
www.elsevier.com/locate/parco

Parallel Computing 30 (2004) 389–406
Bringing skeletons out of the closet:
a pragmatic manifesto for skeletal

parallel programming

Murray Cole

Institute for Computing Systems Architecture, School of Informatics, University of Edinburgh,

King’s Buildings, Edinburgh, EH9 3JZ Scotland, UK

Received 15 September 2002; received in revised form 15 August 2003; accepted 20 December 2003
Abstract

Skeleton and pattern based parallel programming promise significant benefits but remain

absent from mainstream practice. We consider why this situation has arisen and propose a

number of design principles which may help to redress it. We sketch the eSkel library, which

represents a concrete attempt to apply these principles. eSkel is based on C and MPI, thereby

embedding its skeletons in a conceptually familiar framework. We present an application of

eSkel and analyse it as a response to our manifesto.

� 2004 Elsevier B.V. All rights reserved.

Keywords: Parallel programming; Libraries; Skeletons; Patterns; MPI
1. Introduction

The skeletal approach to parallel programming is well documented in the research

literature (see [3,31] for surveys and Sections 2 and 6 for a discussion of many related

projects). It observes that many parallel algorithms can be characterised and classi-

fied by their adherence to one or more of a number of generic patterns of computa-

tion and interaction. For example, many diverse applications share the underlying

control and data flow of the pipeline paradigm [2].

Skeletal programming proposes that such patterns be abstracted and provided as

a programmer’s toolkit, with specifications which transcend architectural variations
E-mail address: mic@inf.ed.ac.uk (M. Cole).

0167-8191/$ - see front matter � 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.parco.2003.12.002

mail to: mic@inf.ed.ac.uk

390 M. Cole / Parallel Computing 30 (2004) 389–406
but implementations which recognise these to enhance performance. In this way, it

promises to address many of the traditional issues within the parallel software engi-

neering process:

• it will simplify programming by raising the level of abstraction;
• it will enhance portability and re-use by absolving the programmer of responsibi-

lity for detailed realisation of the underlying patterns;

• it will improve performance by providing access to carefully optimised, architec-

ture specific implementations of the patterns;

• it will offer scope for static and dynamic optimisation, by explicitly documenting

information on algorithmic structure (e.g. sharing and dependencies) which would

often be impossible to extract from equivalent unstructured programs.

These aspirations are common to a number of models which have proved very

successful within the wider world of software engineering, most notably structured

programming, object-oriented programming and design patterns. Yet skeletal pro-

gramming has still to make a substantial impact on mainstream practice in parallel

applications programming. In contrast, MPI was designed to address similar issues

(to varying degrees) and has proved very popular. It is instructive to consider why

this is the case. We believe that two key factors are the need to make new concepts

accessible to those comfortable with existing practice and the need to show a quick
pay-back for the effort involved in embracing them.
2. Background

As an application of the principles of data and functional abstraction, skeletal

parallel programming has its roots firmly in the Computer Science tradition, and

has existed in name for around 15 years. In this time, a number of projects have built
real systems. Although technologically impressive, none of these have achieved sig-

nificant popularity in the wider parallel programming community. While attempting

neither an analysis of the complexities of popular tastes, nor a lengthy, comprehen-

sive survey it is instructive to consider the features which have characterised these

systems:

• Many have chosen to embed the skeletal concept entirely within a functional pro-

gramming language (e.g. [9,16–18,28,30,33]). This is entirely natural given the
conceptual connection between skeletons and higher-order functions. However,

the typical user is challenged with a massive conceptual shift, and a sense of dis-

location (however justified) from control of performance;

• others have integrated imperative code within a skeletal framework expressed

either in a functional language [11,12,32] as above, or in some new language

[29] or library [1]. These have uniformly required the imperative code fragments

to be sequential, thereby making skeletons the only means of introducing paral-

lelism.

M. Cole / Parallel Computing 30 (2004) 389–406 391
Meanwhile, research on patterns has begun to consider facets of concurrency and

parallelism [7,24,25]. While initially targeting issues of synchronisation and non-

determinism more relevant to distributed computing, recent work has moved closer

to the concerns of High Performance Computing (HPC) and the connection to ske-

letons has become increasingly apparent. In particular, systems such as CO2P3S [23]
and PASM [15] have used class hierarchy and inheritance to capture skeletons in

object-oriented languages, and open, layered implementations which allow customi-

sation of parallelism by the knowledgeable user.

Noting the increasing stability and portability of direct parallel programming

frameworks (and in particular MPI) we believe that the time is now ripe to harness

the convergent experiences of the skeletal and pattern-based approaches. Thus, Sec-

tion 3 is a manifesto for a research programme which aims to take skeletal program-

ming into the parallel mainstream. We argue for a more pragmatic approach than
has previously been adopted in order to enhance accessibility. Section 4 describes

experiences with eSkel, a system which begins to address the issues raised. Section

5 considers eSkel in the light of our manifesto while Section 6 discusses related work.

This paper is not in itself an introduction to skeletal programming or MPI, with

which the reader is assumed to be familiar. The list of references provides many start-

ing points for reading on the former, while the latter can be studied in most under-

graduate textbooks on parallel programming and through many easily accessible on-

line tutorials.
3. A pragmatic manifesto

We present four principles which we believe should guide the future design and

development of skeletal programming systems. Various previous systems have ad-

dressed the principles to different degrees in different combinations. In order to keep

our presentation concise we do not elaborate on these and their relationships here,

but provide selected references in Section 6.
3.1. Propagate the concept with minimal conceptual disruption

The core principle of skeletal programming is conceptually straightforward. Its

simplicity should be a strength. In order to convey this to practitioners we must

be careful not to bundle it with other conceptual baggage, no matter how natural this

may seem from the perspective of the researcher. Skeletal programming is not func-

tional programming, even though it may be concisely explained and expressed as

such. Nor is it necessarily object-oriented programming, although the increasing

interest in such technologies for HPC will make such an attractive embedding viable

soon. Instead, we should build bridges to the de facto standards of the day, refining
or constraining only where strictly necessary. We should respect the conceptual mod-

els of these standards, offering skeletons as enhancements rather than as competi-

tion. This need not be too difficult. For example, it is arguable that MPI already

392 M. Cole / Parallel Computing 30 (2004) 389–406
embodies simple skeletons in its collective operations. We will exploit this link in our

own work.

3.2. Integrate ad-hoc parallelism

Many parallel applications are not obviously expressible as instances of skeletons.

Some have phases which require the use of less structured interaction primitives. For

example, Cannon’s well-known matrix multiplication algorithm [22] invokes an ini-

tial step in which matrices are skewed across processes in a manner which is not

efficiently expressible in many skeletal systems. Other applications have conceptu-

ally layered parallelism, in which skeletal behaviour at one layer controls the invo-

cation of operations involving ad-hoc parallelism within. It is unrealistic to

assume that skeletons can provide all the parallelism we need. We must construct
our systems to allow the integration of skeletal and ad-hoc parallelism in a well-

defined way.

3.3. Accommodate diversity

Previous research has seen the emergence of a common core of simple skeletons

and a variety of more exotic forms. When described informally, the core operations

are straightforward. Precise specification reveals variations in semantics which reflect
the ways skeletons are applied in real algorithms. The result is that some algorithms,

which intuitively seem to represent an instance of a skeleton, cannot be expressed in

certain systems because of constraints imposed by the specification. For example, an

algorithm which seems naturally pipelined may have a stage in which several outputs

are generated for each input. Another may have stages which generate no output for

certain inputs. A pipeline specification which requires each stage to produce one out-

put for each input excludes such algorithms. Similarly, one can imagine applications

of task farming in which some tasks are filtered out without producing results. A
farm specification which requires each task to produce one result is an unnatural

framework for such situations. We must be careful to draw a balance between our

desire for abstract simplicity and the pragmatic need for flexibility. This is not a

quantifiable trade-off.

3.4. Show the pay-back

A new technology will only gain acceptance if it can be demonstrated that adop-
tion offers some improvement over the status quo. The principles above can be sum-

marised as an attempt to minimise the disruption experienced in a move to skeletal

parallelism. We must also be able to show that there are benefits which outweigh the

initial overheads and that it is possible to experience these early on the learning

curve. Ultimately these must result from direct experience of high quality implemen-

tations, but in the first instance we must build a convincing catalogue of case studies.

In doing so, we should be careful to understand in advance what it is we aim to dem-

onstrate. For example, at the very least on individual applications, we must be able

M. Cole / Parallel Computing 30 (2004) 389–406 393
to outperform the conventional implementation constructed with ‘‘equivalent’’ pro-

gramming effort. Perhaps more easily, but equally impressively, we should be able to

show that skeletal programs can be ported to new architectures, with little or no

amendment to the source, and with sustained performance. This can be contrasted

with the performance pitfalls inherent in transferring semantically portable but per-
formance vulnerable ad-hoc programs, and echoes familiar arguments in favour of

the use of collective communication operations over hand coded equivalents [14].

More ambitiously, we may be able to show that the structural knowledge embedded

in skeletons allows optimisation within and across uses which would not be realisti-

cally achievable by hand.

Motivated by this manifesto, we have recently begun development of eSkel (edin-

burgh Skeleton library). The library and its documentation can be downloaded from

the eSkel home page [4]. Section 4 presents an overview of the most recently released
version, with the help of a simple example program. The interested reader should

consult the on-line reference documents for a full specification and further examples.

Section 5 discusses eSkel in the context of our manifesto.
4. An overview of eSkel

4.1. Collective calls, skeletons, processes and activities

eSkel is a library of C function and type definitions which extend the standard C

binding to MPI with skeletal operations. Its underlying conceptual model is that of

SPMD distributed memory parallelism, inherited from MPI, and its operations must

be invoked from within a program which has already initialised an MPI environ-

ment.

MPI programmers are familiar with collective operations and the benefits they

bring. Consider the MPI_Broadcast function. This provides a simple interface
to a conceptually useful operation which occurs frequently in a range of applications.

Without it, the programmer would have to choose and code an implementation of

broadcast with simple sends and receives. As well as being tiresome and error prone,

this would have the effect of embedding the choice of broadcast algorithm in the

code, irrespective of its suitability (in terms of performance) for porting to other

architectures. With it, the programming task is reduced to making a single function

call with a handful of parameters, benefiting in principle from carefully tuned imple-

mentations on each architecture to which the code is ported.
While MPI_Broadcast abstracts only a pattern of communication, MPI_Re-

duce encapsulates a more complex operation also involving computation. The

API makes no statement about the algorithm. The requirements placed on the reduc-

tion operator (associativity and commutativity) hint that one possibility will involve

internal parallelism. As with broadcast, the detailed exploitation is left to the MPI

implementation.

MPI_Broadcast, MPI_Reduce and MPI’s other collective operations are useful

tools. However, the experienced parallel programmer is aware that there are other

394 M. Cole / Parallel Computing 30 (2004) 389–406
‘‘patterns of computation and interaction’’ which occur in a range of applications

but which are not catered for directly. For example, pipelines and task farms are

well-established concepts, helpful during program design, but must be implemented

directly in terms of MPI’s simpler operations. The goal of the eSkel library is to add

such higher level collective operations to the MPI programmer’s toolbox.
In eSkel each skeleton is a collective operation, called by all processes within the

group associated with the communicator which is passed as an argument to the call.

During the call, the participating processes are grouped and regrouped by the imple-

mentation, according to the semantics of the skeleton. Each group of processes cre-

ated in this way constitutes an activity (such as a stage in a pipeline or a worker in a

farm). Interactions between activities are implemented implicitly by the skeleton,

according to its semantics. For example, in the Farm1for1 skeleton, processes

are allocated to a programmer specified number of worker activities. If several pro-
cesses are allocated to a worker, then it can exploit internal parallelism, using either

another skeleton or direct calls to MPI. The skeleton itself handles all aspects of task

distribution, including collating the initial set of tasks, distributing these dynamically

to workers in order to achieve a good load balance, and collating and storing the re-

sults returned. In the current implementation this is achieved by multi-threading one

worker process to also act as a traditional farmer, but more sophisticated distributed

schemes are possible without changing the API or its semantics. The application pro-

grammer must simply specify the collection of input tasks and the operations per-
formed by a worker activity to process a task.

Each activity is created within the context of a new communicator. At any time, a

process in an activity can reference this communicator by calling the library function

mycomm(). This gives the programmer a safe communication context within which

to express ad-hoc parallelism internal to an activity. Since skeleton calls can be freely

nested a process may be a member of a dynamically varying stack of activities, mir-

roring the stack of library calls it has made. mycomm() and related functions always

refer to the activity on the top of this stack.
In its current prototype, eSkel supports skeletons for pipelining, task farming and

butterfly style divide-and-conquer.

4.2. Handling data

Explicit manipulation of data within activities uses standard C (and MPI for ad-

hoc communication). This raises the issue of how our skeletons interface to the C/

MPI data model. In fact, there are two related questions:

• how does the code for an activity interface to the skeleton in order to receive and

return individual data items?

• how does the programmer specify the collection of data upon which a skeleton is

to operate?

These questions are answered by the eSkel Data Model (eDM), which defines the

concepts of the eDM atom and the eDM collection.

M. Cole / Parallel Computing 30 (2004) 389–406 395
4.2.1. The eDM atom

MPI requires the programmer to specify communicated data (and receiving buf-

fers) as (pointer, length, type) triples on participating processes, as appropriate to

each communication operation. This localised concrete view of data is often in con-

flict with the programmer’s conceptual view of data as consisting of logically coher-
ent items which happen to be physically distributed across the address spaces of the

processes. For example, in an image processing application, MPI provides no way of

indicating that the segments of an image stored by various processes are part of a

logical whole. It is the programmer’s responsibility to ensure that the local segments

are treated accordingly.

This situation creates a problem for a skeletal system: if the programmer identifies

data to be processed in the usual MPI way, then how is the system to know whether

the contributions from individual processes should be treated as self-contained items,
or as as pieces of a ‘‘distributed-shared’’ whole? In an ad-hoc MPI program, the pro-

grammer would keep this knowledge implicit and would use MPI calls directly to

achieve the required effect. In a skeletal system (which will handle the data interac-

tions itself) the programmer must state the intended interpretation. In eSkel we call

this property the spread of a data item and distinguish between local (processwise

contributions are self-contained) and global (processwise contributions are parts of

a distributed whole) cases. The programmer is required to explicitly choose between

these interpretations when specifying data. Fig. 1 illustrates the concept. Each pro-
cess provides a block of data. These can be interpreted as comprising three data

items (local spread) or one distributed item (global spread).

Thus, an eDM atom is an MPI triple, augmented with a tag indicating spread.

Activities interact with the skeleton, and indirectly each other, in terms of eDM

atoms. It is crucial to stress that this is not a new abstract data type. The tags have
P0 P1 P2

Global Spread: 1 item

OR

Local Spread: 3 distinct items

Fig. 1. Local and global spread.

396 M. Cole / Parallel Computing 30 (2004) 389–406
implications for the way data will be passed around a skeleton, but not for its mani-

pulation within activity code. Just as there is no requirement in MPI for an item re-

ceived as a triple to be manipulated in any particular way, so there are no

requirements on how an activity manipulates the atoms it receives (though it is of

course aware, through the tag, of the intended interpretation).

4.2.2. The eDM collection

Input data for a typical skeleton call will consist of a number of atoms (for exam-

ple, the sequence of items to be passed through a pipeline). In eSkel this is known as

an eDM collection and is simply a sequence of eDM atoms, all having the same

spread. To distinguish the number of items in a collection from the number of items

in a single atom (i.e. the ‘‘length’’ part of the triple) we refer to this as the collection’s

multiplicity. Skeleton calls have arguments detailing their input and output collec-
tions. The output collection is a specification of some pre-allocated space into which

the results will be stored, following the MPI convention of requiring programmer-

allocated buffers for the receipt of communications. Fig. 2 illustrates the concept.

Each of the three processes provides (multiplicity) four chunks of data. These can

be interpreted as comprising 12 separate data items (local spread) or three distri-

buted items (global spread).

4.3. Implementation

The first prototype of eSkel is implemented in C and MPI. The focal run-time

data structure is a stack (replicated on each process) of structures capturing informa-

tion about the nest of active skeleton calls. Each structure stores information on the

called skeleton, its actual parameters and the communication context. These are re-

quired to support the various structuring and communication activities abstracted by

the skeleton. The bulk of the code itself is concerned with skeleton specific data mar-
P0 P1 P2

Local Spread: 12 distinct items

OR

Global Spread: 3 items

Fig. 2. Multiplicity and spread.

M. Cole / Parallel Computing 30 (2004) 389–406 397
shalling. Most of this involves gathering and scattering the buffer contributions of

each participating process upon entry to and exit from the skeleton call and similarly

arranging internal communications. All of this must respect the spreads and multi-

plicities as specified in the skeleton call (and stored in the stack). Extending the

repertoire of skeletons requires a thorough understanding of these internal data
structures and operations.

4.4. Using eSkel

As an early test of the usability of the library, we took an open source sequential

program for drawing the Mandelbrot set from the web [34] and adapted it to run as

an eSkel SimpleFarm1for1. This variant of Farm1for1 assigns one process to

act as solely as farmer, for machines in which thread safe MPI is not available,
and constrains each worker to be a single process. This was straightforward, with

no amendments required to the core of the code.

The prototype for SimpleFarm1for1 is as follows

void SimpleFarm1for1 (eSkel_atom_t *worker (eSkel_atom_t *),

void *in, int inlen, int inmul, spread_t inspr, MPI_Datatype

inty,

void *out, int outlen, int *outmul, spread_t outspr,

MPI_Datatype outty, int outbuffsz, MPI_Comm comm);

where the first parameter selects the worker function. The next five specify the input

data (pointer, length of task, number of tasks, spread of tasks, underlying task

element type). The following five parameters similarly specify the output buffer, with

the output multiplicity parameter outmul passed by reference so that it can be set

during the call. The second last parameter gives the length of the output buffer, so

that overflow can be detected, and the last parameter provides the communicator
(and implicitly, the process group) within which the farm should be constructed.

Fig. 3 presents an extract of the main program. The first item of note occurs on

lines 27–28, where MPI types for points and pixels are constructed and registered.

This is standard MPI. Lines 30–40 create the array representing the domain for

our image. We use a one dimensional array with index arithmetic because eSkel, like

MPI, currently has no explicit concept of arrays of higher dimension. The whole ar-

ray is created by process 0, but it would have been equally possible for different pro-

cesses to create distinct sub-arrays. The assignments to inmul on lines 37 and 39
declare the input multiplicity of each process (i.e. 0 for all processes except P0, which
creates a number dependent upon the chosen granularity CHUNK). Lines 42–44 call

the skeleton. Lines 47–51 use conventional C/MPI to gather the results to process

0 for output.

Fig. 4 presents the code for the task function mandelcheck. This perform the

Mandelbrot calculation for each of the CHUNK points in a task, returning a corre-

sponding set of pixels. The task is presented to the function as a instance of the

library defined type eSkel_atom_t, a structure containing a (void *) pointer

Fig. 3. Main program for the Mandelbrot example.

398 M. Cole / Parallel Computing 30 (2004) 389–406
and an int, place-holders for the data pointer and length which are the only proper-

ties of an eDM atom left unconstrained by the enclosing skeleton call. We must

Fig. 4. Code for the Mandelbrot task function.

M. Cole / Parallel Computing 30 (2004) 389–406 399
stress that eSkel_atom_t is not an abstract data type: its definition is available to

the programmer and its contents are manipulated directly in user code. The real

work is performed by dummy lines 12–13, with around 20 lines of code (omitted

from the figure) taken verbatim from the original. Lines 15–17 construct the atom

to be returned.
Other skeletons in the preliminary implementation have similar prototypes and

usage. For example, the Pipeline skeleton has prototype shown below, in which

the first parameter indicates the number of stages, the second is the array of stage

functions and the third indicates allocation of participating processes to stages (using

integer ‘‘colours’’ in the style of MPI’s communicator splitting operation). The

remaining parameters are similar to SimpleFarm1for1.

void Pipeline (int ns, void (*stages[])(),
int col, spread_t spr[], MPI_Datatype ty[], void *in,

int inlen, int inmul,

void *out, int outlen, int *outmul,

int outbuffsz, MPI_Comm comm);

Giving the programmer the freedom to allocate processes to stages is a useful tool.

For example, the textbook description [22] of the well-known Gaussian Elimination

algorithm has two phases, both pipelined, but with opposite directions of data flow.
Additionally, the processes in the pipelines are required to maintain some internal

state between the two phases. This is easy to express in eSkel. Fig. 5 presents an ex-

tract of the code. Notice that the third (colour) parameter is used to reverse the order

of pipeline flow. myrank() is the process’ rank within the P processes active overall.

Fig. 5. Code for the Mandelbrot task function.

400 M. Cole / Parallel Computing 30 (2004) 389–406
reduce and backsub define the activity required of each stage in the corre-

sponding phases. It is also interesting to note that the both input and output buf-

fers to the whole call are empty! This is a natural reflection of the textbook

algorithm, in which data and results are stored in distributed fashion across the par-

ticipating processes. A more constrained skeleton, requiring conventional input and

output buffers or streams, would only complicate or even prohibit expression of the
algorithm.
5. eSkel in context

eSkel was designed to address the issues raised by our skeletal programming mani-

festo. We now discuss these point by point.
5.1. Propagate the concept with minimal conceptual disruption

Our first decision was to present the skeletons in the form of a library, in order to

avoid the introduction of any new syntax. In tandem with our decision to base our

ad-hoc parallelism on MPI, we chose to provide a C binding initially. Other bind-

ings, following those available for MPI, are equally possible. Furthermore, we

decided not to introduce any new abstract types for distributed-shared data. Our

skeletons add the facility to move data between activities, following the skeleton
specification, without the need to explicitly invoke MPI communications. As demon-

strated, these decisions make it simple to re-use existing components.

M. Cole / Parallel Computing 30 (2004) 389–406 401
5.2. Integrate ad-hoc parallelism

We have chosen to build our library around MPI because this is the most widely

portable of popular contemporary frameworks. Since any program which uses eSkel

must already be running MPI, we trivially satisfy the requirement for ad-hoc parallel
phases independent of skeleton calls. In order to facilitate ad-hoc parallelism within

the activities controlled by skeletons, the library semantics define a dynamically

evolving hierarchy of MPI communicators within which processes may communi-

cate. The top of the communicator stack is available via a call to the library function

mycomm(). For example, if the current skeleton is a pipeline with several processes

allocated to each stage, then the processes in some particular stage can interact using

direct calls to MPI within mycomm(), in the secure knowledge that these will be iso-

lated from communications elsewhere in the pipeline, including those generated by
the implementation to handle interactions with the preceding and succeeding stages.

5.3. Accommodate diversity

As we have noted, informal agreement over skeleton semantics can mask a range

of variations. Should a pipeline stage return exactly one output for each input?

Should a farm worker behave similarly? Should a pipeline stage be allowed to gen-

erate outputs without any input at all? Should a stage act as a function, instantiated
afresh for each input, or as a process instantiated once and maintaining state from

item to item?

It would be possible to address such diversity by providing ‘‘lowest common

denominator’’ skeletons in each case, perhaps with a number of parameters selecting

specific behaviour. Instead, we have chosen to define families of skeletons, adhering

to a common naming discipline, parameter structure and semantics. For example, in

the pipeline family we currently have Pipeline and Pipeline1for1. In the for-

mer, a stage is a process, active for the duration of the skeleton call, and free to pro-
duce new outputs entirely arbitrarily. In the latter, a stage is a function, instantiated

for each input and required to produce exactly one output at each instantiation.

Analogously, in Farm the worker is a process which can return results arbitrarily,

whereas in Farm1for1 it is a function, returning one result for each task. This

structure also allows families to be expanded without disruption to existing member

functions. This would not be possible with a single skeleton, catch-all approach. The

conceptual distinction between plain and ‘‘1for1’’ forms necessitates a corresponding

variation in the interface between skeleton and activity. In the former case, an activ-
ity must explicitly indicate to the skeleton its readiness to receive or produce a new

data item. Certain parameters of the transfer are determined by the actual parame-

ters to the skeleton. For example, in a Farm, the underlying type, length and spread

of the tasks and results are fixed at this point. The pointer to each data object to be

returned is provided dynamically by the activity. This exchange is handled by the

eSkel function Give, called by the activity and parameterised by the pointer and

the length. The analogous work required to acquire a new item from the skeleton

is handled by the function Take. Prototypes for Give and Take are as follows

402 M. Cole / Parallel Computing 30 (2004) 389–406
void Give (void *out, int length);

void *Take (int *length);

where in each case the pointer and length capture the only aspects of the transferred

data which are not already constrained by the enclosing skeleton. Give and Take

are generic functions which may be called with a common interface from many

skeleton functions. Their semantics are determined by the currently active skeleton

(get an item from the previous stage, return a value to the farmer, and so on). In

contrast, ‘‘1for1’’ skeletons constrain activities to produce one output for each input.

The definition of an activity can therefore be encapsulated as a function in which

explicit calls to Give and Take are forbidden.

As an example, in the Gaussian elimination program sketched earlier, the activity

of a stage during the reduction phase has a complex behaviour which cannot be ex-
pressed as a simple 1for1 pipeline. eSkel allows this behaviour to be expressed

neatly with Give and Take, as outlined in Fig. 6 (from which we omit the compu-

tational detail to emphasise the structure).

5.4. Show the pay-back

The development of eSkel is at a preliminary stage. The early results are promis-

ing, but it is clear that much remains to be done to build the convincing suite of per-
formance portable applications demanded by this point of the manifesto. We now

report briefly on the results of running the Mandelbrot program on a 24-processor

Sunfire 6800 UltraSPARC-III based SMP, hosted by the Edinburgh Parallel Com-

puting Centre. For convenience, an image size and convergence criterion which pro-

duced a sequential run time of a few tens of seconds were found by trial and error.

We then experimented by varying the number of processors and the number of pixel

computations allocated to a single farmed task. These involved changing only a sin-

gle constant in each case. Timings shown are averaged over a small number of runs:
only very small variation in timings between identically parameterised runs was ob-

served (around 1% of run time), including all I/O activity. Fig. 7 shows the effect of

varying the number of processors P for a fixed image size of 256 · 256 pixels and a
Fig. 6. Outline of the Gaussian reduction stage.

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

ec
s)

P

sequential
eSkel

custom

Fig. 7. Effect of varying P .

M. Cole / Parallel Computing 30 (2004) 389–406 403
maximum iteration count (in the standard Mandelbrot convergence check) of

100,000. Each task involved performing the Mandelbrot calculation for 32 pixels.
The time for one processor is for the original sequential C program with no MPI

or eSkel setup overheads. Since in a SimpleFarm, one process(or) performs the role

of farmer we should not expect more than P � 1 fold speed-up for P processors. Fig.

7 demonstrates good speed-up, almost matching that of a custom coded farm which

incorporated some small problem specific optimisations (essentially because the

eSkel version has to create, populate and manage a data structure for the tasks, which

the custom version can generate directly and dynamically). Our initial farm skeleton

implementation is quite simple and offers considerable scope for generic optimisation
and we regard these initial results as promising. Fig. 8 shows the effect of varying

the number of pixels assigned as a single task (i.e. adjusting the granularity at which
0

20

40

60

80

100

120

140

160

1 10 100 1000 10000 100000

T
im

e
(s

ec
s)

pixels per task

eSkel

Fig. 8. Effect of varying the granularity.

404 M. Cole / Parallel Computing 30 (2004) 389–406
farming is implemented, just as a programmer would do in the activity code) for the

same image size and iteration count and with P fixed at 8. The expected pattern of

behaviour is observed, with significant improvements as the granularity is increased

(in this case to around 32 pixels per task), with this performance maintained until

the granularity becomes so high that there is a shortage of tasks. The final point on
the graph corresponds to a granularity of 65,536, in other words only one task,

and a run time very close to that of the sequential program.
6. Acknowledgements and related work

The conceptual theme of this paper has emerged over a number of years and

has been influenced by many colleagues. Most recently I must thank Herbert
Kuchen whose concurrent work on his own library [19,20] and collaboration [21]

have been invaluable. A lively debate on standardisation of skeletons emerging from

the workshop on High Level Parallel Programming held in Orleans in 2001 was also

very helpful, particularly the contributions of Gaetan Hains, Sergei Gorlatch, Chris

Lengauer, Frederic Loulergue, Susanna Pelagatti,and Herbert Kuchen again. I sim-

ilarly thank Kevin Hammond, Hans-Wolfgang Loidl, Greg Michaelson and Phil

Trinder for their contributions to the debate which followed HLPP’01. Discussions

during an EC funded visit to Edinburgh by Andrea Zavanella [5] were also bene-
ficial.

A number of other works are due particular attention. Concern for accessibility

has been evident in the library systems of Danelutto [6] and Danelutto and Stigliani

[8] with their echoes of the pragmatism of the earlier P3L project [29]. Similarly, the

work of Darlington’s group on the SCL structured co-ordination language [10–12]

sought to integrate conventional imperative code fragments (in Fortran) within a

structured parallel environment. Kuchen and Botorog’s earlier work on Skil [1]

was similarly motivated, while the OTOSP model [13] uses OMP style skeletal prag-
mas to expand an underlying ad-hoc threaded model.

Other systems have sought to exploit the conceptual link between skeletons and

design patterns [31] to provide pattern based parallel code generators. The CO2P3S

system [23] generates multi-threaded Java, and encourages the programmer to spe-

cialise the resulting program to improve performance. This endeavour is supported

by the provision of a three layer view of an application, with successive layers open-

ing up more internal structure for refinement. In a similar vein, the PASM system

[15] take an open approach, building a library (underpinned by MPI) which the pro-
grammer is explicitly encouraged to amend and extend. Papers on both CO2P3S and

PASM argue that extensibility, sensitivity to the diverse requirements of superficially

similar patterns and the ability to make application specific performance enhance-

ments are key attributes in the quest for mainstream acceptability. The systems ex-

ploit object-oriented technology to capture the refinement relationships between

patterns in general and local variations of specific patterns. The link to patterns is

also apparent in [24] which focuses on the design process. The admission of ad-

hoc parallelism to a closed skeletal framework was considered in [26,27]. Finally,

M. Cole / Parallel Computing 30 (2004) 389–406 405
Gorlatch [14] makes a strong pragmatic case for the use of structured, collective

operations.
7. Future directions

We intend to build upon the current eSkel prototype in many ways. At the con-

ceptual level we will extend the set of available skeletons to encompass the full range

of structures addressed by previous systems, within one coherent framework. At the

language level, we will consider the software engineering benefits which might

emerge from an object-oriented casting of the library, following the lead of

[15,20,23]. Similarly, it is interesting to consider how our principles (but not this spe-

cific realisation) might apply to the design of libraries based around threaded paral-
lelism in the ad-hoc layer (following [31]), or more exotically, to the extremes of Grid

or System-on-Chip parallelism.
References

[1] G. Botorog, H. Kuchen, Efficient high-level parallel programming, Theoretical Computer Science 196

(1998) 71–107.

[2] P. Brinch-Hansen, Studies in Computational Science: Parallel Programming Paradigms, Prentice-

Hall, 1995.

[3] M. Cole, Algorithmic skeletons, in: K. Hammond, G. Michaelson (Eds.), Research Directions in

Parallel Functional Programming, Springer, 1999, pp. 289–303.

[4] M. Cole, eSkel library home page. Available from <http://www.dcs.ed.ac.uk/home/mic/eSkel>.

[5] M. Cole, A. Zavanella, Coordinating heterogeneous parallel systems with skeletons and activity

graphs, Journal of Systems Integration 10 (2) (2001) 127–143.

[6] M. Danelutto, Efficient support for skeletons on workstation clusters, Parallel Processing Letters 11

(1) (2001) 41–56.

[7] M. Danelutto, On skeletons and design patterns, in: Parallel Computing, Fundamentals and

Applications, Proceedings of the International Conference ParCo99, Imperial College Press, 2000, pp.

460–467.

[8] M. Danelutto, M. Stigliani, SKElib: parallel programming with skeletons in C, in: Proceedings of

Euro-Par 2000, LNCS 1900, Springer, 2000, pp. 1175–1184.

[9] J. Darlington, A. Field, P. Harrison, P. Kelly, D. Sharp, Q. Wu, R. While, Parallel programming

using skeleton functions, in: Proceedings of PARLE’93, LNCS 694, Springer, 1993, pp. 146–160.

[10] J. Darlington, Y. Guo, H.W. To, Structured parallel programming: theory meets practice, in: R.

Milner, I. Wand (Eds.), Research Directions in Computer Science, Cambridge University Press, 1996.

[11] J. Darlington, Y. Guo, H.W. To, J. Yang, Parallel skeletons for structured composition, in: Fifth

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, ACM Press, 1995,

pp. 19–28.

[12] J. Darlington, Y. Guo, H.W. To, J. Yang, Functional skeletons for parallel coordination, in:

Proceedings of Euro-Par’95, LNCS 966, Springer, 1995, pp. 55–69.

[13] A. Dorta, J. Gonzalez, C. Rodriguez, F. Sande, Structured parallel programming, in: Proceedings of

the European Workshop in OpenMP 2002, EWOMP 02, Roma, Italy. Available from <http://

www.caspur.it/ewomp02/prog.html>.

[14] S. Gorlatch, Send-Recv considered harmful? myths and truths about parallel programming, in:

Proceedings of PaCT2001, LNCS 2127, Springer, 2001, pp. 243–257.

http://www.dcs.ed.ac.uk/home/mic/eSkel
http://www.caspur.it/ewomp02/prog.html
http://www.caspur.it/ewomp02/prog.html

406 M. Cole / Parallel Computing 30 (2004) 389–406
[15] D. Goswami, A. Singh, B. Preiss, From design patterns to parallel architecture skeletons, Journal of

Parallel and Distributed Computing 62 (4) (2002) 669–695.

[16] M. Hamdan, A combinational framework for parallel programming using algorithmic skeletons,

Ph.D. Thesis, Department of Computing and Electrical Engineering, Heriot-Watt University, 2000.

[17] C. Herrmann, C. Lengauer, HDC: a higher-order language for divide-and-conquer, Parallel

Processing Letters 10 (2–3) (2000) 239–250.

[18] U. Klusik, R. Loogen, S. Priebe, F. Rubio, Implementation skeletons in Eden: low-effort parallel

programming, in: Proceedings of IFL’00, LNCS 2011, Springer, 2001, pp. 71–88.

[19] H. Kuchen, The skeleton library web pages. Available from <http://danae.uni-muenster.de/lehre/

kuchen/Skeletons>.

[20] H. Kuchen, A skeleton library, Report 6/02-I, Angewandte mathematik und informatik, University of

M€unster, 2002.

[21] H. Kuchen, M. Cole, The integration of task and data parallel skeletons, in: Proceedings of

Constructive Methods for Parallel Programming’02, Dagstuhl, 2002.

[22] V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduction to Parallel Computing: Design and

Analysis of Algorithms, Benjamin Cummings, 1994.

[23] S. MacDonald, D. Szafron, J. Schaeffer, S. Bromling, Generating parallel program frameworks from

parallel design patterns, in: Proceedings of Euro-Par 2000, LNCS 1900, Springer, 2000, pp. 95–104.

[24] B. Massingill, T. Mattson, B. Sanders, A pattern language for parallel application programs, in:

Proceedings of Euro-Par 2000, LNCS 1900, Springer, 2000, pp. 678–681.

[25] B. Massingill, Experiments with program parallelization using archetypes and stepwise refinement,

Parallel Processing Letters 9 (4) (1999) 487–498.

[26] M. Marr, M. Cole, Hierarchical skeletons and ad-hoc parallelism, Advances in Parallel Computing 11

(1996) 673–676.

[27] M. Marr, Descriptive simplicity in parallel computing, Ph.D. Thesis, University of Edinburgh, 1998.

[28] G. Michaelson, N. Scaife, P. Bristow, P. King, Nested algorithmic skeletons from higher order

functions, Parallel Algorithms and Applications 16 (2001) 181–206.

[29] S. Pelagatti, Structured Development of Parallel Programs, Taylor & Francis, 1997.

[30] J. Schwarz, F. Rabhi, A skeleton-based implementation of iterative transformation algorithms using

functional languages, in: M. Kara et al. (Eds.), Abstract Machine Models for Parallel and Distributed

Computing, IOS, 1996, pp. 119–133.

[31] F. Rabhi, S. Gorlatch (Eds.), Patterns and Skeletons for Parallel and Distributed Computing,

Springer, 2002.

[32] J. Serot, D. Ginhac, J.P. Derutin, SKiPPER: a skeleton-based parallel programming environment for

real-time image processing applications, in: Proceedings of PaCT-99, LNCS 1662, Springer, 1999, pp.

296–305.

[33] P. Trinder, K. Hammond, H.-W. Loidl, S. PeytonJones, Algorithm+ strategy¼parallelism, Journal

of Functional Programming 8 (1) (1998) 23–60.

[34] E. Weeks, Mandel.c source code for the simplest C & BASIC programs to do the Mandelbrot set.

Available from <http://glinda.lrsm.upenn.edu/~weeks/software/mand.html>.

http://danae.uni-muenster.de/lehre/kuchen/Skeletons
http://danae.uni-muenster.de/lehre/kuchen/Skeletons
http://glinda.lrsm.upenn.edu/~weeks/software/mand.html

	Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel programming
	Introduction
	Background
	A pragmatic manifesto
	Propagate the concept with minimal conceptual disruption
	Integrate ad-hoc parallelism
	Accommodate diversity
	Show the pay-back

	An overview of eSkel
	Collective calls, skeletons, processes and activities
	Handling data
	The eDM atom
	The eDM collection

	Implementation
	Using eSkel

	eSkel in context
	Propagate the concept with minimal conceptual disruption
	Integrate ad-hoc parallelism
	Accommodate diversity
	Show the pay-back

	Acknowledgements and related work
	Future directions
	References

