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Abstract

In this paper, we discuss a structural approach to automatic performance modelling of skeleton based
applications. This uses a synthesis of performance evaluation process algebra (pepa) and a pattern-oriented
hierarchical expression scheme. Such approaches are important in parallel and distributed systems where
the performance models must be updated regularly based on the current state of the resources.
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1 Introduction

Designing a system using high-level constructs has clear advantages. This has long

been recognised in structured parallel and distributed programming where (often

sequential) sub-tasks are structured for parallel assembly [1][2][3][4]. A more recent

example is the bpel language, which structures a composition of Web Services into

an orchestration in which simpler services are aggregated into a composite [5]. The

technical agenda behind these styles of description is to have a high-level, concise

description of the structure of the computation which can be readily re-shaped in

order to find a good mapping of tasks onto computing resources. The programmer is
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concerned with achieving a suitable throughput of jobs while satisfying constraints

on the utilisation of components such as servers and other execution environments.

However, the composition languages which allow sub-tasks to be composed do

not usually provide a mechanism for assessing whether or not the new version is

likely to improve on the performance of the previous one. Furthermore, languages

suitable for performance modelling such as stochastic process algebras are not usu-

ally structured in our sense, and do not have linguistic apparatus to express sub-task

composition. Our aim in this paper is to bridge this gap by automatically gener-

ating process algebra models from structured application descriptions and thus to

allow designers to compile their applications into process algebra models suitable

for performance evaluation via steady-state or transient analysis or verification via

probabilistic model-checking. In the present paper we focus on the results which can

be obtained by Markovian steady-state analysis of the process algebra model. We

use algorithmic skeletons [6] as an exemplar of a structured composition language

and use Performance Evaluation Process Algebra (pepa) [7] as our process algebra.

Our examples are drawn from the domain of structured parallel and distributed

programming.

2 Background

In this section we provide brief descriptions of the stochastic process algebra used

and the approach to structured parallel and distributed programming based on

algorithmic skeletons. For further details the reader should consult [7] and [6][8].

2.1 Performance Evaluation Process Algebra (pepa)

pepa is a Markovian process algebra, in which an exponentially distributed random

variable, representing duration, is associated with each activity. As in all process

algebras, models are constructed from components which interact via activities. The

syntax of the language is as follows:

S ::= (α, r).S | S + S | CS (prefix, choice and component name)

P ::= P ��
L

P | P/L | C (parallel, hiding and component name)

Here S denotes a sequential component and P denotes a model component which

executes in parallel. C stands for a constant which denotes either a sequential

component or a model component as introduced by a definition. CS stands for con-

stants which denote sequential components. The prefix (α, r).S gives a component

a designated first activity: it will have action type α and duration governed by the

exponential distribution with parameter r. The choice operator (+) enables the

activities of its two operands. The first activity to complete distinguishes one of

them: the other is discarded. The system will behave as the derivative resulting

from the evolution of the chosen component. Structure is introduced into the model

using the cooperation combinator ( ��
L

). There are no complementary actions in

pepa and this captures a csp-style parallel composition: components synchronize

on those actions in the cooperation set L which are enabled by both components.
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This synchronisation respects the notion of bounded capacity, meaning that a com-

ponent cannot be made to go faster by synchronisation. Thus the duration of the

shared activity is governed by the minimum of the random variables associated with

each of the contributing activities. In some cases a component is passive with re-

spect to a synchronised activity, meaning that it will participate at whatever rate

its partner component expects. This is denoted by the distinguished symbol �,

i.e. (α,�). When the cooperation set L is empty we use the shorthand notation

‖. Finally, there is an abstraction operator, hiding, denoted P/L, which allows the

type of an activity whose type is in L to be replaced by the distinguished type τ ,

which denotes a private or hidden activity.

The language definition is expressed in [7] via a small-step structured opera-

tional semantics which maps a pepa model onto a Continuous-Time Markov Chain

(ctmc). The ctmc can then be analysed for both steady state and transient per-

formance measures, using standard techniques.

2.2 The notion of algorithmic skeletons

The skeletal approach to the design of parallel programming systems proposes that

the complexity of parallel programming be contained by restricting the mechanisms

through which parallelism can be introduced to a small number of architecture in-

dependent constructs, originally known as “algorithmic skeletons”. Each skeleton

specification captures the logical behaviour of a commonly occurring pattern of

parallel computation, while packaging and hiding the details of its concrete imple-

mentation. Provision of a skeleton-based programming methodology simultaneously

raises the level of abstraction at which the programmer operates and provides the

scheduling system with crucial information on the temporal and structural inter-

action patterns exhibited by the application. Responsibility for exploiting this in-

formation passes from programmer to compiler and/or run-time system. To obtain

such detailed information from an equivalent ad-hoc message passing program is im-

possible in the general case. In this paper, we show how the structural information

can be used to construct pepa performance models of the application.

3 Expressing structured applications with skeletons

To automate generation of performance models, a given application must be first

expressed in a form which captures its essence. In this paper, we adopt a pattern-

oriented approach, which is based on the notion of algorithmic skeletons—a system

that was designed to enrich, and simplify, structural development of distributed

and parallel applications. It must be understood that although the introduced

constructs could be used directly by a human performance modeller, they are meant

to be used as an internal interface for generating performance models automatically

from distributed skeleton-based applications. To facilitate a thorough treatment of

the automation, we will focus on the following three basic skeletons. 6

6 Extensions to these basic forms are available in the tool: http://groups.inf.ed.ac.uk/enhance/.
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Fig. 1. Dataflow diagram of an application with nested pipelines and task replications.

Pipeline skeleton A pipeline skeleton arranges a set of components sequentially,

so that data units entering the pipeline are processed in each of these components

in turn (in the order the components are specified) before the final result leaves

the pipeline. In our approach we will use the following construct to specify a

pipeline:

pipe(<number of components>);

The components contained within a skeleton construct could be either skeleton

components (which results in hierarchical nesting), or task components (where

the data units are processed). In the latter case, a task component is specified

with the following construct:

task(<component name>, <rate>);

Here <rate> is the rate at which each of the data units entering the task com-

ponent is processed—used while modelling the task’s computational performance.

Deal skeleton A deal skeleton replicates a given task component in parallel, so

that data units entering the deal could be processed by one of the replicated

components, before the final result leaves the deal. The task component which

receives a given data unit is chosen by a round-robin data distribution policy. We

use the following construct to specify a deal:

deal(<number of replications>, <component name>, <rate>);

Farm skeleton A farm skeleton is similar to the deal: a given task component

is replicated in parallel so that data units entering the farm are processed by

one of the components. The difference, however, is that the process of choosing

the task component that should receive a given data unit is unpredictable, being

dynamically demand-driven upon completion of earlier computations. The non-

determinism is therefore probabilistic, where the next data unit is sent to one of

the succeeding tasks that has completed processing the data units assigned to it

previously. We use the following construct to specify a farm:

farm(<number of replications>, <component name>, <rate>);

We shall now illustrate the usage of these constructs by expressing a concrete

example. Imagine a system similar to the one shown in Fig. 1. Here, we have a

six stage 7 pipeline at the highest level. Some of these stages are task components

(for example, stages 1 and 6), while some are hierarchical skeleton nestings (say, for

example, stage 2 is a Farm, while stage 3 is a Deal).

7 The components of a pipeline are frequently referred to as “stages”.
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The skeleton-based expression of the system

is shown on the right. This description is

hierarchical—each subtree is described depth-first,

left-to-right across the same subtree level. We pro-

ceed to the next subtree in the same level only af-

ter all the previous subtrees have been described

completely; i.e. there are no skeleton nestings with

insufficient task assignments.

pipe(6);

task("task", 1.0);

farm(3, "task", 3.0);

deal(2, "task", 2.0);

farm(3, "task", 3.0);

deal(3, "task", 3.0);

task("task", 1.0);

It may be easier to view the whole exercise as a step-wise refinement of the

system description, where we conceive the system at the highest level and proceed

with refinements until the lowest level descriptions consist of task components only.

0 1 2 3 4 5 6 7 8 9 10 11 12

pipe

farm deal farm deal

Fig. 2. The skeleton hierarchy tree which corresponds to the example system shown in Fig. 1.

In light of the discussions to follow, it would be prudent to mention here that,

for every structured application, a hierarchical tree data structure is maintained by

the model generation tool, internally. We shall refer to this data structure as the

skeleton hierarchy tree (shown in Fig. 2 for our example system).

The skeleton hierarchy tree encapsulates most of the information provided in the

description (the overall structural and component details of the system). Additional

information is derived from this tree automatically, when needed (for example, the

data dependency graph connecting the tasks). We shall now discuss these in detail.

4 Generation of performance models

Generation of pepa performance models, from a given description of a structured

application, can be divided into three phases. In the first phase, the directed acyclic

graph (which represents data dependency between task components) is derived from

the skeleton hierarchy tree. This graph is then used in the following phases. In the

second phase, the process definitions for each of the task components are determined.

Finally, in the third phase, the overall system is modelled by combining the task

components, and skeletal components, based on their hierarchical organisation. The

final phase is important because it completes the performance model by establishing

the synchronisation sets, which will be used by the model solver while synchronising

task components at different levels of composition.
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Algorithm 1 GS(node): Generate source lists from the skeleton hierarchy tree

n := node.nchildren // Number of children nodes

node.slist := parent.slist // Inherit source list from parent node

node.stype := parent.stype // Inherit source pattern type

for i := 0 to (n − 1) do

GS(node.childi) // Recursively generate children source lists

if node.type is task then // Node is a task component

v := {x : where x = node.index}

if parent.type is deal or farm then // Parent is a replicable skeleton

tempnode := v

else

parent.slist := v

parent.stype := pipe // Update source pattern type

else if node.type is pipe then // Node is a pipeline skeleton

if parent.type deal or farm then // Pipeline within replicable

tempnode := node.slist

else

parent.slist := node.slist

parent.stype := node.type // Update source pattern type

else if node.type deal or farm then // Node is a replicable skeleton

m :=
⋃n−1

i=0 tempi // Merge temporary lists on children

if parent.type deal or farm then // Replicable within replicable

tempnode := m

else

parent.slist := m

parent.stype := node.type // Update source pattern type

4.1 Determination of the directed acyclic graph

Let the directed acyclic graph G(T , E), where T is the set of task components

and E is the set of directed edges connecting task components, represent the data

dependency graph which corresponds to the skeleton hierarchy tree. To derive such

a graph from a given skeleton hierarchy tree, we use recursive preorder tree traversal

algorithms, described as follows:

To every task in T , assign a unique index i, where 0 ≤ i < |T |. We will use the

notation ti to mean: “task component with index i,” or sometimes, “task i”. To

concretely implement the graph G, associate with every task, ti, two ordered sets

of task indices: (1) the source list Si, which gives the set of tasks in T from which

task i can receive data; (2) the destination list Di, which gives the set of tasks to

which task i can send data. They are formally defined as follows:

Si = {j : (tj, ti) ∈ E , i �= j} and Di = {j : (ti, tj) ∈ E , i �= j}.

When it is clear from the context which task we are referring to, we may choose

to drop the subscripts in Si and Di. It is important to note here that these sets
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only list all the possible predecessors (or successors) of a task—the effective set with

which the task eventually communicates is determined from these sets by applying

the corresponding source (or destination) manner of interaction, which we will be

discussing shortly. For example, given a pipeline containing two consecutive deals,

the general case is that all the tasks in the first deal will be in the source list for

the second deal. However, if the deals are of the same size, then in fact, a task in

the second deal will only ever receive data from the task in the first deal which has

the same intra-deal sibling rank (the effective set is therefore a singleton set).

It can be observed that these two sets, in combination with the task set T ,

completely define the directed acyclic graph G. We therefore use recursive tree

traversal algorithms to generate these sets from the skeleton hierarchy tree. In

Algorithm 1, we show the process by which the source lists are derived from the

skeleton hierarchy tree. In this algorithm, each node maintains the following data:

a pointer to its parent node in the skeleton hierarchy tree, parent ; the number of its

children nodes, nchildren; the list of task indices, slist, that is available to this node

as sources (in fact, this is what the algorithm will determine); the source pattern

type, stype; the type of node, type (this could be a skeleton node or a task node,

see Fig. 2). In addition to these, each node also maintains a temporary list, temp,

which is used by its parent node while finalising the parent’s source list. Note here

that for some skeleton nodes where replication of tasks are involved, the source list

on these nodes cannot be finalised until all of its child subtrees have also finalised

their source lists. A similar algorithm is used to derive the destination lists.

4.2 Modelling the task components

In general, a task component in a structured system is a process which repeatedly

undergoes the transitions: receive → compute → send. Depending on the higher-

level structure containing the task, these three basic activities are specialised ac-

cordingly. In some cases, for example, some of these activities are skipped (as in

producer tasks, which does not perform receive activities; or consumer tasks, where

send activities are never performed).

As noted in Section 4.1, when a task communicates with other tasks, the tasks

with which the communications are performed are based on an effective subset of S

(or D), determined by the manner of interaction. This manner of interaction is based

on the skeleton preceding (or succeeding) this task. It is easier to define this manner

of interaction as a function over the source (or destination) list, which chooses task

indices from the corresponding list, thus establishing the effective subset for the

current communication. In essence, this function therefore outlines for each task

how the task should interact with the remaining tasks in the skeleton hierarchy tree:

the source function defining how data should be received; the destination function,

how data should be sent.

The manner of interaction for a given task corresponds to the location of the

task within the skeleton hierarchy tree. As we can see in Algorithm 1, the source

pattern type (stype), is set with respect to the skeleton components containing

the task; the destination pattern type is set similarly. If we respectively represent
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0

12

Receive(α(S), d)

d′ = Compute(d)Send(β(D), d′)

Fig. 3. The transition diagram which gives the sequence of generic activities that are performed by any one
of the tasks in the system. During model generation, these activities are specialised based on the manner
in which the task interacts with its predecessors and successors.

the source and destination interaction functions with α and β, we can summarise

a task as shown in Fig. 3. From this abstract representation, it is clear that the

pepa process definition of a task component is determined by the subsets α(S)

and β(D); and the relationship between α and β, as required by the transition

receive → compute → send. Since tasks can have different α and β, we have to

determine process definition templates for all the possible pattern combinations. Let

us represent, for brevity, such combinations with {α(S) → ti → β(D)}; meaning,

“task i receives data based on the source function α; and sends data based on the

destination function β”. When either of the functions are not defined (as discussed

at the beginning of this section), we represent this with a ∗ (as in {∗ → ti → β(D)}

for a producer task).

Furthermore, since enumerating all the cases can be quite involving, we shall

condense the case investigations further by making some observations on the rela-

tionship between the different interaction functions (based on the definition of the

skeleton constructs, see Section 3). These observations are: (a) the Deal interac-

tion function is a special case of the Farm, where probabilistic non-determinism in

the Farm is removed by enforcing a round-robin data distribution policy. (b) the

Pipeline interaction function is a special case of the Deal, where the source (or des-

tination) list is a singleton set. Based on the later observation, discussion of cases

involving the Pipeline will be ignored, since it is covered in the cases with Deal. We

will, however, cover the combinations of Deal and Farm interaction functions.

Case {∗ → ti → Deal(D)} In this case, ti is a producer task. This task produces

data units, which are then sent to one of the tasks in D, chosen according to the

round-robin policy. The corresponding pepa process definition, where n = |D|

and λi is the computational activity associated with ti, is expressed as follows:

ti
def
= (λi,�).(movei0,�).(λi,�).(movei1,�). · · · .(λi,�).(movei(n−1),�).ti;

Here moveij represents communication of data from task i to the jth task in

D. We choose this notation instead of, say sendij , because these activities will be

used again later when we define the synchronisation sets. If the latter notation

was adopted, we are required to define a system for matching up corresponding

sendij and receiveji pairs (which is, in fact, unnecessary).

Case {Deal(S) → ti → ∗} In this case, ti is a consumer task. The task receives

data units from one of the tasks in S, which it then consumes. By following a

notation similar to the previous case, we have the following process definition:
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ti
def
= (move0i,�).(λi,�).(move1i,�).(λi,�). · · · .(move(n−1)i,�).(λi,�).ti;

Here n = |S|, the number of task indices in the source list. Based on argu-

ments similar to the one used in the previous case, we use moveji to represent

communication of data from the jth task in S to task i.

Case {Deal(S) → ti → Deal(D)} In this case, ti is an intermediate task: data

units received from one of the tasks in S is processed, and the result is sent to

one of the tasks in D. In each instance of the send and receive communications,

the effective task is chosen independently based on the round-robin distribution

policy.

When the cardinalities of the source and destination lists are the same, p =

|S| = |D|, the process definition is simple, as shown below:

ti
def
= (move0i,�).(λi,�).(movei0,�).

(move1i,�).(λi,�).(movei1,�).

· · ·

(move(p−1)i,�).(λi,�).(movei(p−1),�).ti;

When |S| �= |D|, however, there exists no immediate correspondence between

the source and destination tasks. It is therefore necessary to resolve this mismatch

until we find a repeatable sequence of activities. If we define periodicity, p, as

the number of distinct receive → compute → send transitions after which the

repetition ensues, it is easy to see that the periodicity is the least common multiple

of |S| and |D|. Based on this, we have the following process definition:

ti
def
= (movexi,�).(λi,�).(moveiy ,�).

· · · (repeat p times, incrementing k in every iteration).ti;

where 0 ≤ k < p, x = k mod |S| and y = k mod |D|.

When |S| = 3 and |D| = 2, for example, the steady-state activity sequence is

r0 λ s0

0

r1

λ

s1

1

r2λs0

2

r0λs1

3

r1

λ

s0

4

r2 λ s1

5

which gives the following process definition:

ti
def
= (move0i,�).(λi,�).(movei0,�).(move1i,�).(λi,�).(movei1,�).

(move2i,�).(λi,�).(movei0,�).(move0i,�).(λi,�).(movei1,�).

(move1i,�).(λi,�).(movei0,�).(move2i,�).(λi,�).(movei1,�).ti;

The above three cases can be used to completely define task components with

any combination of Pipeline and Deal. We shall now extend this by introducing

cases which account for the non-determinism associated with a Farm skeleton.
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Case {∗ → ti → Farm(D)} In this case, the task is a producer. The main dif-

ference, however, is the non-determinism, which we capture with the choice(+)

operator of pepa. This is shown in the following process definition:

ti
def
= (λi,�).t′i;

t′i
def
= (movei0,�).ti + (movei1,�).ti + · · · + (movei(n−1),�).ti;

where n = |D|. After a data unit has been produced, it is sent to any one of the

tasks in D, which brings back the task to the data production state.

Case {Farm(S) → ti → ∗} In this case, the task is a consumer. The process defi-

nition is similar to the previous case, as shown in the following definition:

ti
def
= (move0i,�).t′i + (move1i,�).t′i + · · · + (move(n−1)i,�).t′i;

t′i
def
= (λi,�).ti;

where n = |S|. After a data unit has been received from any one of the tasks in

S, it is consumed; consequently bringing the task back to the receiving state.

Case {Farm(S) → ti → Farm(D)} In this case, ti is an intermediate task. The

process definition for such tasks can be achieved by combining the previous two

cases, as shown in the following:

ti
def
= (move0i,�).(λi,�).t′i + · · · + (move(x−1)i,�).(λi,�).t′i;

t′i
def
= (movei0,�).ti + (movei1,�).ti + · · · + (movei(y−1),�).ti;

where, x = |S| and y = |D|. Data units are received from any one of the tasks in

S, processed, and the result sent to any one of the tasks in D.

Case {Deal(S) → ti → Farm(D)} In this case, ti is an intermediate task. What is

unique about this task is that for every data received in round-robin fashion, the

processed result is sent probabilistically to one of the tasks that has completed

processing the job assigned to it previously. It is important to note here that

since the source function preceding this task is a Deal, task i must receive the

next data according to round-robin fashion, as it can be inferred that the tasks

in S received their data in round-robin fashion. Once the data has been received

and processed, the result is sent to a Farm; hence, a choice composition is used

while dispatching the results, as shown in the following process definition:

ti
def
= (move0i,�).(λi,�).t0i ;

t0i
def
= (movei0,�).t1i + (movei1,�).t1i + · · · + (movei(y−1),�).t1i ;

· · ·

tx−1
i

def
= (move(x−1)i,�).(λi,�).txi ;

txi
def
= (movei0,�).ti + (movei1,�).ti + · · · + (movei(y−1),�).ti;

where x = |S| − 1 and y = |D|.

Case {Farm(S) → ti → Deal(D)} This case is similar to the previous, except for

the reversal in the placement of the choice composition. We therefore have the

following process definition:
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ti
def
= (move0i,�).t0i + (move1i,�).t0i + · · · + (move(x−1)i,�).t0i ;

t0i
def
= (λi,�).(movei0,�).t1i ;

· · ·

ty−1
i

def
= (move0i,�).tyi + (move1i,�).tyi + · · · + (move(x−1)i,�).tyi ;

tyi
def
= (λi,�).(moveiy ,�).ti;

where x = |S| and y = |D| − 1.

* Pipe Deal Farm
* 0 1 2 3

Pipe 4 5 6 7
Deal 8 9 10 11
Farm 12 13 14 15

In Algorithm 2, we incorporate all of the

above cases in order to generate the process

definition for each of the tasks in the skele-

ton hierarchy tree. For simplicity of repre-

sentation, a case number is assigned to each

of these cases, as shown in the table on the

righthand side. Here, the columns list desti-

nation patterns; whereas, the rows enumerate source patterns.

Furthermore, in Algorithm 2, the expression S(j) gives the mth task index in

S, where m = j mod |S|; the corresponding expression for the destination list,

D(j), is defined similarly. We use the interface Output: to emit segments of the

generated process definition. For every invocation to this interface, all the characters

immediately following this, until the end of line, are emitted as part of the process

definition. Also note that the order in which Output: is invoked is significant to

the validity of the generated process definition.

To generate all the process definitions of all the tasks in the skeleton hierarchy

tree, we traverse the hierarchy tree and invoke Algorithm 2 for all the nodes which is

a task node. Once this is done, we have completed the second phase of performance

model generation. We therefore proceed with the final phase where we define the

synchronisation sets. Before we proceed, it will be worth recalling that the moveij

and moveji activities, which correspond to the communications between tasks, will

be used while defining these synchronisation sets.

4.3 Modelling the system

All the process definitions generated at the end of the second phase only model

the performance of each task component, independently of the others. Since the

structured application is a cooperative manifestation of these tasks, they must be

synchronised accordingly with respect to the level of hierarchical composition. This

is done in the final phase of model generation, which we shall now discuss.

At every level of the skeleton hierarchy tree, each subtree corresponds to a

closed sub-system where only the boundary task components on either side inter-

acts with their adjacent sibling subtrees. The task components which are inside this

sub-system (the intermediate components) are synchronised with other task com-

ponents within the same sub-system—there is no cross-boundary synchronisation.

Hence, the final phase of model generation proceeds by defining synchronisation

sets between adjacent sub-trees in each level of the hierarchy tree; which are refined
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Algorithm 2 GP (i): Generate process definition for task i

Output: ti
def
=

l :=lcm(|S|, |D|) // Least common multiple, or sum if either is zero

if case is 1 or 2 then // Predecessor ∗, successor Pipe or Deal

for 0 ≤ j < l do Output: (λi,�).(movei,D(j),�).

else if case is 4 or 8 then // Predecessor Pipe or Deal, successor ∗

for 0 ≤ j < l do Output: (moveS(j),i,�).(λi,�).

else if case is 5, 6, 9 or 10 then // Predecessor and successor Pipe or Deal

for 0 ≤ j < l do Output: (moveS(j),i,�).(λi,�).(movei,D(j),�).

else if case is 3 then // Predecessor ∗, successor Farm

Output: (λi,�).t′i; t
′
i

def
= (movei,D(0),�).ti

for 1 ≤ j < |D| − 1 do

Output: +(movei,D(j),�).

if (|D| > 1) ∧ (j < |D| − 1) then Output: ti
else if case is 12 then // Predecessor Farm, successor ∗

Output: (moveS(0),i,�).t′i
for 1 ≤ j < |S| do

Output: +(moveS(j),i,�).t′i

Output: ; t′i
def
= (λi,�).

else if case is 7 or 11 then // Predecessor Pipe or Deal, successor Farm

for 0 ≤ j < |S| do

Output: (moveS(j),i,�).(λi,�).tji ; t
j
i

def
= (movei,D(0),�).

if j < |S| − 1 then Output: tj+1
i

else Output: ti
for 1 ≤ k < |D| do

Output: +(movei,D(k),�).

if j < |S| − 1 then Output: tj+1
i

else if j < |D| − 1 then Output: ti
else if case is 13 or 14 then // Predecessor Farm, successor Pipe or Deal

for 0 ≤ j < |D| − 1, initialise x = 0 and increment by 2 in each step do

Output: (moveS(0),i,�).txi
for 1 ≤ k < |S| do

Output: +(moveS(k),i,�).txi

Output: ; txi
def
= (λi,�).(movei,D(j),�).

if j < |D| − 1 then Output: tx+1
i ; tx+1

i

def
=

else if case is 15 then // Both predecessor and successor Farm

Output: (moveS(0),i,�).(λi,�).t′i
for 1 ≤ j < |S| do

Output: +(moveS(j),i,�).(λi,�).t′i

Output: ; t′i
def
= (movei,D(0),�).

for 1 ≤ j < |D| do

Output: ti + (movei,D(j),�).

Output: ti;
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Algorithm 3 GM(node, nchild): Generate system model

i := node.index

r := node.rank // Node rank among siblings

if node.type is task then

Output: ti
if r < nchild − 1 then

if parent.type �= (deal or farm) then

Output ��
L

where L = {movei,j : j = Di(k), 0 ≤ k < |Di|}

else

Output: ||

else

Output: (

for 0 ≤ j < node.nchild do

GM(childj , node.nchild)// Recursively model subtree

Output: )

if r < nchild − 1 then

if parent.type �= (deal or farm) then

Output ��
L

where

L = {movex,y : y = Di(j), x = Sy(k), 0 ≤ j < |Di|, 0 ≤ k < |Sy|}

else

Output: ||

repeatedly until all the task components are synchronised.

We use Algorithm 3 to perform this final phase. In this algorithm, we use

depth-first preorder tree traversal again. Since the synchronisation set between two

subtrees can be expressed with respect to one of these subtrees, we choose a forward

expression approach where the synchronisation set for a subtree is determined after

the sub-system which corresponds to that subtree has been synchronised. We can see

this in the algorithm: whenever the node is a task, we emit that task, and generate

the synchronisation sets with which this task synchronises with all its successor

tasks; when the node is a skeleton component, we generate the synchronisation

set by accounting for the tasks on the “send” boundary of this sub-system, which

interacts with the tasks on the “receive” boundary of the succeeding sub-tree.

Introducing computation and communication rates

The model which we have generated so far is incomplete in two ways. Although

we have the task definitions and the structure of their interactions, both computa-

tion and communication rates are passive. Since active rates are necessary while

performing synchronisation, we complete the model by introducing the relevant

active rates to the model.

Since the model generation method developed here is aimed primarily towards

distributed applications, the following discussion will focus on this context. In a

distributed system, the principal factor which determines the task rate is the rate

of the processing element to which the task is assigned for execution (for example,
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// Computation rates.
Processor_0 = (comp_0, 1.0).Processor_0;
Processor_1 = (comp_1, 3.0).Processor_1;
Processor_2 = (comp_2, 1.0).Processor_2;
Processor_3 = (comp_3, 2.0).Processor_3;
Processor_4 = (comp_4, 1.0).Processor_4;

// Communication rates.
Network = (move_0_1, 1.0).Network + (move_1_2, 1.0).Network +

(move_2_3, 1.0).Network + (move_3_4, 1.0).Network;

// Task definitions.
t_0 = (comp_0, infty).t_01;
t_01 = (move_0_1, infty).t_0;
t_1 = (move_0_1, infty).(comp_1, infty).(move_1_2, infty).t_1;
t_2 = (move_1_2, infty).(comp_2, infty).(move_2_3, infty).t_2;
t_3 = (move_2_3, infty).(comp_3, infty).(move_3_4, infty).t_3;
t_4 = (move_3_4, infty).(comp_4, infty).t_4;

// System model.
Network<move_0_1, move_1_2, move_2_3, move_3_4>(t_0 <move_0_1> t_1
<move_1_2> t_2 <move_2_3> t_3 <move_3_4> t_4)<comp_0, comp_1, comp_2,
comp_3, comp_4>(Processor_0 || Processor_1 || Processor_2 ||
Processor_3 || Processor_4)

// Throughput expression.
T1 = 1.0 * {** || (t_01 || t_1 || ** || ** || **) || (** || ** || ** || ** || **)};

Fig. 4. Example pepa performance model generated automatically from a skeleton expression.

the cpu frequency). On the other hand, the inter-task communication rates are

determined primarily by the communication latencies of the underlying network

connecting these processing elements. Hence, to complete the model, we introduce

two further sections. Based on the rate of the processing element, μ, the task rate

associated with the computational activity, λ, is introduced as a preamble:

Processor0
def
= (λ0, μ0).P rocessor0; Processor1

def
= (λ1, μ1).P rocessor1; · · ·

Note here that the computational activity, λi, must be the same as it is used in the

definition of task i. Similarly, we introduce the communication rates by adding a

section which is determined from an adjacency matrix representing the communi-

cation latencies. Again, the moveij activities used here must match the ones in the

task definitions. For an example performance model, see Fig. 4.

4.4 Analysis of performance results

We will now discuss a numerical analysis of performance results which demonstrates

practical advantages of the generated models as compared to naive systems without

automated performance modelling support.

In these analysis, we draw heavily on one practical application of the automatic

model generation approach: dynamic scheduling of tasks in parallel and distributed

applications [9][10]. Many such applications exhibit a high-level structure in which

the outermost skeleton is a Pipeline. In Fig. 5, we plot the predicted performance of

a pipeline application with five stages 8 . The performance is measured in throughput,

8 To focus our analysis on the task rates, we have set the same communication rates for all the inter-task
communications. This is necessary in order to minimise the effect of the communications on the relative
throughputs while we contrast the performance that is achieved due to different task rates.
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Fig. 5. The effect of bottleneck stages on the performance of a pipeline. Here, we have a pipeline with three
stages. The job processing rates of all the stages, except for the middle stage is increased uniformly. The
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Fig. 6. The effect of the bottleneck stage in Fig. 5 is reduced by replicating the bottleneck task. The
replication is done in two ways by using a Deal and a Farm. The number of replicated tasks are also varied
(2 and 3 replications).

where throughput at steady state is the expected number of completed jobs per unit

time.

As we can see, the throughput of the pipeline increases linearly as long as the

rates at which data units are processed by each of the stages increases uniformly.

However, when some stages of the pipeline become a bottleneck (in Fig. 5, we have

made the middle stage a bottleneck, with its task rate kept at a constant value

of 50) it is often the case that the overall performance of the pipeline degrades,

staying almost at the same level (since, the throughput is determined by the worst

performing task) even when the rates of the other stages are increased. This shows

that in order to improve the overall performance of Pipeline application, we must

ensure uniform task rates.

One way of ensuring uniformity of task rates is the replication of the worst

performing task so that multiple tasks of the same kind can share the load. As
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we have discussed in Section 3, this could be done in two ways. First, we use a

Deal where the bottleneck stage is replicated in a manner so that data is processed

in round-robin fashion. Second, we use a Farm where the data distribution is not

fixed, but probabilistic. In Fig. 6, we show the throughputs for five variations of the

replication: (1) the Pipeline application with a middle stage bottleneck (same as

shown in Fig. 5); (2) the case when the middle task is replicated twice as a Deal, (3)

thrice as a Deal ; (4) the case when the middle task is replicated twice as a Farm,

(5) thrice as a Farm.

As we can see, the performance of the pipeline improves when the bottleneck

stage is replicated. We also see that the throughput depends on the number of

replications in relation to the degree of deviation of the rate of the bottleneck stage

from the rate of the others; i.e., the throughput increases more sharply when the

combined rate of the replicated tasks is closer to the rate of the others, than it does

when the uniform rate is higher than the combined rate. This can be seen in the

saturation curve as we proceed towards higher uniform rates in the other stages.

We also notice that the throughputs of the Farm based replications are higher than

those of the Deal replications. This, we believe, is a consequence of the strict round-

robin policy that is imposed on the Deal replications; whereas, the policy for the

Farm replications is determined responsively based on the given rates.

5 Conclusion

In this paper, we have discussed an automated approach which generates pepa per-

formance models from skeleton-based applications. Such automatic approaches are

important in systems where the model must be updated regularly, and dynamically,

depending on the current state of the resources. We have demonstrated in a practi-

cal setting the advantages of the generated models by contrasting the performances

achieved through various task replication schemes.
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