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Abstract

This paper presents a tree-to-tree transduction method for sentence compression. Our
model is based on synchronous tree substitution grammar, a formalism that allows local
distortion of the tree topology and can thus naturally capture structural mismatches. We
describe an algorithm for decoding in this framework and show how the model can be
trained discriminatively within a large margin framework. Experimental results on sentence
compression bring significant improvements over a state-of-the-art model.

1. Introduction

Recent years have witnessed increasing interest in text-to-text generation methods for many
natural language processing applications, ranging from text summarisation to question an-
swering and machine translation. At the heart of these methods lies the ability to perform
rewriting operations. For instance, text simplification identifies which phrases or sentences
in a document will pose reading difficulty for a given user and substitutes them with sim-
pler alternatives (Carroll, Minnen, Pearce, Canning, Devlin, & Tait, 1999; Chandrasekar &
Srinivas, 1996). In question answering, questions are often paraphrased in order to achieve
more flexible matching with potential answers (Lin & Pantel, 2001; Hermjakob, Echihabi,
& Marcu, 2002). Another example concerns reformulating written language so as to render
it more natural sounding for speech synthesis applications (Kaji, Okamoto, & Kurohashi,
2004).

Sentence compression is perhaps one of the most popular text-to-text rewriting methods.
The aim is to produce a summary of a single sentence that retains the most important
information while remaining grammatical (Jing, 2000). The appeal of sentence compression
lies in its potential for summarization and more generally for document compression, e.g., for
displaying text on small screens such as mobile phones or PDAs (Vandeghinste & Pan,
2004). Much of the current work in the literature focuses on a simplified formulation of the
compression task which does not allow any rewriting operations other than word deletion.
Given an input source sentence of words x = x1, x2, . . . , xn, a target compression y is formed
by removing any subset of these words (Knight & Marcu, 2002).

Despite being restricted to word deletion, the compression task remains challenging from
a modeling perspective. Figure 1 illustrates a source sentence and its target compression
taken from one of the compression corpora used in our experiments (see Section 5 for details).
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Figure 1: Example of sentence compression showing the source and target trees. The ital-
icized source nodes show the terminals that need to be removed to produce the
target string.
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Figure 2: Example transduction rules, where each is displayed as a pair of tree fragments.
The left (source) fragment is matched against a node in the source tree, and
the matching part is then replaced by the right (target) fragment. Dotted lines
denote variable correspondences, and ε denotes node deletion.

In this case, a hypothetical compression system must apply a series of rewrite rules in order
to obtain the target, e.g., delete the leaf nodes exactly and and, delete the subtrees made it
and which ones, and merge the subtrees corresponding to records and are involved. More
concretely, the system must have access to rules like those shown in Figure 2. The rules
are displayed as a pair of tree fragments where the left fragment corresponds to the source
and the right to the target. For instance, rule (1) states that a wh-noun phrase (WHNP)
consisting of an adverb (RB) and a wh-pronoun (WP) (e.g., exactly what) can be rewritten
as just a wh-pronoun (without the adverb). There are two things to note here. First,
syntactic information plays an important role, since deletion decisions are not limited to
individual words but often span larger constituents. Secondly, there can be a large number
of compression rules of varying granularity and complexity (see rule (5) in Figure 2).

Previous solutions to the compression problem have been cast mostly in a supervised
learning setting (but see Clarke and Lapata (2008), Hori and Furui (2004), and Turner and
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Charniak (2005) for unsupervised methods). Sentence compression is often modeled in a
generative framework where the aim is to estimate the joint probability P (x,y) of source
sentence x having the target compression y (Knight & Marcu, 2002; Turner & Charniak,
2005; Galley & McKeown, 2007). These approaches essentially learn rewrite rules similar
to those shown in Figure 4 from a parsed parallel corpus and subsequently use them to find
the best compression from the set of all possible compressions for a given sentence. Other
approaches model compression discriminatively as subtree deletion (Riezler, King, Crouch,
& Zaenen, 2003; Nguyen, Horiguchi, Shimazu, & Ho, 2004; McDonald, 2006).

Despite differences in formulation, existing models are specifically designed with sen-
tence compression in mind and are not generally applicable to other tasks requiring more
complex rewrite operations such as substitutions, insertions, or reordering. A common
assumption underlying previous work is that the tree structures representing the source
sentences and their target compressions are isomorphic, i.e., there exists an edge-preserving
bijection between the nodes in the two trees. This assumption is valid for sentence com-
pression but does not hold for other rewriting tasks. Consequently, sentence compression
models are too restrictive; they cannot be readily adapted to other generation problems
since they are not able to handle structural and lexical divergences. A related issue con-
cerns the deletion operations themselves which often take place without considering the
structure of the target compression (the goal is to generate a compressed string rather than
the tree representing it). Without a syntax-based language model (Turner & Charniak,
2005) or an explicit generation mechanism that licenses tree transformations there is no
guarantee that the compressions will have well-formed syntactic structures. And it will not
be straightforward to process such compressions for subsequent generation or analysis tasks.

In this paper we present a sentence compression model that is not deletion-specific but
can account for ample rewrite operations and scales to other rewriting tasks. We formulate
the compression problem as tree-to-tree rewriting using a synchronous grammar (using
rules like those shown in Figure 2). Specifically, we adopt the synchronous tree substitution
grammar (STSG) formalism (Eisner, 2003) which can model non-isomorphic tree structures
while having efficient inference algorithms. We show how such a grammar can be induced
from a parallel corpus and propose a discriminative model for the rewriting task which
can be viewed as a weighted tree-to-tree transducer. Our learning framework makes use of
the large margin algorithm put forward by Tsochantaridis, Joachims, Hofmann, and Altun
(2005) which efficiently learns a prediction function to minimize a given loss function. We
also develop an appropriate algorithm that can be used in both training (i.e., learning the
model weights) and decoding (i.e., finding the most plausible compression under the model).
Beyond sentence compression, we hope that some of the work described here might be of
relevance to other tasks involving structural matching (see the discussion in Section 8).

The remainder of this paper is structured as follows. Section 2 provides an overview
of related work. Section 3 presents the STSG framework and the compression model we
employ in our experiments. Section 5 discusses our experimental set-up and Section 6
presents our results. Discussion of future work concludes the paper.
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2. Related Work

Synchronous context-free grammars (SCFGs, Aho & Ullman, 1969) are a generalization
of the context-free grammar (CFG) formalism to simultaneously produce strings in two
languages. They have been used extensively in syntax-based statistical MT. Examples
include Wu’s (1997) inversion transduction grammar (ITG), Alshawi et al.’s (2000) head
transducers, Chiang’s (2007) hierarchical phrase-based translation, and several variants of
tree transducers introduced in Yamada and Knight (2001) and Grael and Knight (2004).

Sentence compression bears some resemblance to machine translation. Instead of trans-
lating from one language into another, we are translating long sentences into shorter ones
within the same language. It is therefore not surprising that previous work has also adopted
SCFGs for the compression task. Specifically, Knight and Marcu (2002) proposed a noisy-
channel formulation of sentence compression. Their model consists of two components: a
language model P (y) whose role is to guarantee that the compression output is grammat-
ical and a channel model P (x|y) capturing the probability that the source sentence x is
an expansion of the target compression y. Their decoding algorithm searches for the com-
pression y which maximizes P (y)P (x|y). The channel model is a stochastic SCFG, the
rules of which are extracted from a parsed parallel corpus and their weights estimated using
maximum likelihood. Galley and McKeown (2007) show how to obtain improved SCFG
probability estimates through Markovization. Turner and Charniak (2005) note that SCFG
rules are not expressive enough to model structurally complicated compressions as they
are restricted to trees of depth 1. They remedy this by supplying their synchronous gram-
mar with a set of more general “special” rules. For example, they allow rules of the form
〈NP,NP〉 → 〈[NP NP 1 CC NP 2 ],NP 1 〉 (boxed subscripts are added to distinguish between
the two NPs).

Our own work formulates sentence compression in the framework of synchronous tree-
substitution grammar (STSG, Eisner, 2003). STSG allows to describe non-isomorphic
tree pairs (the grammar rules can comprise trees of arbitrary depth) and is thus suited to
text-rewriting tasks which typically involve a number of local modifications to the input
text. Especially if each modification can be described succinctly in terms of syntactic
transformations, such as dropping an adjectival phrase or converting a passive verb phrase
into active form. STSG is a restricted version of synchronous tree adjoining grammar
(STAG, Shieber & Schabes, 1990) without an adjunction operation. STAG affords mild
context sensitivity, however at increased cost of inference. SCFG and STSG are weakly
equivalent, that is, their string languages are identical but they do not produce equivalent
tree pairs. For example, in Figure 2, rules (1)–(4) can be expressed as SCFG rules, but
rule (5) cannot because both the source and target fragments are two level trees. In fact it
would be impossible to describe the trees in Figure 1 using a SCFG. Our grammar rules are
therefore more general than those obtained in Knight and Marcu (2002) and can account
for more elaborate tree divergences. Moreover, by adopting a more expressive grammar
formalism, we can naturally model syntactically complex compressions without having to
specify additional rules (as in Turner & Charniak, 2005).

A synchronous grammar will license a large number of compressions for a given source
tree. Each grammar rule typically has a score from which the overall score of a compres-
sion y for sentence x can be derived. Previous work estimates these scores generatively as
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discussed above. We opt for a discriminative training procedure which allows for the incor-
poration of all manner of powerful features. We use the large margin technique proposed
by Tsochantaridis et al. (2005). The framework is attractive in that it supports a config-
urable loss function, which describes the extent to which a predicted target tree differs from
the reference tree. By devising suitable loss functions the model can be straightforwardly
adapted to text rewriting tasks besides sentence compression.

McDonald (2006) also presents a sentence compression model that uses a discriminative
large margin algorithm. The model has a rich feature set defined over compression bigrams
including parts of speech, parse trees, and dependency information, without however making
explicit use of a synchronous grammar. Decoding in this model amounts to finding the
combination of bigrams that maximize a scoring function defined over adjacent words in
the compression and the intervening words which were dropped. Our model differs from
McDonald (2006) in two important respects. First, we can capture more complex tree
transformations that go beyond bigram deletion. Being tree-based, our decoding algorithm
is better able to preserve the grammaticality of the compressed output. Second, the tree-
based representation allows greater modeling flexibility, e.g., by defining a wide range of
loss functions over the tree or its string yield. In contrast, McDonald (2006) can only define
loss functions over the final compression.

Although the bulk of research on sentence compression relies on parallel corpora for
modeling purposes, a few approaches use no training data at all or a small amount. An ex-
ample are Hori and Furui (2004) who propose a model for automatically transcribed spoken
text. Their method scores candidate compressions using a language model combined with
a significance score (indicating whether a word is topical or not), and a score representing
the speech recognizer’s confidence in transcribing a given word correctly. Despite being
conceptually simple and knowledge lean, their model operates at the word level. Since it
does not take syntax into account, it has no means of deleting constituents spanning several
subtrees (e.g., relative clauses). Clarke and Lapata (2008) show that such unsupervised
models can be greatly improved when linguistically motivated constraints are used during
decoding.

3. Problem Formulation

As mentioned earlier, we formulate sentence compression as a tree-to-tree rewriting problem
using a weighted synchronous grammar coupled with a large margin training process. Our
model learns from a parallel corpus of input (uncompressed) and output (compressed) pairs
(x1,y1), . . . , (xn,yn) to predict a target labeled tree y from a source labeled tree x. We
capture the dependency between x and y as a weighted STSG which we define in the
following section. Section 3.2 discusses how we extract such a grammar from a parallel
corpus. Each rule has a score, as does each ngram in the output tree, from which the
overall score of a compression y for sentence x can be derived. We introduce our scoring
function in Section 3.3 and explain our training algorithm in Section 3.5. In this framework
decoding amounts to finding the best target tree licensed by the grammar given a source
tree. We present a chart-based decoding algorithm in Section 3.4.
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3.1 Synchronous Grammar

A synchronous grammar defines a space of valid source and target tree pairs, much as a
regular grammar defines a space of valid trees. Synchronous grammars can be treated as tree
transducers by reasoning over the space of possible sister trees for a given tree, that is, all
the trees which can be produced alongside the given tree. This is essentially a transducer
which takes a tree as input and produces a tree as output. The grammar rules specify
the steps taken by the transducer in recursively mapping tree fragments of the input tree
into fragments in the target tree. From the many families of synchronous grammars (see
Section 2), we elect to use a synchronous tree-substitution grammar (STSG). This is one
of the simpler formalisms, and consequently has efficient inference algorithms, while still
being complex enough to model a rich suite of tree edit operations.

A STSG is a 7-tuple, G = (NS ,NT ,ΩS ,ΩT , P,RS , RT ) where N are the non-terminals
and Ω are the terminals, with the subscripts S and T indicating source and target respec-
tively, P are the productions and RS ∈ NS and RT ∈ NT are the distinguished root symbols.
Each production is a rewrite rule for two aligned non-terminals X ∈ NS and Y ∈ NT in the
source and target:

〈X,Y 〉 → 〈α, γ,∼〉 (1)

where α and γ are elementary trees rooted with the symbols X and Y respectively. Note
that a synchronous context free grammar (SCFG) limits α and γ to one level elementary
trees, but is otherwise identical to a STSG, which imposes no such limits. Non-terminal
leaves of the elementary trees are referred to as frontier nodes or variables. These are the
points of recursion in the transductive process. A one-to-one alignment between the frontier
nodes in α and γ is specified by ∼. The alignment can represent deletion (or insertion) by
aligning a node with the special ε symbol, which indicates that the node is not present in
the other tree. Only nodes in α can be aligned to ε, which allows for subtrees to be deleted
during transduction. We disallow the converse, ε-aligned nodes in γ, as these would license
unlimited insertion in the target tree, independently of the source tree. This capability
would be of limited use for sentence compression, while also increasing the complexity of
inference.

The grammar productions can be used in a generative setting to produce pairs of trees,
or in a transductive setting to produce a target tree when given a source tree. Algorithms 1
and 2 present pseudo-code for both processes. The generative process (Algorithm 1) starts
with the two root symbols and applies a production which rewrites the symbols as the
production’s elementary trees. These elementary trees might contain frontier nodes, in
which case the aligned pairs of frontier nodes are pushed on to the stack, and later rewritten
using another production. The process continues in a recursive fashion until the stack is
empty — there are no frontier nodes remaining —, at which point the two trees are complete.
The sequence of rewrite rules are referred to as a derivation, from which the source and
target tree can be recovered deterministically.

Our model uses a STSG in a transductive setting, where the source tree is given and it
is only the target tree that is generated. This necessitates a different rewriting process, as
shown in Algorithm 2. We start with the source tree, and RT , the target root symbol, which
is aligned to the root node of the source, denoted root(x). Then we choose a production to
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Algorithm 1 Generative process for creating a pair of trees.
initialize source tree, x = RS
initialize target tree, y = RT
initialize stack of frontier nodes, F = [(RS , RT )]
for all node pairs, (vS , vT ) ∈ F do

choose a rule 〈vS , vT 〉 → 〈α, γ,∼〉
rewrite node vS in x as α
rewrite node vT in y as γ
for all variables, u ∈ ∼ do

find aligned child nodes, (cS , cT ), under vS and vT corresponding to u
push (cS , cT ) on to F

end for
end for
x and y are now complete

Algorithm 2 The transduction of a source tree into a target tree.
Require: complete source tree, x, with root node labeled RS

initialize target tree, y = RT
initialize stack of frontier nodes, F = [(root(x), RT )]
for all node pairs, (vS , vT ) ∈ F do

choose a rule 〈vS , vT 〉 → 〈α, γ,∼〉 where α matches the sub-tree rooted at vS in x
rewrite vT as γ in y
for all variables, u ∈ ∼ do

find aligned child nodes, (cS , cT ), under vS and vT corresponding to u
push (cS , cT ) on to F

end for
end for
y is now complete

rewrite the pair of aligned non-terminals such that the production’s source side, α, matches
the source tree. The target symbol is then rewritten using γ. For each variable in α the
matching node in the source and its corresponding leaf node in the target tree are pushed
on to the stack for later processing.1 The process repeats until the stack is empty, and
therefore the source tree has been covered. We now have a complete target tree. As before
we use the term derivation to refer to this sequence of production applications. The target
string is the yield of the target tree, given by reading the non-terminals from the tree in a
left to right manner.

1. Special care must be taken for ε aligned variables. Nodes in α which are ε-aligned signify that the source
sub-tree below this point can be deleted without affecting the target tree. For this reason we can safely
ignore source nodes deleted in this manner.

7



Cohn & Lapata

Rules which perform major tree edits
(1) 〈WHNP, WHNP〉 → 〈[WHNP RB εWP 1 ], [WHNP WP 1 ]〉
(2) 〈S, NP〉 → 〈[S NP 1 VP ε ], NP 1 〉
(3) 〈S, VP〉 → 〈[S NP εVP 1 ], VP 1 〉
(4) 〈S̄, VP〉 → 〈[S̄ WHNP εS 1 ], VP 1 〉
(5) 〈S, S〉 → 〈[S [S̄ WHNP 1 S 2 ] [CC and] S̄ 3 ], [S WHNP 1 [S NP 2 VP 3 ]]〉

Rules which preserve the tree structure
(6) 〈WP, WP〉 → 〈[WP what], [WP what]〉
(7) 〈NP, NP〉 → 〈[NP NNS 1 ], [NP NNS 1 ]〉
(8) 〈NNS, NNS〉 → 〈[NNS records], [NNS records]〉
(9) 〈VP, VP〉 → 〈[VP VBP 1 VP 2 ], [VP VBP 1 VP 2 ]〉
(10) 〈VBP, VBP〉 → 〈[VBP are], [VBP are]〉
(11) 〈VP, VP〉 → 〈[VP VBN 1 ], [VP VBN 1 ]〉
(12) 〈VBN, VBN〉 → 〈[VBN involved], [VBN involved]〉

Figure 3: The rules in a Synchronous Tree Substitution Grammar (STSG) capable of gen-
erating the sentence pair from Figure 1. Equivalently, this grammar defines a
transducer which can convert the source tree (Figure 1(a)) into the target tree
(Figure 1(b)). Each rule rewrites a pair of non-terminals into a pair of subtrees,
shown in bracketed notation.

Let us consider again the compression example from Figure 1. The tree editing rules from
Figure 2 are encoded as STSG productions in Figure 3 (see rules (1)–(5)). Production (1),
reproduces tree pair (1) from Figure 2, production (2) tree pair (2), and so on. The notation
in Figure 3 (primarily for space reasons) uses brackets ([]) to indicate constituent boundaries.
Brackets surround a constituent’s non-terminal and its child nodes, which can each be
terminals, non-terminals or bracketed subtrees. The boxed indices are short-hand notation
for the alignment, ∼. For example, in rule (1) they specify that the two WP non-terminals
are aligned and the RB node occurs only in the source tree (i.e., heads a deleted sub-
tree). The grammar rules allow for differences in non-terminal category between the source
and target, as seen in rules (2)–(4). They also allow arbitrarily deep elementary trees,
as evidenced by rule (5) which is has trees of depth two. Rules (6)–(12) complete the
toy grammar which describes the tree pair from Figure 1. These rules copy parts of the
source tree into the target, be they terminals (e.g., rule (6)) or internal nodes with children
(e.g., rule (9)).

Figure 4 shows how this grammar can be used to transduce the source tree into the
target tree from Figure 1. The first few steps of the derivation are also shown graphi-
cally in Figure 5. We start with the source tree, and seek to transduce its root symbol
into the target root symbol, denoted S/S. The first rule to be applied is rule (5) in Fig-
ure 3; its source side, α = [S [S̄ WHNP S] [CC and] S̄], matches the root of source tree
and it has the requisite target category, Y = S. The matching part of the source tree
is rewritten using the rule’s target elementary tree, γ = [S WHNP [S NP VP]]. The three
three variables are now annotated to reflect the category transformations required for each
node, WHNP/WHNP, S/NP and S̄/VP. The process now continues for the leftmost of these
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[S/S [S̄ [WHNP exactly what] [S [NP records] [VP made it]]]
[CC and] [S̄ [WHNP which] [S [NP ones] [VP are involved]]]]

⇒5 [S [WHNP/WHNP [RB exactly] [WP what]] [S [S/NP [NP records] [VP made it]]
[S̄/VP [WHNP which] [S [NP ones] [VP are involved]]]]]

⇒1 [S [WHNP [WP/WP what]] [S [S/NP [NP records] [VP made it]]
[S̄/VP [WHNP which] [S [NP ones] [VP are involved]]]]]

⇒6 [S [WHNP [WP what]] [S [S/NP [NP records] [VP [VBD made] [NP [PRP it]]]]]
[S̄/VP [WHNP which] [S [NP ones] [VP [VBP are] [VP [VBN involved]]]]]]]

⇒2 [S [WHNP [WP what]] [S [NP [NNS/NNS records]]
[S̄/VP [WHNP which] [S [NP ones] [VP are involved]]]]]

⇒8 [S [WHNP [WP what]] [S [NP [NNS records]]]
[S̄/VP [WHNP which] [S [NP ones] [VP are involved]]]]

⇒4 [S [WHNP what] [S [NP records] [S/VP [NP ones] [VP are involved]]]]
⇒3 [S [WHNP what] [S [NP records] [VP/VP [VP [VBP are] [VP [VBN involved]]]]]]
⇒9 [S [WHNP what] [S [NP records] [VP [VBP/VBP are] [VP/VP [VBN involved]]]]]
⇒10 [S [WHNP what] [S [NP records] [VP [VBP are] [VP/VP [VBN involved]]]]]
⇒11 [S [WHNP what] [S [NP records] [VP [VBP are] [VP [VBN/VBN involved]]]]]
⇒12 [S [WHNP [WP what]] [S [NP [NNS records]] [VP [VBP are] [VP [VBN involved]]]]]

Figure 4: Derivation of example sentence pair from Figure 1. Each line shows a rewrite step,
denoted ⇒i where the subscript i identifies which rule was used. The frontier
nodes are shown in bold with X/Y indicating that symbol X must be transduced
into Y in subsequent steps. For the sake of clarity, some internal nodes have been
omitted.

nodes, labeled WHNP/WHNP. Rule (1) (from Figure 3) is then applied, which deletes the
node’s left child, shown as RB/ε, and retains its right child. The subsequent rule completes
the transduction of the WHNP node by matching the string ‘exactly ’. The algorithm con-
tinues to visit each variable node and finishes when there are no variable nodes remaining,
resulting in the desired target tree.

3.2 Grammar

The previous section outlined the STSG formalism we employ in our sentence compression
model, save one important detail: the grammar itself. For example, we could obtain a
synchronous grammar by hand, automatically from a corpus, or by some combination. Our
only requirement is that the grammar allows the source trees in the training set to be
transduced into their corresponding target trees. For maximum generality, we devised an
automatic method to extract a grammar from a parsed, word-aligned parallel compression
corpus. The method maps the word alignment into a constituent level alignment between
nodes in the source and target trees. Pairs of aligned subtrees are next generalized to create
tree fragments (elementary trees) which form the rules of the grammar.

The first step of the algorithm is to find the constituent alignment, which we define as
the set of source and target constituent pairs whose yields are aligned to one another under
the word alignment. We base our approach on the alignment template method (Och & Ney,
2004), which uses word alignments to define alignments between ngrams (called phrases in
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Figure 5: Graphical depiction of the first two steps of the derivation in Figure 4. The source
tree is shown on the left and the partial target tree on the right. Variable nodes
are shown in bold face and dotted lines show their alignment.

the SMT literature). This method finds pairs of ngrams where at least one word in one
of the ngrams is aligned to a word in the other, but no word in either ngram is aligned to
a word outside the other ngram. In addition, we require that these ngrams are syntactic
constituents. More formally, we define constituent alignment as:

C = {(vS , vT ), (∃(s, t) ∈ A ∧ s ∈ Y (vS) ∧ t ∈ Y (vT ))∧ (2)
(@(s, t) ∈ A ∧ (s ∈ Y (vS) Y t ∈ Y (vT )))}

where vS and vT are source and target tree nodes (subtrees), A = {(s, t)} is the set of word
alignments (pairs of word-indices), Y (·) returns the yield span for a subtree (the minimum
and maximum word index in its yield) and Y is the exclusive-or operator. Figure 6 shows
the word alignment and the constituent alignments that are licensed for the sentence pair
from Figure 1.

The next step is to generalize the aligned subtree pairs by replacing aligned child subtrees
with variable nodes. For example, in Figure 6 when we consider the pair of aligned subtrees
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Figure 6: Tree pair with word alignments shown as a binary matrix. A dark square indicates
an alignment between the words on its row and column. The overlaid rectangles
show constituent alignments which are inferred from the word alignment.

[S̄ which ones are involved] and [VP are involved], we could extract the rule:

〈S̄,VP〉 → 〈[S̄ [WHNP [WP which]] [S [NP [NNS ones] [VP [VBP are] [VP [VBN involved]]]]]],
[VP [VBP are] [VP [VBN involved]]]〉 (3)

However, this rule is very specific and consequently will not be very useful in a transduction
model. In order for it to be applied, we must see the full S̄ subtree, which is highly unlikely
to occur in another sentence. Ideally, we should generalize the rule so as to match many
more source trees, and thereby allow transduction of previously unseen structures. In the
example, the node pairs labeled (VP1, VP1), (VBP, VBP), (VP2, VP2) and (VBN, VBN)
can all be generalized as these nodes are aligned constituents (subscripts added to distinguish
between the two VP nodes). In addition, the nodes WHNP, WP, NP and NNS in the source
are unaligned, and therefore can be generalized using ε-alignment to signify deletion. If we
were to perform all possible generalizations for the above example,2 we would produce the
rule:

〈S̄,VP〉 → 〈[S̄ WHNP ε S 1 ], VP 1 〉 (4)

There are many other possible rules which can be extracted by applying different legal
combinations of the generalizations (there are 45 in total for this example).

Algorithm 3 shows how the most general rules are extracted.3 This results in the
minimal set of synchronous rules which can describe each tree pair.4 These rules are

2. Where some generalizations are mutually exclusive, we take the highest match in the trees.
3. The non-deterministic matching step in line 8 allows the matching of all options individually. This

is implemented as a mutually recursive function which replicates the algorithm state to process each
different match.

4. Algorithm 3 is an extension of Galley, Hopkins, Knight, and Marcu’s (2004) technique for extracting a
SCFG from a word-aligned corpus consisting of (tree, string) pairs.
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〈S,S〉 → 〈[S [S̄ WHNP 1 S 2 ] CC ε S̄ 3 ], [S WHNP 1 [S NP 2 VP 3 ]]〉
〈WHNP,WHNP〉 → 〈[WHNP RB εWP 1 ], [WHNP WP 1 ]〉

〈WP,WP〉 → 〈[WP what], [WP what]〉
〈S,NP〉 → 〈[S NP 1 VP ε ], NP 1 〉
〈NP,NP〉 → 〈[NP NNS 1 ], [NP NNS 1 ]〉

〈NNS,NNS〉 → 〈[NNS records], [NNS records]〉
〈S̄,VP〉 → 〈[S̄ WHNP ε S 1 ], VP 1 〉
〈S,VP〉 → 〈[S NP ε VP 1 ], VP 1 〉
〈VP,VP〉 → 〈[VP VBP 1 VP 2 ], [VP VBP 1 VP 2 ]〉

〈VBP,VBP〉 → 〈[VBP are], [VBP are]〉
〈VP,VP〉 → 〈[VP VBN 1 ], [VP VBN 1 ]〉

〈VBN,VBN〉 → 〈[VBN involved], [VBN involved]〉

Figure 7: The minimal set of STSG rules extracted from the aligned trees in Figure 6.

minimal in the sense that they cannot be made smaller (e.g., by replacing a subtree with
a variable) while still honoring the word-alignment. Figure 7 shows the resulting minimal
set of synchronous rules for the example from Figure 6. As can be seen from the example,
many of the rules extracted are overly general. Ideally, we would extract every rule with
every legal combination of generalizations, however this leads to a massive number of rules
— exponential in the size of the source tree. We address this problem by allowing a limited
number of generalizations to be ‘skipped’ in the extraction process. This is equivalent to
altering lines 4 and 7 in Algorithm 3 to first make a non-deterministic decision whether to
match or ignore the match and continue descending the source tree. The recursion depth
limits the number of matches that can be ignored in this way. For example, if we allow one
level of recursion when extracting rules from the (S̄, VP) pair from Figure 6, we get the
additional rules:

〈S̄,VP〉 → 〈[S̄ [WHNP WP ε ] S 1 ], VP 1 〉
〈S̄,VP〉 → 〈[S̄ WHNP ε [S NP εVP 1 ]], VP 1 〉

while at two levels of recursion, we also get:

〈S̄,VP〉 → 〈[S̄ [WHNP [WP which]] S 1 ], VP 1 〉
〈S̄,VP〉 → 〈[S̄ [WHNP [WP which]] [S NP εVP 1 ]], VP 1 〉
〈S̄,VP〉 → 〈[S̄ WHNP ε [S [NP NNS ε ] VP 1 ]], VP 1 〉
〈S̄,VP〉 → 〈[S̄ WHNP ε [S NP ε [VP VBD 1 VP 2 ]]], [VBD 1 VBD 2 ]〉

Compared to rule (4) we can see that the specialized rules above add useful structure
and lexicalisation, but are still sufficiently abstract to generalize to new sentences, unlike
rule (3). The number of rules is exponential in the recursion depth, but with fixed a depth
it is polynomial in the size of the source tree fragment. We set the recursion depth to a
small number (one or two) in our experiments.
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Algorithm 3 extract(x,y, A): extracts minimal rules from constituent-aligned trees
Require: source tree, x, target tree, y, and constituent-alignment, A

1: initialize source and target sides of rule, α = x, γ = y
2: initialize frontier alignment, ∼= ∅
3: for all nodes vS ∈ α, top-down do
4: if vS is null-aligned then
5: ∼←∼ ∪(vS , ε)
6: delete children of a
7: else if vS is aligned to some target node(s) then
8: choose target node, vT {non-deterministic choice}
9: call extract(vS , vT , A)

10: ∼←∼ ∪(vS , vT )
11: delete children of vS
12: delete children of vT
13: end if
14: end for
15: emit rule 〈root(α), root(γ)〉 → 〈α, γ,∼〉

There is no guarantee that the induced rules will have good coverage on unseen trees.
Tree fragments containing previously unseen terminals or non-terminals, or even an unseen
sequence of children for a parent non-terminal, cannot be matched by any grammar pro-
ductions. In this case the transduction algorithm (Algorithm 2) will fail as it has no way
of covering the source tree. However, the problem can be easily remedied by adding new
rules to the grammar to allow the source tree to be fully covered.5 For each node in the
source tree, a rule is created to copy that node and its child nodes into the target tree. For
example, if we see the fragment [NP DT JJ NN] in the source tree, we add the rule:

〈NP,NP〉 → 〈[NP DT 1 JJ 2 NN 3 ], [NP DT 1 JJ 2 NN 3 ]〉

With these rules, each source node is copied into the target tree, and therefore the trans-
duction algorithm can trivially recreate the original tree. Of course, the other grammar
rules can work in conjunction with the copying rules to produce other target trees.

While the copy rules solve the coverage problem on unseen data, they do not solve the
related problem of under-compression. This occurs when there are unseen CFG productions
in the source tree and therefore the only applicable grammar rules are copy rules, which
copy all child nodes into the target. None of the child subtrees can be deleted unless the
parent node can itself deleted by a higher-level rule, in which case all the children are
deleted. Clearly, it would add considerable modelling flexibility to be able to delete some,
but not all, of the children. For this reason, we add explicit deletion rules for each source
CFG production which allow subsets of the child nodes to be deleted in a linguistically
plausible manner.

5. There are alternative, equally valid, techniques for improving coverage which simplify the syntax trees.
For example, this can be done explicitly by binarizing large productions (e.g., Petrov, Barrett, Thibaux,
and Klein (2006)) or implicitly with a Markov grammar over grammar productions (e.g., Collins (1999)).
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The deletion rules attempt to preserve the most important child nodes. We measure
importance using the head-finding heuristic from Collins’ parser (Appendix A Collins, 1999).
Collins’ method finds the single head child of a CFG production using hand-coded tables
for each non-terminal type. As we desire a set of child nodes, we run the algorithm to find
all matches rather than stopping after the first match. The order in which each match is
found is used as a ranking of the importance of each child. The ordered list of child nodes
is then used to create synchronous rules which retain head 1, heads 1–2, . . . , all heads.

For the fragment [NP DT JJ NN], the heads are found in the following order (NN, DT,
JJ). Therefore we create rules to retain children (NN); (DT, NN) and (DT, JJ, NN):

〈NP,NP〉 → 〈[NP DT ε JJ ε NN 1 ], [NP NN 1 ]〉
〈NP,NN〉 → 〈[NP DT ε JJ ε NN 1 ], NN 1 〉
〈NP,NP〉 → 〈[NP DT 1 JJ ε NN 2 ], [NP DT 1 NN 2 ]〉
〈NP,NP〉 → 〈[NP DT 1 JJ 2 NN 3 ], [NP DT 1 JJ 2 NN 3 ]〉

Note that when only one child remains, the rule is also produced without the parent node,
as seen in the second rule above.

3.3 Linear model

While an STSG defines a transducer capable of mapping a source tree into many possible
target trees, it is of little use without some kind of weighting towards grammatical trees
which have been constructed using sensible STSG productions and which yield fluent com-
pressed target sentences. Ideally the model would define a scoring function over target
trees or strings, however we instead operate on derivations. In general, there may be many
derivations which all produce the same target tree, a situation referred to as spurious am-
biguity. To fully account for spurious ambiguity would require aggregating all derivations
which produce the same target tree. This would break the polynomial-time dynamic pro-
gram used for inference, rendering inference problem NP-complete (Knight, 1999). To this
end, we define a scoring function over derivations:

score(d; w) = 〈Ψ(d),w〉 (5)

where d is a derivation6 consisting of a sequence of rules, w are the model parameters,
Ψ is a vector-valued feature function and the operator 〈·, ·〉 is the inner product. The
parameters, w, are learned during training, described in Section 3.5.

The feature function, Ψ, is defined as:

Ψ(d) =
∑
r∈d

φ(r, source(d)) +
∑

m∈ngrams(d)

ψ(m, source(d)) (6)

where r are the rules of a derivation, ngrams(d) are the ngrams in the yield of the target
tree and φ is a feature function returning a vector of feature values for each rule. Note that
the feature function has access to not only the rule, r, but also the source tree, source(d),
as this is a conditional model and therefore doing so has no overhead in terms of modeling
assumptions or the complexity of inference.

6. The derivation, d, fully specifies both the source, x = source(d), and the target tree, y = target(d).
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In the second summand in (6), m are the ngrams in the yield of the target tree and ψ is
a feature function over these ngrams. Traditional (weighted) synchronous grammars only
allow features which decompose with the derivation (i.e., can be expressed using the first
summand in (6)). However, this is a very limiting requirement, as the ngram features
allow the modeling of local coherence and are commonly used in the sentence compression
literature (Knight & Marcu, 2002; Turner & Charniak, 2005; Galley & McKeown, 2007;
Clarke & Lapata, 2008; Hori & Furui, 2004; McDonald, 2006). For instance, when deleting
a sub-tree with left and right siblings, it is critical to know not only that the new siblings
are in a grammatical configuration, but also that their yield still forms a coherent string.
For this reason, we allow ngram features, specifically the conditional log-probability of
an ngram language model. Unfortunately, this comes at a price as the ngram features
significantly increase the complexity of inference used for training and decoding.

3.4 Decoding

Decoding aims to find the best target tree licensed by the grammar given a source tree.
As mentioned above, we deal with derivations in place of target trees. Decoding finds the
maximizing derivation, d∗, of:

d∗ = argmax
d:source(d)=x

score(d; w) (7)

where x is the (given) source tree, source(d) extracts the source tree from the derivation d
and score is defined in (5). The maximization is performed over the space of derivations
for the given source tree, as defined by the transduction process shown in Algorithm 2.

The maximization problem in (7) is solved using the chart-based dynamic program
shown in Algorithm 4. This extends earlier inference algorithms for weighted STSGs (Eis-
ner, 2003) which assume that the scoring function must decompose with the derivation,
i.e., features apply to rules but not to terminal ngrams. Relaxing this assumption leads to
additional complications and increased time and space complexity. This is equivalent to us-
ing as our grammar the intersection between the original grammar and an ngram language
model, as explained in Chiang (2007) in the context of string transduction with an SCFG.

The algorithm defines a chart, C, to record the best scoring (partial) target tree for each
source node vS and with root non-terminal t. The back-pointers, B, record the maximizing
rule and store pointers to the child chart cells filling each variable in the rule. The chart is
also indexed by the n− 1 terminals at the left and right edges of the target tree’s yield to
allow scoring of ngram features.7 The terminal ngrams provide sufficient context to evaluate
ngram features overlapping the cell’s boundary when the chart cell is combined in another
rule application (this is the operation performed by the boundary-ngrams function on line
15). This is best illustrated with an example. Using trigram features, n = 3, if a node were
rewritten as [NP the fast car] then we must store the ngram context (the fast, fast car) in
its chart entry. Similarly [VP skidded to a halt] would have ngram context (skidded to, a
halt). When applying a parent rule [S NP VP] which rewrites these two trees as adjacent

7. Strictly speaking, only the terminals on the right edge are required for a compression model which would
create the target string in a left-to-right manner. However, our algorithm is more general in that it
allows reordering rules such as 〈PP,PP〉 → 〈[PP IN 1 NP 2 ], [PP NP 2 IN 1 ]〉. Such rules are required for
most other text-rewriting tasks besides sentence compression.
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Algorithm 4 Exact chart based decoding algorithm.
Require: complete source tree, x, with root node labeled RS

1: let C[v, t, l] ∈ R be a chart representing the score of the best derivation transducing the
tree rooted at v to a tree with root category t and ngram context l

2: let B[v, t, l] ∈ (P,x × NT × L) be the corresponding back-pointers, each consisting of
a production and the source node, target category and ngram context for each of the
production’s variables

3: initialize chart, C[∗, ∗, ∗] = −∞
4: initialize back-pointers, B[∗, ∗, ∗] = none
5: for all source nodes, vS ∈ x, bottom-up do
6: for all rules, r = 〈vS , Y 〉 → 〈α, γ,∼〉 where α matches the sub-tree rooted at vS do
7: let m be the target ngrams wholly contained in γ
8: let features vector, Ψ← φ(r,x) + ψ(m,x)
9: let l be an empty ngram context

10: let score, q ← 0
11: for all variables, u ∈ ∼ do
12: find source child node, cu, under vS corresponding to u
13: let tu be the non-terminal for target child node under γ corresponding to u
14: choose child chart entry, qu = C[cu, tu, lu] {non-deterministic choice of lu}
15: let m← boundary-ngrams(r, lu)
16: update features, Ψ← Ψ + ψ(m,x)
17: update ngram context, l← merge-ngram-context(l, lu)
18: update score, q ← q + qu
19: end for
20: update score, q ← q + 〈Ψ,w〉
21: if q > C[vS , Y, l] then
22: update chart, C[vS , Y, l]← q
23: update back-pointers, B[vS , Y, l]← (r, {(cu, tu, lu)∀u})
24: end if
25: end for
26: end for
27: find best root chart entry, l∗ ← argmaxl C[root(x), RT , l]
28: create derivation, d, by traversing back-pointers from B[root(x), RT , l∗]

siblings we need to find the ngrams on the boundary between the NP and VP. These can
be easily retrieved from the two chart cells’ contexts. We combine the right edge of the NP
context, ‘fast car’, with the left edge of the VP context, ‘skidded to’, to get the two trigrams
‘fast car skidded’ and ‘car skidded to’. The other trigrams — ‘the fast car’, ‘skidded to
a’ and ‘to a halt’ — will have already been evaluated in the child chart cells. The new
combined S chart cell is now given the context (the fast, a halt) by taking the left and right
edges of the two child cells. This merging process is performed by the merge-ngram-context
function on line 17. Finally we add artificial root node to the target tree with n−1 artificial
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start terminals and one end terminal. This allows the ngram features to be applied over
boundary ngrams at the beginning and end of the target string.

The decoding algorithm processes the source tree in a post-order traversal, finding the
set of possible trees and their ngram contexts for each source node and inserting these into
the chart. The rules which match the node are processed in lines 6–24. The feature vector,
Ψ, is calculated on the rule and the ngrams therein (line 8), and for ngrams bordering child
cells filling the rule’s variables (line 16). Note that the feature vector only includes those
features specific to the rule and the boundary ngrams, but not those wholly contained in
the child cell. For this reason the score is the sum of the scores for each child cell (line
18) and the feature vector and the model weights (line 20). The new ngram context, l, is
calculated by combining the rule’s frontier and the ngram contexts of the child cells (line
17). Finally the chart entry for this node is updated if the score betters the previous value
(lines 21–24).

When choosing the child chart cell entry in line 14, there can be many different entries
each with a different ngram context, lu. This affects the ngram features, ψ, and consequently
the ngram context, l, and the score, q, for the rule. The non-determinism means that every
combination of child chart entries are chosen for each variable, and these combinations are
then evaluated and inserted into the chart. The number of combinations is the product of
the number of child chart entries for each variable. This can be bounded by O(|TT |2(n−1)V )
where |TT | is the size of the target lexicon and V is the number of variables. Therefore the
asymptotic time complexity of decoding is the O(SR|TT |2(n−1)V ) where S are the number
of source nodes and R is the number of matching rules for each node. This high complexity
clearly makes exact decoding infeasible, especially so when either n or V are large.

We adopt a popular approach in syntax-inspired machine translation to address this
problem (Chiang, 2007). Firstly, we use a beam-search, which limits the number of different
ngram contexts stored in each chart cell to a constant, W . This changes the base in the
complexity term, leading to an improved O(SRW V ) but which is still exponential in the
number of variables. In addition, we use the cube-pruning heuristic to further limit the
number of combinations considered (Chiang, 2007). Cube-pruning uses a heuristic scoring
function which approximates the conditional log-probability from a ngram language model
with the log-probability from a unigram model.8 This allows us to visit the combinations
in best-first order under the heuristic scoring function until the beam is filled.The beam is
then rescored using the correct scoring function. This can be done cheaply in O(WV ) time,
leading to an overall time complexity of decoding to O(SRWV ). We refer the interested
reader to Chiang (2007) for further details.

3.5 Training

We now turn to the problem of how derivations are scored in our model. For a given source
tree, the space of sister target trees implied by the synchronous grammar is often very large,
and the majority of these trees are ungrammatical or poor compressions. It is the job of

8. We use the conditional log-probability of an ngram language model as our only ngram feature. In order
to use other ngram features, it would first be advisable to construct an approximation which decomposes
with the derivation for use in the cube-pruning heuristic.
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the training algorithm to find weights such that the reference target trees have high scores
and the many other target trees licensed by the grammar are given lower scores.

As explained in Section 3.3 we define a scoring function over derivations. This function
was given in (5) and (7), and is reproduced below:

f(d; w) = argmax
d:source(d)=x

〈w,Ψ(d)〉 (8)

Equation (8) finds the best scoring derivation, d, for a given source, x, under a linear model.
Recall that y is a derivation which generates the source tree x and a target tree. The goal
of the training procedure is to find a parameter vector w which satisfies the condition:

∀i,∀d : source(d) = xi ∧ d 6= di : 〈w,Ψ(di)−Ψ(d)〉 ≥ 0 (9)

where xi,di are the ith training source tree and reference derivation. This condition states
that for all training instances the reference derivation is at least as high scoring as any
other derivations. Ideally, we would also like to know the extent to which a predicted target
tree differs from the reference tree. For example, a compression that differs from the gold
standard with respect to one or two words should be treated differently from a compression
that bears no resemblance to it. Another important factor is the length of the compression.
Compressions whose length is similar to the gold standard should be be preferable to longer
or shorter output. A loss function ∆(yi,y) quantifies the accuracy of prediction y with
respect to the true output value yi.

There are a plethora of different discriminative training frameworks which can optimize
a linear model. Possibilities include perceptron training (Collins, 2002), log-linear optimi-
sation of the conditional log-likelihood (Berger, Pietra, & Pietra, 1996) and large margin
methods. We base our training on Tsochantaridis et al. (2005) who present a framework
for learning Support Vector Machines (SVMs) over structured output spaces, using the
SVMstruct implementation.9 The framework supports a configurable loss function which is
particularly appealing in the context of sentence compression and more generally text-to-
text generation. It also has an efficient training algorithm and powerful regularization. The
latter is is critical for discriminative models with large numbers of features, which would
otherwise over-fit the training sample at the expense of generalization accuracy. We briefly
summarize the approach below; for a more detailed description we refer the interested reader
to Tsochantaridis et al. (2005).

Traditionally SVMs learn a linear classifier that separates two or more classes with the
largest possible margin. Analogously, structured SVMs attempt to separate the correct
structure from all other structures with a large margin. The learning objective for the
structured SVM uses the soft-margin formulation which allows for errors in the training set
via the slack variables, ξi:

min
w,ξ

1
2
||w||2 +

C
n

n∑
i=1

ξi, ξi ≥ 0 (10)

∀i,∀d : source(d) = xi ∧ y 6= di : 〈w,Ψ(di)−Ψ(d)〉 ≥ ∆(di,d)− ξi

9. http://svmlight.joachims.org/svm_struct.html
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The slack variables, ξi, are introduced here for each training example, xi and C is a constant
that controls the trade-off between training error minimization and margin maximization.
Note that slack variables are combined with the loss incurred in each of the linear con-
straints. This means that a high loss output must be separated by a larger margin than
a low loss output, or have a much larger slack variable to satisfy the constraint. Alter-
natively, the loss function can be used to rescale the slack parameters, in which case the
constraints in (10) are replaced with 〈w,Ψ(di) − Ψ(d)〉 ≥ 1 − ξi

∆(di,d) . Margin rescaling is
theoretically less desirable as it is not scale invariant, and therefore requires the tuning of
an additional hyperparameter compared to slack rescaling. However, empirical results show
little difference between the two rescaling methods (Tsochantaridis et al., 2005). We use
margin rescaling for the practical reason that it can be approximated more accurately than
can slack rescaling by our chart based inference method.

The optimization problem in (10) is approximated using an algorithm proposed in
Tsochantaridis et al. (2005). The algorithm finds a small set of constraints from the full-
sized optimization problem that ensures a sufficiently accurate solution. Specifically, it
constructs a nested sequence of successively tighter relaxation of the original problem using
a (polynomial time) cutting plane algorithm. For each training instance, the algorithm
keeps track of the selected constraints defining the current relaxation. Iterating through
the training examples, it proceeds by finding the output that most radically violates a con-
straint. In our case, the optimization crucially relies on finding the derivation which is both
high scoring and has high loss compared to the gold standard. This requires finding the
maximizer of:

H(d) = ∆(d∗,d)− 〈w,Ψ(di)−Ψ(d)〉 (11)

The search for the maximizer of H(d) in (11) can be performed by the decoding al-
gorithm presented in Section 3.4 with some extensions. Firstly, by expanding (11) to
H(d) = ∆(d∗,d)− 〈Ψ(di),w〉+ 〈Ψ(d),w〉 we can see that the second term is constant with
respect to d, and thus does not influence the search. The decoding algorithm maximizes
the last term, so all that remains is to include the loss function into the search process.

Loss functions which decompose with the rules or target ngrams in the derivation,
∆(d∗,d) =

∑
r∈d ∆R(d∗, r) +

∑
n∈ngrams(d) ∆N (d∗, n), can be easily integrated into the

decoding algorithm. This is done by adding the partial loss, ∆R(d∗, r) + ∆N (d∗, n) to each
rule’s score in line 20 of Algorithm 4 (the ngrams are recovered from the ngram contexts in
the same manner used to evaluate the ngram features). However, many of our loss functions
do not decompose with the rules or the ngrams. In order to calculate these losses the chart
must be stratified by the loss function’s arguments (Joachims, 2005). For example, unigram
precision measures the ratio of correctly predicted tokens to total predicted tokens and
therefore its loss arguments are the pair of counts, (TP, FP ), for true and false positives.
They are initialized to (0, 0) and are then updated for each rule used in a derivation. This
equates to checking whether each target terminal is in the reference string and incrementing
the relevant value. The chart is extended (stratified) to store the loss arguments in the
same way that ngram contexts are stored for decoding. This means that a rule accessing a
child chart cell can get multiple entries, each with different loss argument values as well as
multiple ngram contexts (line 14 in Algorithm 4). The loss argument for a rule application
is calculated from the rule itself and the loss arguments of its children. This is then stored
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in the chart and the back-pointer list (lines 22–23 in Algorithm 4). Although this loss can
only be evaluated correctly for complete derivations, we also evaluate the loss on partial
derivations as part of the cube-pruning heuristic. Losses with a large space of argument
values will be more coarsely approximated by the beam search, which prunes the number
of chart entries to a constant size. For this reason, we have focused mainly on simple loss
functions which have a relatively small space of argument values, and also use a wide beam
during the search (200 unique items or 500 items, whichever comes first).

In our discussion so far we have assumed that we are given a gold standard derivation, yi
glossing over the issue of how to find it. Spurious ambiguity in the grammar means that
there are often many derivations linking the source and target, none of which are clearly
‘correct’. We select the derivation using the maximum number of rules, each of which will be
small, and therefore should provide maximum generality.10 This is found using Algorithm 5,
a chart-based dynamic program similar to the alignment algorithm for inverse transduction
grammars (Wu, 1997). The algorithm has time complexity O(S2R) where S is the size of
the larger of the two trees and R is the number of rules which can match a node.

3.6 Loss Functions

The training algorithm described above is highly modular and in theory can support a wide
range of loss functions. There is no widely accepted evaluation metric for text compres-
sion. A zero-one loss would be straightforward to define but inappropriate for our problem,
as it would always penalize target derivations that differ even slightly from the reference
derivation. Ideally, we would like a loss with a wider scoring range that can discriminate
between derivations that differ from the reference. Some of these may be good compres-
sions whereas others may be entirely ungrammatical. For this reason we have developed
a range of loss functions which draw inspiration from various metrics used for evaluating
text-to-text rewriting tasks such as summarization and machine translation.

Loss functions are defined over derivations and can look at any item accessible including
tokens, ngrams and CFG rules. Our first class of loss functions calculates the Hamming
distance between unordered bags of items. It measures the number of predicted items that
did not appear in the reference, along with a penalty for short output:

∆hamming(d∗,d) = FP + max (l − (TP + FP ), 0) (12)

where TP and FP are the number of true and false positives, respectively, when comparing
the predicted target, dT , with the reference, d∗T , and l is the length of the reference. We
include the second term to penalize overly short output as otherwise predicting very little
or nothing would incur no penalty.

We have created three instantiations of the loss function in (12) over: 1) tokens,
2) ngrams (n ≤ 3), and 3) CFG productions. In each case, the loss argument space is
quadratic in the size of the source tree. Our Hamming ngram loss is an attempt at defining

10. We also experimented with other heuristics, including choosing the derivation at random and selecting
the derivation with the maximum or minimum score under the model (all using the same search algorithm
but with a different objective). Of these, only the maximum scoring derivation was competitive with the
maximum rules heuristic.
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Algorithm 5 Find the gold standard derivation for a pair of trees (i.e., alignment).
Require: source tree, x, and target tree, y

1: let C[vS , vT ] ∈ R be a chart representing the maximum number of rules used to align
nodes vS ∈ x and vT ∈ y

2: let B[vS , vT ] ∈ (P,x×y) be the corresponding back-pointers, consisting of a production
and a pair aligned nodes for each of the production’s variables

3: initialize chart, C[∗, ∗] = −∞
4: initialize back-pointers, B[∗, ∗] = none
5: for all source nodes, vS ∈ x, bottom-up do
6: for all rules, r = 〈vS , Y 〉 → 〈α, γ,∼〉 where α matches the sub-tree rooted at vS do
7: for all target nodes, vT ∈ y, matching γ do
8: let rule count, j ← 1
9: for all variables, u ∈ ∼ do

10: find aligned child nodes, (cS , cT ), under vS and vT corresponding to u
11: update rule count, j ← j + C[cS , cT ]
12: end for
13: if n greater than previous value in chart then
14: update chart, C[vS , vT ]← j
15: update back-pointers, B[vS , vT ]← (r, {(cS , cT )∀u})
16: end if
17: end for
18: end for
19: end for
20: if C[root(x), root(y)] 6= −∞ then
21: success; create derivation by traversing back-pointers from B[root(x), root(y)]
22: end if

a loss function similar to BLEU (Papineni, Roukos, Ward, & Zhu, 2002). The latter is
defined over documents rather than individual sentences, and is thus not directly applicable
to our problem. Now, since these losses all operate on unordered bags they may reward
erroneous predictions, for example, a permutation of the reference tokens will have zero
token-loss. This is less of a problem for the CFG and ngram losses whose items overlap,
thereby encoding a partial order. Another problem with the loss functions just described is
that they do not penalize multiply predicting an item that occurred only once in the refer-
ence. This could be a problem for function words which are common in most sentences.

Therefore we developed two additional loss functions which take multiple predictions into
account. The first measures the edit distance — the number of insertions and deletions —
between the predicted and the reference compressions, both as bags-of-tokens. In contrast
to the previous loss functions, it requires the true positive counts to be clipped to the
number of occurrences of each type in the reference. The edit distance is given by:

∆edit(d∗,d) = p+ r − 2
∑
i

min(pi, qi) (13)

where p and q denote the number of target tokens in the predicted tree, target(d), and
reference, y∗ = target(d∗), respectively, and pi and qi are the counts for type i. The loss
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Ref: [S [WHNP [WP what]] [S [NP [NNS records]] [VP [VBP are] [VP [VBN involved]]]]]
Pred: [S [WHNP [WP what]] [S [NP [NNS ones]] [VP [VBP are] [VBN involved]]]]

Loss Arguments Value
Token Hamming TP = 3, FP = 1 1/4

3-gram Hamming TP = 8, FP = 5 5/14
CFG Hamming TP = 8, FP = 1 1/9

Edit distance p = (1, 0, 1, 1, 1) 2
F1 p = (1, 0, 1, 1, 1) 1/4

Table 1: Loss arguments and values for the example predicted and reference compressions.
Note that loss values should not be compared between different loss functions;
these values are purely illustrative.

arguments for the edit distance consist of a vector of counts for each item type in the
reference, {pi,∀i}. The space of possible values is exponential in the size of the source tree,
compared to quadratic for the Hamming losses. Consequently, we expect beam search to
result in many more search errors when using the edit distance loss.

Our last loss function is the F1 measure, a harmonic mean between precision and recall,
measured over bags-of-tokens. As with the edit distance, its calculation requires the counts
to be clipped to the number of occurrences of each terminal type in the reference. We
therefore use the same loss arguments for its calculation. The F1 loss is given by:

∆F1(d∗,d) = 1− 2× precision× recall
precision+ recall

(14)

where precision =
P
imin(pi,qi)

p and recall =
P
imin(pi,qi)

q . As F1 shares the same arguments
with the edit distance loss, it also has the same exponential space of loss argument values
and will consequently be subject to severe pruning during the beam search used in training.

To illustrate the above loss functions, we present an example in Table 1. Here, the
prediction (Pred) and reference (Ref) have the same length (4 tokens), identical syntactic
structure, but differ by one word (ones versus records). Correspondingly, there are three
correct tokens and one incorrect, which forms the arguments for the token Hamming loss,
resulting in a loss of 1/4. The ngram loss is measured for n ≤ 3 and the start and end of the
string are padded with special symbols to allow evaluation of the boundary ngrams. The
CFG loss records only one incorrect CFG production (the preterminal [NNS ones]) from the
total of nine productions. The last two losses use the same arguments: a vector with values
for the counts of each reference type. The first four cells correspond to what, records, are
and involved, the last cell records all other types. For the example, the edit distance is two
(one deletion and one insertion) while the F1 loss is 1/4 (precision and recall are both 3/4).

4. Features

Our feature space is defined over source trees, x, and target derivations, d. We devised two
broad classes of features, applying to grammar rules and to ngrams of target terminals. We
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defined only a single ngram feature, the conditional log-probability of a trigram language
model. This was trained on the BNC (100 million words) using the SRI Language Modeling
toolkit (Stolcke, 2002), with modified Kneser-Ney smoothing.

For each rule 〈X,Y 〉 → 〈α, γ,∼〉, we extract features according to the templates detailed
below. Our templates give rise to binary indicator features, except where explicitly stated.
These features perform a boolean test, returning value 1 when the test succeeds and 0
otherwise. An example rule and its corresponding features are shown in Table 2.

Type: Whether the rule was extracted from the training set, created as a copy rule and/or
created as a delete rule. This allows the model to learn a preference for each of the
three sources of grammar rules (see row Type in Table 2)

Root: The root categories of the source, X, and target, Y , and their conjunction, X ∧ Y
(see rows Root in Table 2).

Identity: The source side, α, target side, γ, and the full rule, (α, γ,∼). This allows the
model to learn weights on individual rules or those sharing an elementary tree. An-
other feature checks if the rule’s source and target elementary trees are identical, α = γ
(see rows Identity in Table 2).

Unlexicalised Identity: The identity feature templates above are replicated for unlex-
icalised elementary trees, i.e., with the terminals removed from their frontiers (see
rows UnlexId in Table 2).

Rule count: This feature is always 1, allowing the model to count the number of rules
used in a derivation (see row Rule count in Table 2).

Word count: Counts the number of terminals in γ, allowing a global preference for
shorter or longer output. Additionally, we record the number of terminals in the
source tree, which can be used with the target terminal count to find the number of
deleted terminals (see rows Word count in Table 2).

Yield: These features compare the terminal yield of the source, Y (α), and target, Y (γ).
The first feature checks the identity of two sequences, Y (α) ∧ Y (γ). We use identity
features for each terminal in both yields, and for each terminal only in the source (see
rows Yield in Table 2). We also replicate these feature templates for the sequence of
non-terminals on the frontier (pre-terminals or variable non-terminals).

Length: Records the difference in the lengths of the frontiers of α and γ, and whether
the target’s frontier is shorter than that of the source (see rows Length in Table 2).

The features listed above are defined for all the rules in the grammar. This includes
the copy and delete rules, as described in Section 3.2, which were added to address the
problem of unseen words or productions in the source trees at test time. Many of these
rules can not be applied to the training set, but will receive some weight because they share
features with rules that can be used in training. However, in training the model learns to
disprefer these coverage rules as they are unnecessary to model the training set, which can
be described perfectly using the extracted transduction rules. Our dual use of the training
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Rule: 〈NP,NNS〉 → 〈[NP CD ε ADJP ε [NNS activists]], [NNS activists]〉
Type type = training set 1
Root X = NP 1
Root Y = NNS 1
Root X = NP ∧ Y = NNS 1

Identity α = [NP CD ADJP [NNS activists]] 1
Identity γ = [NNS activists] 1
Identity α = [NP CD ε ADJP ε [NNS activists]] ∧ γ = [NNS activists] 1

UnlexId. unlex. α = [NP CD ADJP NNS] 1
UnlexId. unlex. γ = NNS 1
UnlexId. unlex. α = [NP CD ε ADJP ε NNS] ∧ γ = NNS 1

Rule count – 1
Word count target terminals 1
Word count source terminals ≥ 1∗

Yield source = [‘activists’] ∧ target = [‘activists’] 1
Yield terminal ‘activists’ in both source and target 1
Yield non-terms. source = [CD, ADJP, NNS] ∧ target = [NNS] 1
Yield non-terminal CD in source and not target 1
Yield non-terminal ADJP in source and not target 1
Yield non-terminal NNS in both source and target 1

Length difference in length 2
Length target shorter 1

Table 2: Features instantiated for the synchronous rule shown above. Only features with
non-zero values are displayed. ∗The number of source terminals is calculated using
the source tree at the time the rule is applied.

set for grammar extraction and parameter estimation results in a bias against the coverage
rules. The bias could be addressed by extracting the grammar from a separate corpus, in
which case the coverage rules would then be useful in modeling both the training set and the
testing sets. However, this solution has its own problems, namely that many of the target
trees in the training may not longer be reachable. This bias and its possible solutions is an
interesting research problem and deserves further work.

5. Experimental Set-up

In this section we present our experimental set-up for assessing the performance of the
sentence compression model described above. We give details of the corpora used, briefly
introduce McDonald’s (2006) model used for comparison with our approach, and explain
how system output was evaluated.
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Corpus Articles Sentences Training Development Testing
CLspoken 50 1370 882 78 410
CLwritten 82 1433 908 63 462
Ziff-Davis – 1084 1020 32 32

Table 3: Sizes of the various corpora, measured in articles or sentence pairs. The data split
into training, development and testing sets is measured in sentence pairs.

5.1 Corpora

We evaluated our system on three publicly available corpora. The first is the Ziff-Davis
corpus, a popular choice in the sentence compression literature. The corpus originates
from a collection of news articles on computer products. It was created automatically by
matching sentences that occur in an article with sentences that occur in an abstract (Knight
& Marcu, 2002). The other two corpora11 were created manually; annotators were asked to
produce target compressions by deleting extraneous words from the source without changing
the word order (see Clarke and Lapata (2008) for details). One corpus was sampled from
written sources, the British National Corpus (BNC) and the American News Text corpus,
whereas the other was created from manually transcribed broadcast news stories. We will
henceforth refer to these two corpora as CLwritten and CLspoken, respectively. The sizes
of these three corpora are shown in Table 3.

These three corpora pose different challenges to a hypothetical sentence compression
system. Firstly, they are representative of different domains and text genres. Secondly,
they have different compression requirements. The Ziff-Davis corpus is more aggressively
compressed in comparison to CLspoken and CLwritten (Clarke & Lapata, 2008). As CLspo-
ken is a speech corpus, it often contains incomplete and ungrammatical utterances and
speech artefacts such as disfluencies, false starts and hesitations. Its utterances have vary-
ing lengths, some are very wordy whereas others cannot be reduced any further. This means
that a compression system should leave some sentences uncompressed. Finally, we should
note the CLwritten has on average longer sentences than Ziff-Davis or CLspoken. Parsers
are more likely to make mistakes on long sentences which could potentially be problematic
for syntax-based systems like the one presented here.

Although our model is capable of performing any editing operation, such as reordering
or substitution, it will not learn to do so from the training corpora. These corpora contain
only deletions, and therefore the model will not learn transduction rules encoding, e.g.,
reordering. Instead the rules encode only the deleting and inserting terminals and re-
structuring internal nodes of the syntax tree. However, the model is capable general text
rewriting, and given the appropriate training set will learn to perform these additional
edits. This is demonstrated by our recent results from adapting the model to abstractive
compression (Cohn & Lapata, 2008), where any edit is permitted, not just deletion.

Our experiments on CLspoken and CLwritten followed Clarke and Lapata’s (2008) par-
tition of training, test, and development sets. The partition sizes are shown in Table 3. In

11. Available from http://homepages.inf.ed.ac.uk/s0460084/data/.
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the case of the Ziff-Davis corpus, Knight and Marcu (2002) had not defined a development
set. Therefore we randomly selected (and held-out) 32 sentence pairs from their training
set to form our development set.

5.2 Comparison with State-of-the-Art

We evaluated our results against McDonald’s (2006) discriminative model. In this approach,
sentence compression is formalized as a classification task: pairs of words from the source
sentence are classified as being adjacent or not in the target compression. Let x = x1, . . . , xN
denote a source sentence with a target compression y = y1, . . . , yM where each yi occurs
in x. The function L(yi) ∈ {1 . . . N} maps word yi the target to the index of the word in
the source (subject to the constraint that L(yi) < L(yi+1)). McDonald defines the score of
a compression y for a sentence x as the dot product between a high dimensional feature
representation, f , over bigrams and a corresponding weight vector, w,

score(x,y; w) =
M∑
i=2

〈w, f(x, L(yj−1), L(yj))〉 (15)

Decoding in this framework amounts to finding the combination of bigrams that maximize
the scoring function in (15). The maximization is solved using a semi-Markov Viterbi
algorithm (see McDonald (2006) for details).

The model parameters are estimated using the Margin Infused Relaxed Algorithm
(MIRA, Crammer and Singer (2003)), a discriminative large-margin online learning tech-
nique. McDonald (2006) uses a similar loss function to our Hamming loss (see (12)) but
without an explicit length penalty. This loss function counts the number of words falsely
retained or dropped in the predicted target relative to the reference. McDonald employs a
rich feature set defined over words, parts of speech, phrase structure trees, and dependen-
cies. These are gathered over adjacent words in the compression and the words which were
dropped.

Clarke and Lapata (2008) reformulate McDonald’s (2006) model in the context of integer
linear programming (ILP) and augment it with constraints ensuring that the compressed
output is grammatically and semantically well formed. For example, if the target sentence
has negation, this must be included in the compression; Of the source verb has a subject,
this must also be retained in the compression. They generate and solve an ILP for every
source sentence using the branch-and-bound algorithm. Since they obtain performance
improvements over McDonald’s model on several corpora, we also use it for comparison
against our model.

To summarize, we believe that McDonald’s (2006) model is a good basis for comparison
for several reasons. First, it is has good performance, and can be treated as a state-of-the-
art model. Secondly, it is similar to our model in many respects – its training algorithm
and feature space – but differs in one very important respect: compression is performed
on strings and not trees. McDonald’s system does make use of syntax trees, but only
peripherally via the feature set. In contrast, the syntax tree is an integral part of our
model.
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5.3 Evaluation

In line with previous work we assessed our model’s output by eliciting human judgments.
Following Knight and Marcu (2002), we conducted two separate experiments. In the first
experiment participants were presented with a source sentence and its target compression
and asked to rate how well the compression preserved the most important information from
the source sentence. In the second experiment, they were asked to rate the grammaticality
of the compressed outputs. In both cases they used a five point rating scale where a high
number indicates better performance. We randomly selected 20 sentences from the test
portion of each corpus. These sentences were compressed automatically by our system and
McDonald’s (2006) system. We also included gold standard compressions. Our materials
thus consisted of 180 (20 × 3 × 3) source-target sentences. A Latin square design ensured
that subjects did not see two different compressions of the same sentence. We collected
ratings from 30 unpaid volunteers, all self reported native English speakers. Both studies
were conducted over the Internet using WebExp,12 a software package for running Internet-
based experiments.

We also report results using F1 computed over grammatical relations (Riezler et al.,
2003). Although F1 conflates grammaticality and importance into a single score, it nev-
ertheless has been shown to correlate reliably with human judgments (Clarke & Lapata,
2006). Furthermore, it can be usefully employed during development for feature engineer-
ing and parameter optimization experiments. We measured F1 over directed and labeled
dependency relations. For all models the compressed output was parsed using the RASP
dependency parser (Briscoe & Carroll, 2002). Note that we could extract dependencies di-
rectly from the output of our model since it generates trees in addition to strings. However,
we refrained from doing this in order to compare all models on an equal footing.

6. Results

The framework presented in Section 3 is quite flexible. Depending on the grammar extrac-
tion strategy, choice of features, and loss function, different classes of models can be derived.
Before presenting our results on the test set we discuss the specific model employed in our
experiments and explain how its parameters were instantiated.

6.1 Model Selection

All our parameter tuning and model selection experiments were conducted on the devel-
opment set of the CLspoken corpus. We obtained syntactic analyses for source and target
sentences with Bikel’s (2002) parser. The corpus was automatically aligned using an algo-
rithm which finds the set of deletions which transform the source into the target. This is
equivalent to the minimum edit distance script when only deletion operations are permitted.

As expected, the predicted parse trees contained a number of errors, although we did
not have gold standard trees with which to quantify this error or its effect on prediction
output. We did notice, however, that errors in the source trees in the test set did not always
negatively affect the performance of the model. In many instances the model was able to
recover from these errors and still produce good output compressions. Of these recoveries,

12. See http://www.webexp.info/.
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Losses Rating Std. dev
Hamming (tokens) 3.38 1.05
Hamming (ngram) 3.28 1.13
Hamming (CFG) 3.22 0.91
Edit Distance 3.30 1.20
F1 3.15 1.13
Reference 4.28 0.70

Table 4: Mean ratings on system output (CLspoken development set) while using different
loss functions.

most cases involved either deleting the erroneous structure or entirely preserving it. While
this often resulted in a poor output tree, the string yield was acceptable in most cases. Less
commonly, the model corrected the errors in the source using tree transformation rules.
These rules were acquired from the training set where there were errors in the source tree
but not in the test tree. For example, one transformation allows a prepositional phrase to
be moved from a high VP attachment to an object NP attachment.

We obtained a synchronous tree substitution grammar from the CLspoken corpus using
the method described in Section 3.2. We extracted all maximally general synchronous rules.
These were complemented with specified rules allowing recursion up to one ancestor for any
given node.13 Grammar rules were represented by the features described in Section 4.
An important parameter in our modeling framework is the choice of loss function. We
evaluated the loss functions presented in Section 3.6 as follows. We performed a grid search
for the hyper-parameters (a regularization parameter and a feature scaling parameter, which
balances the magnitude of the feature vectors with the scale of the loss function)14 which
minimized the relevant loss on the development set, and used the corresponding system
output. The gold standard derivation was selected using the maximum number of rules
heuristic, as described in Section 3.5. The beam was limited to 100 unique items or 200 items
in total. The grammar was filtered to allow no more than 50 target elementary trees for
every source elementary tree.

We next asked two human judges to rate on a scale of 1 to 5 the system’s compressions
when optimized for the different loss functions. To get an idea of the quality of the output
we also included human-authored reference compressions. Sentences given high numbers
were both grammatical and preserved the most important information. The mean ratings
are shown in Table 4. As can be seen the differences among the losses are not very large,
and the standard deviation is high. The Hamming loss over tokens performed best with a
mean rating of 3.38, closely followed by the edit distance (3.30). We chose the former over
the latter as it is less coarsely approximated during search. All subsequent experiments
report results using the token-based Hamming loss.

13. Rules were pruned so as to have no more than 5 variables and 15 nodes.
14. We found that setting the regularization parameter C = 0.01 and the scaling parameter to 1 generally

yields good performance across loss functions.
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Model Compression rate Relations F1 Loss
max general rules 80.79 65.04 341

depth ≤ 1-specified rules∗ 79.72 68.56 315
depth ≤ 2-specified rules 79.71 66.44 328

max rules∗ 79.72 68.56 315
max scoring 81.03 65.54 344
unigram LM 76.83 59.05 336
bigram LM 83.12 67.71 317

trigram LM∗ 79.72 68.56 315
all features∗ 79.72 68.56 315

only rule features 83.06 67.51 346
only token features 85.10 68.31 341

Table 5: Parameter exploration and feature ablation studies (CLspoken development set).
The default system is shown with an asterisk.

We also wanted to investigate how the synchronous grammar influences performance.
The default system described above used general rules together with specialized rules where
the recursion depth was limited to one. We also experimented with a grammar that uses
specialised rules with a maximum recursion depth of two and a grammar that uses solely the
maximally general rules. In Table 5 we report the average compression rate, relations-based
F1 and the Hamming loss over tokens for these different grammars. We see that adding
the specified rules allows for better F1 (and loss) despite the fact that the search space
remains the same. We observe a slight degradation in performance moving to depth ≤ 2
rules. This is probably due to the increase in spurious ambiguity affecting search quality,
and also allowing greater overfitting of the training data. The number of transduction rules
in the grammar also grows substantially with the increased depth – from 20,764 for the
maximally general extraction technique to 33,430 and 62,116 for specified rules with depth
≤ 1 and ≤ 2, respectively. The growth in grammar size is exponential in the specification
depth and therefore only small values should be used.

We also inspected the rules obtained with the maximally general extraction technique
to better assess how our rules differ from those obtained from a vanilla SCFG (see Knight
and Marcu (2002)). Many of these rules (12%) have deeper structure and therefore would
not be licensed by an SCFG. This is due to structural divergences between the source and
target syntax trees in the training set. A further 13% of the rules describe a change of
syntactic category (X 6= Y ), and therefore only the remaining 76% of the rules would be
allowable in Knight and Marcu’s (2002) transducer. The proportion of SCFG rules decreases
substantially as the rule specification depth is increased.

Recall from Section 3.3 that our scoring function is defined over derivations rather than
target trees or strings, and that we treat the derivation using the maximum number of rules
as the gold standard derivation. As a sanity check, we also experimented with selecting the
derivation with the maximum score under the model. The results in Table 5 indicate that
the latter strategy is not as effective as selecting the derivation with the maximum number
of rules. Again we conjecture this is due to overfitting. As the training data is used to
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extract the grammar, the derivations with the maximum score may consist of rules with
rare features which model the data well but do not generalize to unseen instances.

Finally, we conducted a feature ablation study to assess which features are more useful
to our task. We were particularly interested to see if the ngram features would bring
any benefit, especially since they increase computational complexity during decoding and
training. We experimented with a unigram, bigram, and trigram language model. Note that
the unigram language model is not as computationally expensive as the other two models
because there is no need to record ngram contexts in the chart. As shown in Table 5, the
unigram language model is substantially worse than the bigram and trigram which deliver
similar performances. We also examined the impact of the other features by grouping them
into two broad classes, those defined over rules and those defined over tokens. Our aim was
to see whether the underlying grammar (represented by rule-based features) contributes
to better compression output. The results in Table 5 reveal that the two feature groups
perform comparably. However, the model using only token-based features tends to compress
less. These features are highly lexicalized, and the model is not able to generalize well on
unseen data. In conclusion, the full feature set does better on all counts than the two
ablation sets, with a better compression rate.

The results reported have all been measured over string output. This was done by first
stripping the tree structure from the compression output, reparsing, extracting dependency
relations and finally comparing to the dependency relations in the reference. However, we
may wish to measure the quality of the trees themselves, not just their string yield. A
simple way to measure this15 would be to extract dependency relations directly from the
phrase-structure tree output.16 Compared to dependencies extracted from the predicted
parses using Bikel’s (2002) parser on the output string, we observe that the relation F1
score increases uniformly for all tasks, by between 2.50% and 4.15% absolute. Therefore
the system’s tree output better encodes the syntactic dependencies than the tree resulting
from re-parsing the string output. If the system is part of a NLP pipeline, and its output
is destined for down-stream processing, then having an accurate syntax tree is extremely
important. This is also true for related tasks where the desired output is a tree, e.g.,
semantic parsing.

7. Model Comparison

In this section we present our results on the test set using the best performing model from
the previous section. This model uses a grammar with unlexicalized and lexicalized rules
(recursion depth 1), a Hamming loss based on tokens, and all the features from Section 4.
The model was trained separately on each corpus (training portion). We first discuss our
results using relations F1 and then move on to the human study.

Table 6 illustrates the performance of our model (Transducer1) on CLspoken, CLwrit-
ten, and Ziff Davis. We also report results on the same corpora using McDonald’s (2006)

15. We could alternatively measure other tree metrics, such as tree edit distance. However, the standard
measures used in parser evaluation (e.g., EVALB) would not be suitable, as they assume that the parse
yield is fixed. In our case the reference target string is often different to the system’s output.

16. We extract dependency relations with the conversion tool from the CoNLL 2007 shared task, available
at http://nlp.cs.lth.se/pennconverter/.
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CLspoken
Model Compression rate Relations F1

Transducer1 82.30 66.63
Transducer2 69.89 59.58
McDonald 68.56 47.48
Clarke ILP 77.70 54.12
Reference 76.11 –

CLwritten
Model Compression rate Relations F1

Transducer1 76.52 58.02
Transducer2 61.09 49.48
McDonald 60.12 48.39
Clarke ILP 71.99 54.84
Reference 70.24 –

Ziff Davis
Model Compression rate Relations F1

Transducer1 67.45 56.55
McDonald 66.26 54.12
Clarke ILP 48.67 46.77
Reference 56.61 –

Table 6: Results on CLspoken, CLwritten, and Ziff Davis corpus (testing set); compression
rate and relations-based F1.

model (McDonald), and the improved version (Clarke ILP) put forward in Clarke and La-
pata (2008). We also present the compression rate for each system and the reference gold
standard. In all cases our tree transducer model outperforms McDonald’s (2006) original
model and the improved ILP-based version.

Nevertheless, it may be argued that our model has an unfair advantage here since it
tends to compress less than the other models, and is therefore less likely to make many
mistakes. To ensure that this is not the case, we created a version of our model with
a compression rate similar to McDonald’s. This can be done relatively straightforwardly
by manipulating the length penalty of the Hamming loss. The smaller the penalty the
more words the model will tend to drop. Therefore, we varied the length penalty (and
hyper-parameters) on the development set in order to obtain a compression rate similar to
McDonald.17 This model was then applied to the test set and its performance is shown
in Table 6 as Transducer2. We refrained from doing this on Ziff-Davis, since our original

17. We matched McDonald’s (2006) compression rate by scaling the length penalty by 0.50 and 0.25 for the
CLwritten and CLspoken corpora, respectively. Another way to control the compression rate would be
to modify our chart-based decoder in a fashion similar to McDonald (2006). However, we leave this to
future work.

31



Cohn & Lapata

S: I just wish my parents and my other teachers could be like this teacher, so we could
communicate.

M: I wish my teachers could be like this teacher.
T: I wish my teachers could be like this, so we could communicate.
R: I wish my parents and other teachers could be like this, so we could communicate.
S: The Treasury is refusing to fund a further phase of the city technology colleges.

M: The Treasury is refusing to fund a further colleges.
T: The Treasury is refusing to fund the city technology colleges.
R: The Treasury is refusing to fund further the city technology colleges.
S: Apparel makers use them to design clothes and to quickly produce and deliver the

best-selling garments.
M: Apparel makers use them to design clothes and to produce and deliver the best-selling

garments.
T: Apparel makers use them to design clothes.
R: Apparel makers use them to design clothes.
S: Earlier this week, in a conference call with analysts, the bank said it boosted credit

card reserves by $350 million.
M: Earlier said credit card reserves by $350 million.
T: In a conference call with analysts, the bank boosted card reserves by $350 million.
R: In a conference call with analysts the bank said it boosted credit card reserves by

$350 million.

Table 7: Compression examples from CLspoken, CLwritten, and Ziff-Davis (S: source sen-
tence, M: McDonald (2006), T: transducer, R: reference gold standard)

transducer obtained a compression rate comparable to McDonald’s (67.45 vs. 66.26). As
can be seen, Transducer2 yields a better F1 on CLspoken and CLwritten. The differences
in F1 are statistically significant using the the Wilcoxon test (p < 0.01). Transducer1
numerically outperforms McDonald on Ziff-Davis, however the difference is not significant
(the Ziff-Davis test set consists solely of 32 sentences).

We next consider the results of our judgment elicitation study which assesses in more
detail the quality of the generated compressions. Recall that our participants judge com-
pressed output on two dimensions, grammaticality and importance. We compared the out-
put of our system (Transducer2 on CLspoken and CLwritten and Transducer1 on Ziff-Davis)
against McDonald (2006) and the reference gold standard. Table 7 illustrates examples of
the compressions our participants saw.

Table 8 shows the mean ratings18 for each system (and the reference) on CLspoken,
CLwritten, and Ziff-Davis. We carried out an Analysis of Variance (Anova) to examine
the effect of system type (McDonald, Transducer, Reference) on the compression ratings.
The Anova revealed a reliable effect on all three corpora. We used post-hoc Tukey tests to
examine whether the mean ratings for each system differed significantly (p < 0.01). On the

18. All statistical tests reported subsequently were done using the mean ratings.
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CLspoken
Model Grammaticality Importance

Transducer 4.18∗ 3.98∗

McDonald 2.74† 2.51†

Reference 4.58 4.22

CLwritten
Model Grammaticality Importance

Transducer 4.06†∗ 3.21†∗

McDonald 3.05† 2.82†

Reference 4.52 3.70

Ziff-Davis
Model Grammaticality Importance

Transducer 4.07† 3.23†

McDonald 3.98† 3.22†

Reference 4.65 4.12

Table 8: Mean ratings on compression output elicited by humans (∗: sig. diff. from Mc-
Donald (α < 0.01); †: sig. diff. from Reference gold standard (α < 0.01); using
post-hoc Tukey tests)

CLspoken corpus the Transducer is perceived as significantly better than McDonald, both
in terms of grammaticality and importance. We obtain the same result for the CLwritten
corpus. The two systems achieve similar performances on Ziff-Davis (the grammaticality
and importance score do not differ significantly). Ziff-Davis seems to be a less challenging
corpus than CLspoken or CLwritten and less likely to highlight differences among systems.
For example, Turner and Charniak (2005) present several variants of the noisy-channel
model, all of which achieve compressions of similar quality on Ziff-Davis (grammaticality
ratings varied by only ±0.13 and informativeness ratings ±0.31 in their human evaluation).
In most cases the Transducer and McDonald yield significantly worse performance than the
Reference, save one exception. On the CLspoken corpus, there is no significant difference
between the Transducer and the gold standard.

These results indicate that our highly expressive framework is a good model for sen-
tence compression. Under several experimental conditions, across different domains, we
obtain better performance than previous work. Importantly, the model described here is
not compression-specific, it could be easily adapted to other tasks, corpora or languages (for
which syntactic analysis tools are available). Being supervised, the model learns to fit the
compression rate of the training data. In this sense, it is somewhat inflexible as it cannot
easily adapt to a specific rate given by a user or imposed by an application (e.g., when
displaying text on small screens). Nevertheless, compression rate can be indirectly ma-
nipulated by adopting loss functions that encourage or discourage compression or directly
during decoding by stratifying the chart for length (McDonald, 2006).
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8. Conclusions

In this paper we have formulated sentence compression as a tree-to-tree rewriting task. We
developed a system that licenses the space of all possible rewrites using a tree substitution
grammar. Each grammar rule is assigned a weight which is learned discriminatively within
a large margin model (Tsochantaridis et al., 2005). A specialized algorithm is used to learn
the model weights and find the best scoring compression under the model. We argue that
the proposed framework is appealing for several reasons. The synchronous grammar pro-
vides expressive power to capture rewrite operations that go beyond word deletion such
as reordering, changes in non-terminal categories and lexical substitution. Since it is not
deletion-specific, the model could be ported to other rewriting tasks (see Cohn and Lapata
(2008) for an example) without the overhead of devising new algorithms for decoding or
training. Moreover, the discriminative nature of the learning algorithm allows for the in-
corporation of all manner of powerful features. The rich feature space in conjunction with
the choice of an appropriate loss function afford greater flexibility in fitting the empirical
data for different domains or tasks.

We evaluated our model on three compression corpora (CLspoken, CLwritten, and Ziff-
Davis) and showed that in most cases it yields results superior to state-of-the-art (McDon-
ald, 2006). Our experiments were also designed to assess several aspects of the proposed
framework such as the complexity of the synchronous grammar, the choice of loss function,
the effect of various features, and the quality of the generated tree output. We observed
performance improvements with a slightly specified grammar (allowing maximally general
rules to be specified once, producing larger and more lexicalized rules). This concurs with
Galley and McKeown (2007) who also find that lexicalization yields better compression
output. The choice of loss function appears to have less of an effect. We devised three
classes of loss functions based on Hamming distance, Edit distance and F1 score. Overall,
the simple token-based Hamming loss achieved the best results. We conjecture that this
is due to its simplicity – it can be evaluated more precisely than many of the other loss
functions and isn’t affected by poor parser output. Our feature ablation study revealed that
ngram features are beneficial, mirroring a similar finding in the machine translation litera-
ture (Chiang, 2007). Finally, we found that the trees created by our generation algorithm
are more accurate compared to the output of a parser applied to the string output. This
augurs well for use in a cascaded NLP pipeline, where other systems use the compression
output as input for further processing, and can potentially make better use of the system
output.

Future extensions are many and varied. An obvious extension concerns porting the
framework to other rewriting applications such as document summarization (Daumé III &
Marcu, 2002) or machine translation (Chiang, 2007). Initial work (Cohn & Lapata, 2008)
shows that the tree-to-tree transduction model presented here can be easily adapted to a
sentence abstraction task where compression takes place using rewrite operations that are
not restricted to word deletion. Examples include substitution, reordering, and insertion.
Other future directions involve more detailed feature engineering, including source condi-
tioned features and ngram features besides the language model. More research is needed
to establish suitable loss functions for compression and other rewriting tasks. In particular
it should be interesting to experiment with loss functions that incorporate a wider range
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of linguistic features beyond parts of speech. Examples include losses based on parse trees
and semantic similarity. Finally, the experiments presented in this work use a grammar
acquired from the training corpus. However, there is nothing inherent in our formalization
that restricts us to this particular grammar. We therefore plan to investigate the poten-
tial of our method with unsupervised or semi-supervised grammar induction techniques for
other rewriting tasks including paraphrase generation and machine translation.
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