel theorem (respectively}. For
these cases it is sufficeint to take the topology on € generated by covering
families of open inclusions: since each of these spaces X has a point the pro-
ections X x U -~ X are covers for this topology. We call this topology the open
inclusion topology.

We introduce some more general spaces. Let f: X > U in Loc. We consider the
internal locale X/f defined at U by the basis ¢(V) with all its standard covers.
More properly for g: W >~ U we define

B(x/f){g = 0(g*X)
given by pulling back f along g. Any commuting triangle

X————;’———-rY
u
induces an internal map of locales

g€: X/f > Y/h

defined at U. Given by 5'1 on basis elements, this clearly takes basic covers to
covers. Furthermore, if £: X > Y is open (and surjective) then £: X/f > Y/h is
open, since it suffices to define 3€ commuting with A on basis elements, (and

surjective since if £: X - Y is an open surjection then so are all its pullbacks,

so internally 5'1 reflects basic open covers). These spaces include the spaces X
we introduced earlier as

U-X = (X x U)/w .

We now specialise to the case where the objects of € are Tl' Then U e Ud induces
an isomorphism

(p+x)(u) = cwdx3 = cruLxs
so that X represents the functor pt¥. This happens in particular for the spaces

N, NN, ZN, R and their basic opens (see Fourman [19831.) Furthermore, any element
of pt(X/f) defined at U induces a commuting triangle
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U‘j —_— X which for T1 spaces X
" ¢ X corresponds to a
section of g
u U
So we have a presentation
pt(X/f)1g correspond to X
commuting triangles ”

with restriction given by composition. 9
We extend our earlier lemma on generic elements:

4.2 Lemma. I[f objects of € are Tl then
Ul ¥x e pt(X/f).¢
iff
Xl (¢1F)(d). a

0f course these generalised representables can be defined internally in any
Grothendieck topos and this result holds.

4.3 Proposition. If the objects of € are T, then for any X ¢ |€| and any
A Sh“ﬁi
¢ EV¥x e pt(X).3a « A.o(x,a)

-+ 3 open cover p: Z —>> X and a function f: pt Z + A such that
¥x e A.Vz ¢ pt Z[pz = x + ¢(x,f{z))1.
Proof. As pt X 1is representable,
Ul-Yx Ja ¢(x,a)
iff
% x Ul Ja ¢1'n2(171,a)
iff for some open cover p: Z —> X x U
Z|- ¢fnyop(nyop,€) for some £ ¢ A(Z)
iff
Ul-Yz e Z ¢(p(2).&(2)). D

We do not know under what conditions £ descends to give a function defined on a
cover by open sets. We can ensure this by considering the open inclusion topology
on € in which case we obtain

E Vx e pt X.3a ¢ A.¢(x,3)
+ 3 open cover Ui e 0(X) and functions fi: U1. ~ A such that
Vx U1..¢(x,f1.(x)) .

We now consider continuity.

4.4, Proposition. If X,Y are T, then FVYFf: pt X > pt W, f is continuous.
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Proof. If U| f: pt X - pt ¥ then f is represented by £: X x U > Y in C. For
Ve O(Y) a basic open of W, w: W > U and x: W > X we have

Wi (efw){x) e V

iff e o <x,w>1 HV) = W
iFf oo ey = W
i W= x e e 3 (V) 1w

regarding 5'1V e 0(XxU) as an open of X defined at U.
Thus U|k—g‘1(v) is open. O

§5  Iteration

We return for a while to consideration of a general Grothendieck topos I = Sh(C,J).
We consider the internal category € in E given by

g(u) = ¢

with restrictions given by pulling back.

[For those who worry about coherence (one should worry), we remark that a con-
crete category in E with an equivalent category of sections over U is given by
considering V/f to be represented as the element S of (PV)(U) determined by

Wi-v eSfg iff fovs=g,.

So € is an internal small full subcategory of E whose objects are subfunctors of
representables. ]
We give C a topology by letting

Xy ——— X
\ / cover X/f in § if X; > X cover X in C.
u

Now for A ¢ |E| we define A « ShE(C,J) by
Ul AX/F) & A(X)
with restrictions for g: V >~ U given by restriction along f*g
. f*q
g*v > X

g*f £

vV —
and for &: Y/h > X/g in €/U, by restriction along £

Y ——————> X
\/
U

Any morphism A + B in £ induces A ~ B in ShE(Q,J).
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For those who prefer global descriptions, we associate to A ¢ |E| (pseudo)
functors

¢/U ~ E/U
natural in U (i.e. commuting with g* for g: V > U) as follows:

X
jf — N ehA
]

where
uf

E/X ——— kN

E

For Y — & X we have Iy

N

U

*
el whence 1, £* g (as £ 4 HE)

and T Ay = Tchy (as E*dy = AY).

This gives the required arrow I AYA > 1 AXA. What we obtain is an (internal)
functor
op
-6 .
We shall show that this preserves first order logic.

Here we work concretely for the sake of computations. A simple but more abstract
treatment will appear in Fourman and Kelly [1983]. We now consider a first-order
language L with sorts for the objects of E and operations symbols for its
morphisms. In fact to avoid size problems, we consider an arbitrary small frag-
ment of such a language. We may consider L also as a language in E as a constant
object (via a).

Working in E we consider the interpretation of L given by interpreting the sort A
by A and each operation f: A > B by the corresponding morphism A + B.
5.1 Lemma. For f: X > Uand g: X +V

Ul x/fl-¢  iff VI X/gl- ¢

Proof. By induction, it suffices to show that if Ul X/fl- *¢ is defined to mean
VIF X/glF ¢ for all g: X >V

then | is closed under the rules of . As no rule decreases the complexity of
¢ we may assume that the result holds for subformulae of ¢.

Only (=) and (\1)+ present any difficulties. We consider (+)*, and suppose the
result for ¢ and .

Suppose that for ail &: w + U and all h: Z » g*X, if W[ Z/(&*f o h) |F*¢{(F*€  h)
then NIF»Z/(i*f h) [F*uwi(f*€oh). Then if n: W' >V and h': Z + n*X are such
that W' |~Z'/(n*geh’) |- ¢4(g*nh') then by induction hypothesis
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UlF-2'(fog*noh') - *¢f(g*neh')
whence (letting ¢ = id and h = g*no h') we have

Ul-2'/(fog*noh') |- *yi{g*neh')
in particular W'|~Z'(n*go h') |- v{(g*noh'). So V|- X/g|F ¢ > v. The proof
for ¥ is similar. 0

5.2 Theorem. For ¢ a formula of L with appropriate parameters

U X/Fl o iff X|F o

Proof. Firstly, this is well formed: Parameters for ¢ at X/f are elements of
A(X/T) which are given as elements of A(X) and are thus parameters for ¢ at X.

We proceed by induction. That is, we show that if we define |F* internally by

Ul X/f -*0o iff X|-o

then {—* ds closed under the defining clauses of |- internally, (whence
Ul X/l & = XI- ¢) and if we define |FT by X |+ ¢ iff Ul X/fl— ¢ then |-F
is closed under the defining clauses of |- (whence X| ¢ = Ul X/fI ¢).

As the operations A » B are just those inherited from E, terms are interpreted
alike in both contéxts” Thus if [t] = [o] then U|[<] = §ol, so {F* s closed

under (=)* and if
U- 1<} = (ol then U}t = o,
so |-* 1is closed under (=)*.

That W—+ and |* are closed under W, W, (3)+ is trivial. For I, suppose
X, W—+ ¢1fi for fi: X; > X in some cover of X then XIF-Xi/fi|F-¢1fi and by I*
internally X|- X/id| ¢. In the contrary direction, suppose UIF-Xi/go fs I+ ¢1f1
for some cover of X as above. Then Xi\k—¢1f1 so X| ¢ that is U|- X/g|— ¢. For
(»)*, First suppose that for all f: V > U if V |~ ¢1f then V [~ ¢{f. Then we

claim U||- U/id|- ¢ > v, because for all g: W - U and all h: V > W, if

Wl V/h |~ ¢1goh, then V |-* yfgoh so V|-t ylgeh, that is W[k v/h |~ vige h.
Conversely, if for all g: W > U and all h: Z > g*X, where f: X > U, if

Wi—Z/g*foh ||-* ¢4f*go h, then X~ ¢ + y, because for h: Z » X if Z{~ ¢1h then
Ul-Z/foh |* ¢1h so Ul Z/foh [—~*h which gives Z| ¢ih, so U[F- X/f |*¢ » ¥.

The proof for \1+ is similar. ul

We view this thorem as asserting that in the topos E the naive notion of truth
given by the equivalence thesis is consonant with the theory of meaning given by
the notion of forcing over the site §. Of course this may seem vacuous as it
appears that § is manufactured with this result in mind. However, in the case of
primary interest for this paper, the results of §4 allow us to regard ¢ internally
as a full subcategory of Loc(E) equipped with the open cover topology. In fact,
if ¢ is the category of separable Tocales, we may identify € as a category of
separable Tocales in E. We shall deal with this, among other things, in a sequel
to this paper.

Given f: X »~ U we may view an element a of A(X) as a function:
Ul-a: X/f ~A.
This allows us to rephrase our theorem.

5.3 Corollary. Ul X/f - ol3) iff Ul vt e X/Fo(a(t)). O

We view this as a general form of the elimination theorem (cf. Troelstra [1977]
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pp.33,79). The appropriate theory of continuous truth CT has an axiom for each
clause in the definition of X/f|— ¢(a). For example, the clause for 3 gives the
axiom of Tocal choice ¥t « X Jye(a(t),y) iff I open cover p: Z —> X and continu-
ous f: Z - Y such that Yz¢(a(p{z)),f(z)). The translation t¢ of a formula ¢ with-
out free lawless variables is given by t¢ = def“— .

CODA

A general notion of non-constructive object is given by interpretations in
Grothendieck topoi. The process of iteration described in §5 shows how we may
view {internal) truth in this interpretation as given by a non-standard theory
of meaning. The clauses defining this give axioms for the corresponding theory
of continuous truth CT and an "elimination" translation. By construction,

CT F¢ < t¢ and for formulae in the Tawlike part of the language t¢ = ¢. The
proof theoretic content of the elimination;

CT | ¢ iff ID | ¢,

requires formalisation of our treatment in an appropriate theory ID of inductive
definitions. We do not undertake this here.

A final example of an unfinished object is this paper. Some of the results, in
particular continuity principles in sheaves over sites, go back to 1978 and were
much influenced by discussions with Scott and Hyland. Some results are still
being refined. Other persistent influences have been those of Joyal and Lawvere
on the one hand and of Kreisel, Troelstra and Dummett on the other, This

research has been supported at various times by the N.S.F. (U.S.A.), the S.R.C.
(U.K.), the Z.W.0. (Netherlands), and the A.R.G.S. (Australia), and made easier
by the hospitality of many people notably Christine Fox, Irene Scott, Karen Green,
and Imogen Kelly. I am grateful.
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