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Abstract

This paper presents a tree-to-tree transduc-
tion method for text rewriting. Our model
is based on synchronous tree substitution
grammar, a formalism that allows local dis-
tortion of the tree topology and can thus
naturally capture structural mismatches. We
describe an algorithm for decoding in this
framework and show how the model can
be trained discriminatively within a large
margin framework. Experimental results on
sentence compression bring significant im-
provements over a state-of-the-art model.

1 Introduction

Recent years have witnessed increasing interest in
text-to-text generation methods for many natural
language processing applications ranging from text
summarisation to question answering and machine
translation. At the heart of these methods lies the
ability to perform rewriting operations according to
a set of prespecified constraints. For example, text
simplification identifies which phrases or sentences
in a document will pose reading difficulty for a given
user and substitutes them with simpler alternatives
(Carroll et al., 1999). Sentence compression pro-
duces a summary of a single sentence that retains the
most important information while remaining gram-
matical (Jing, 2000).

Ideally, we would like a text-to-text rewriting sys-
tem that is not application specific. Given a parallel
corpus of training examples, we should be able to
learn rewrite rules and how to combine them in order
to generate new text. A great deal of previous work
has focused on the rule induction problem (Barzilay

and McKeown, 2001; Pang et al., 2003; Lin and Pan-
tel, 2001; Shinyama et al., 2002), whereas relatively
little emphasis has been placed on the actual gen-
eration task (Quirk et al., 2004). A notable excep-
tion is sentence compression for which end-to-end
rewriting systems are commonly developed (Knight
and Marcu, 2002; Turner and Charniak, 2005; Gal-
ley and McKeown, 2007; Riezler et al., 2003; Mc-
Donald, 2006). The appeal of this task lies in its
simplified formulation as a single rewrite operation,
namely word deletion (Knight and Marcu, 2002).

Solutions to the compression task have been cast
mostly in a supervised learning setting (but see
Clarke and Lapata (2006a), Hori and Furui (2004),
and Turner and Charniak (2005) for unsupervised
methods). Rewrite rules are learnt from a parsed
parallel corpus and subsequently used to find the
best compression from the set of all possible com-
pressions for a given sentence. A common assump-
tion is that the tree structures representing long sen-
tences and their compressions are isomorphic. Con-
sequently, the models are not generally applicable
to other text rewriting problems since they cannot
readily handle structural mismatches and more com-
plex rewriting operations such as substitutions or
insertions. A related issue is that the tree structure
of the compressed sentences is often poor; most al-
gorithms delete words or constituents without pay-
ing too much attention to the structure of the com-
pressed sentence. However, without an explicit gen-
eration mechanism that allows tree transformations,
there is no guarantee that the compressions will have
well-formed syntactic structures. And it will not be
easy to process them for subsequent generation or
analysis tasks.

In this paper we present a text-to-text rewriting



model that scales to non-isomorphic cases and can
thus naturally account for structural and lexical di-
vergences. Our approach is inspired by synchronous
tree substitution grammar (STSG, Eisner (2003))
a formalism that allows local distortion of the tree
topology. We show how such a grammar can be in-
duced from a parallel corpus and propose a large
margin model for the rewriting task which can be
viewed as a weighted tree-to-tree transducer. Our
learning framework makes use of the algorithm put
forward by Tsochantaridis et al. (2005) which ef-
ficiently learns a prediction function to minimise a
given loss function. Experiments on sentence com-
pression show significant improvements over the
state-of-the-art. Beyond sentence compression and
related text-to-text generation problems (e.g., para-
phrasing), our model is generally applicable to tasks
involving structural mapping. Examples include ma-
chine translation (Eisner, 2003) or semantic parsing
(Zettlemoyer and Collins, 2005).

2 Related Work

Knight and Marcu (2002) proposed a noisy-channel
formulation of sentence compression based on syn-
chronous context-free grammar (SCFG). The lat-
ter is a generalisation of the context-free grammar
(CFG) formalism to simultaneously produce strings
in two languages. In the case of sentence compres-
sion, the grammar rules have two right hand sides,
one corresponding to the source (long) sentence and
the other to its target compression. The synchronous
derivations are learnt from a parallel corpus and their
probabilities are estimated generatively.

Given a long sentence, l, the aim is to find the
corresponding compressed sentence, s, which max-
imises P(s)P(l|s) (here P(s) is the source model
and P(l|s) the channel model.) Modifications of this
model are reported in Turner and Charniak (2005)
and Galley and McKeown (2007) with improved re-
sults. The channel model is limited to tree deletion
and does not allow any type of tree re-organisation.

Non-isomorphic tree structures are common when
translating between languages. It is therefore not
surprising that most previous work on tree rewrit-
ing falls within the realm of machine translation.
Proposals include Eisner’s (2003) synchronous tree
substitution grammar (STSG), Melamed’s (2004)

multitext grammar, and Graehl and Knight’s (2004)
tree-to-tree transducers. Despite differences in for-
malism, all these approaches model the translation
process using tree-based probabilistic transduction
rules. The grammar induction process requires EM
training which can be computationally expensive es-
pecially if all synchronous rules are considered.

Our work formulates sentence compression in the
framework of STSG (Eisner, 2003). We propose a
novel grammar induction algorithm that does not
require EM training and is coupled with a sepa-
rate large margin training process (Tsochantaridis
et al., 2005) for weighting each rule. McDonald
(2006) also presents a sentence compression model
that uses a discriminative large margin algorithm.
However, we differ in two important respects. First,
our generation algorithm is more powerful, perform-
ing complex tree transformations, whereas McDon-
ald only considers simple word deletion. Being tree-
based, the generation algorithm is better able to pre-
serve the grammaticality of the compressed output.
Second, our model can be tuned to a wider range of
loss functions (e.g.,tree-based measures).

3 Problem Formulation

We formulate sentence compression as an instance
of the general problem of learning a mapping from
input patterns x ∈ X to discrete structured objects
y ∈ Y . Our training sample consists of a parallel
corpus of input (uncompressed) and output (com-
pressed) pairs (x1,y1) . . .(xn,yn) ∈ X × Y and our
task is to predict a target labelled tree y from a
source labelled tree x. As we describe below, y is
not precisely a target tree, but instead derivations
which generate both the source and the target tree.
We model the dependency between x and y as a
weighted STSG. Grammar rules are of the form
〈X ,Y 〉 → 〈γ,α,β〉 where γ and α are elementary
trees composed of a mixture of terminal and non-
terminals rooted with non-terminals X and Y respec-
tively, and β is a set of variable correspondences
between pairs of frontier non-terminals in γ and α.
A grammar rule specifies that we can substitute the
trees γ and α for corresponding X and Y nodes in the
source and target trees respectively. For example, the
rule:

〈NP, NP〉 → 〈[DT 1 ADJP NN 2 ]NP, [DT 1 NN 2 ]NP〉



allows adjective phrases to be dropped from the
source tree within an NP. The indices x are used to
specify the variable correspondences, β.

Each grammar rule has a score from which the
overall score of a compression y for sentence x
can be derived. These scores are learnt discrimina-
tively using the large margin technique proposed by
Tsochantaridis et al. (2005). The synchronous rules
are combined using a chart-based parsing algorithm
(Eisner, 2003) to generate the derivation (i.e., com-
pressed tree) with the highest score.

We begin by describing our STSG generation al-
gorithm in Section 3.1. We next explain how a syn-
chronous grammar is induced from a parallel corpus
of original sentences and their compressions (Sec-
tion 3.2) and give the details of our learning frame-
work (Section 3.3).

3.1 Generation
Generation aims to find the best target tree for a
given source tree using the transformations specified
by the synchronous grammar. (We discuss how we
obtain this grammar in the following section.)

y∗ =max
y∈Y

score(x,y;w) (1)

where y ranges over all target derivations (and there-
fore trees), w is a parameter vector and score(·) is
an objective function measuring the quality of the
derivation. In common with many parsing methods,
we encounter a problem with spurious ambiguity:
i.e., there may be many derivations (sequences of
rule applications) which produce the same target
tree. Ideally we would sum up the scores over all
these derivations, however for the sake of tractability
we instead take the maximum score. This allows us
to pose the maximisation problem over derivations
rather than target trees.

The generation algorithm uses a dynamic pro-
gram defined over the constituents in the source
tree as shown in Figure 1 (see also Eisner (2003)).
The algorithm makes the assumption that the scor-
ing function decomposes with the derivation, such
that a partial score can be evaluated at each step,
i.e., score(x,y;w) = ∑r∈y score(r;w) where r are
the rules used in the derivation. This method builds
a chart of the best scoring partial derivation for
each source subtree headed by a given target non-
terminal. The inductive step is applied recursively

1: for all nodes, n, in source tree (bottom-up) do
2: for all rules, r with left side matching node, nr = n do
3: s = score(r)
4: for all variables v in r do
5: score = score+ chart[nv,cv]
6: end for
7: update chart[n,cr] with score, s, if better than current
8: end for
9: end for

10: cbest = argmaxc chart[root,c]
11: find best derivation using back-pointers from (root,cbest)

Figure 1: Generation algorithm to find the best
derivation. nr and nv are the source nodes indexed
by the rule’s source side (root and variable), while
cr and cv are the non-terminal categories of the rule’s
target side (root and variable).

is very good and includes ...
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Figure 2: Example of a rule application during gen-
eration. The dashed area shows a matching rule for
the V P node.

bottom-up, and involves applying a grammar rule
to a node in the source tree. Rules with substitution
variables in their frontier are scored with reference
to the chart for the matching nodes and target non-
terminal categories. Once the process is complete,
we can read the best score from the chart cell for the
root node, and the best derivation can be constructed
by traversing back-pointers also stored in the chart.
This is illustrated in Figure 2 where the rule
〈V P,V P〉→ 〈[[isAUX ADJP 1 ]V P CC V P]V P, [isAUX NP 1 ]V P〉 is
applied to the top V P node. The score of the result-
ing tree would reference the chart to calculate the
score for the best target tree at the ADJP node with
syntactic category NP.

3.2 Grammar Induction

Our induction algorithm automatically finds gram-
mar rules from a word-aligned parsed parallel cor-
pus. The rules are pairs of elementary trees (i.e., tree
fragments) whose leaf nodes are linked by the word
alignments. These leaves can be either terminal or
non-terminal symbols. Initially, the algorithm ex-



tracts tree pairs from word aligned text by choos-
ing aligned constituents in the source and the tar-
get. These pairs are then generalised using subtrees
which are also extracted, resulting in synchronous
rules with variable nodes. The set of aligned tree
pairs are extracted using the alignment template
method (Och and Ney, 2004), constrained to syntac-
tic constituent pairs:

C = {(nS,nT ), (∃(s, t) ∈ A ∧ s ∈ Y (nS)∧ t ∈ Y (nT ))∧
(@(s, t) ∈ A ∧ (s ∈ Y (nS)Y t ∈ Y (nT )))}

where nS and nT are source and target tree nodes
(subtrees), A = {(s, t)} is the set of word alignments
(pairs of word-indices), Y (·) returns the yield span
for a subtree and Y is the exclusive-or operator.

The next step is to generalise the candidate pairs
by replacing subtrees with variable nodes. We could
fully trust the word alignments and adopt a strat-
egy in which the rules are generalised as much as
possible and thus include little lexicalisation. Fig-
ure 3 shows a simple sentence pair and the result-
ing synchronous rules according to this generalisa-
tion strategy. Alternatively, we could extract every
possible rule by including unlexicalised rules, lexi-
calised rules and their combination. The downside
here is that the total number of possible rules is fac-
torial in the size of the candidate set. We address this
problem by limiting the number of variables and the
recursion depth, and by filtering out singleton rules.

There is no guarantee that the induced rules will
generalise well to a testing set. For example, the test-
ing data may have a rule which was not seen in the
training set (e.g., a new terminal or non terminal).
In this case no rule can be applied and subsequently
generation fails. For this reason we allow the model
to duplicate any CFG production from the source
tree, and uses a feature to flag that this rule was un-
seen in training. These SCFG rules are then merged
with the induced rules and fed into the feature detec-
tion module (see Section 3.3 for details).

3.3 The Large Margin Model

We now describe how the parameters of our STSG
generation system are fit to a supervised training set.
For a given source tree, the space of sister target
trees implied by the synchronous grammar is often
very large, and the majority of these trees are un-
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〈S,S〉 → 〈[NP 1 V P 2 . 3 ]S, [NP 1 V P 2 . 3 ]S〉
〈NP,NP〉 → 〈[DT NN 1 ]NP, [NN 1 ]NP〉
〈NN,NN〉 → 〈documentationNN ,DocumentationNN〉
〈V P,V P〉 → 〈V P 1 CC V P,V P 1 〉
〈V P,V P〉 → 〈AUX 1 ADJP 2 ,AUX 1 ADJP 2 〉

〈AUX ,AUX〉 → 〈isAUX , isAUX 〉
〈ADJP,ADJP〉 → 〈[RB 1 JJ 2 ]ADJP, [RB 1 JJ 2 ]ADJP〉

〈RB,RB〉 → 〈veryRB,veryRB〉
〈JJ,JJ〉 → 〈goodADJ ,goodADJ〉

〈., .〉 → 〈.., ..〉

Figure 3: Induced synchronous grammar from a sen-
tence pair using a strategy that extracts general rules.

grammatical or are poor compressions. The train-
ing procedure learns weights such that the model
can discriminate between these trees and predict a
good target tree. For this we develop a discriminative
training process which learns a weighted tree-to-tree
transducer. Our model is based on Tsochantaridis et
al.’s (2005) framework for learning Support Vector
Machines (SVMs) with structured output spaces, us-
ing the SVMstruct implementation.1 We briefly sum-
marise the approach below; for a more detailed de-
scription we refer the interested reader to Tsochan-
taridis et al. (2005).

Traditionally SVMs learn a linear classifier that
separates two or more classes with the largest pos-
sible margin. Analogously, structured SVMs at-
tempt to separate the correct structure from all other

1http://svmlight.joachims.org/svm_struct.html



structures with a large margin. Given an input in-
stance x, we search for the optimum output y under
the assumption that x and y can be adequately de-
scribed using a combined feature vector representa-
tion Ψ(x,y). Recall that x are the source trees and y
are synchronous derivations which generate both x
and a target tree.

f (x;w) = argmax
y∈Y

〈w,Ψ(x,y)〉 (2)

The goal of the training procedure is to find a param-
eter vector w such that it satisfies the condition:

∀i,∀y ∈ Y \yi : 〈w,Ψ(xi,yi)−Ψ(xi,y)〉 ≥ 0 (3)

where xi,yi are the ith training source tree and tar-
get derivation. To obtain a unique solution — there
will be several parameter vectors w satisfying (3)
if the training instances are linearly separable —
Tsochantaridis et al. (2005) select the w that max-
imises the minimum distance between yi and the
closest runner-up structure.

The framework also incorporates a loss function.
This property is particularly appealing in the context
of sentence compression and generally text-to-text
generation. For example, a compression that differs
from the gold standard with respect to one or two
words should be treated differently from a compres-
sion that bears no resemblance to it. Another impor-
tant factor is the length of the compression. Com-
pressions whose length is similar to the gold stan-
dard should be be preferable to longer or shorter
output. A loss function ∆(yi,y) quantifies the accu-
racy of prediction y with respect to the true output
value yi. We give details of the loss functions we
employed for the compression task below.

We are now ready to state the learning objective
for the structured SVM. We use the soft-margin for-
mulation which allows errors in the training set, via
the slack variables ξi:

min
w,ξ

1
2
||w||2 +

C
n

n

∑
i=1

ξi, ξi ≥ 0 (4)

∀i,∀y ∈ Y \yi : 〈w,δΨ(y)〉 ≥ 1− ξi

∆(yi,y)

Slack variables ξi are introduced here for each train-
ing example xi, C is a constant that controls the
trade-off between training error minimisation and

margin maximisation, and δΨ(y) is a shorthand for
Ψ(xi,yi)−Ψ(xi,y) (see (3)). Note that slack vari-
ables are rescaled with the inverse loss incurred in
each of the linear constraints.2

The optimisation problem in (4) is approximated
using a polynomial time cutting plane algorithm
(Tsochantaridis et al., 2005). This optimisation cru-
cially relies on finding the constraint incurring the
maximum cost. The cost function for slack rescaling
can be formulated as:

H(y) = (1−〈δΨi(y),w〉)∆(yi,y) (5)

In order to adapt this framework to our genera-
tion problem, we must provide the feature map-
ping Ψ(x,y), a loss function ∆(yi,y), and a max-
imiser ŷ = argmaxy∈Y H(y) (see (5)). The following
sections describe how these are instantiated in the
sentence compression task.

Feature Mapping We devised a general feature
set suitable for compression and paraphrasing. Our
feature space is defined over source trees (x) and
target derivations (y). All features apply to a single
grammar rule; a feature vector for a derivation is ex-
pressed as the sum of the feature vectors for each
rule in this derivation.

We make use of syntactic, lexical, and com-
pression specific features. Our simplest syntac-
tic feature is the identity of a synchronous rule.
Specifically, we record its source tree, its target
tree and their combination. We also include rule
frequencies φ(target|source), φ(source|target) and
φ(source, target). Another feature records the fre-
quencies of the CFG productions used in the tar-
get side of a rule. This allows the model to learn
the weights of a CFG generation grammar, as a
proxy for a language model. Using scores from a
pre-trained CFG grammar or an n-gram language
model might be preferable when the training sample
is small, however we leave this as future work. Our
last syntactic feature keeps track of the source root
and the target root non-terminals. Our lexical fea-
tures contain the list of tokens in the source yield,
target yield, and both. We also use words as features.

2Alternatively, the loss function can be used to rescale the
margin. This approach is less desirable as it is not scale invari-
ant (Tsochantaridis et al., 2005). We also found empirically that
slack-rescaling slightly outperforms margin rescaling on our
compression task.



Finally, we have implemented a set of
compression-specific features. These include a
feature that detects if the yield of the target side
of a synchronous rule is a subset of the yield of
its source. We also take note of the edit operations
(i.e., removal, insertion) required to transform the
source side into the target. Edit operations are
recorded separately for trees and their yields. In
order to encourage compression, we also count the
number of words on the target, the number of rules
used in the derivation and the number of dropped
variables.

Loss Functions The large margin configuration
sketched above is quite modular and in theory a wide
range of loss functions could be specified. Examples
include edit-distance, precision, F-score, BLEU and
tree-based measures. In practice, the loss function
should be compatible with our maximisation algo-
rithm which requires the objective function to de-
compose along the same lines as the tree derivation.3

Given this restriction, we define a loss based
on position-independent unigram precision (Prec)
which penalises errors in the yield independently
for each word. Although fairly intuitive, this loss
is far from ideal. First, it maximally rewards re-
peatedly predicting the same word if the latter is
in the reference target tree. Secondly, it may bias
towards overly short output which drops core in-
formation — one-word compressions will tend to
have higher precision than longer output. To coun-
teract this, we introduce two brevity penalty mea-
sures (BP) inspired by BLEU (Papineni et al., 2002)
which we incorporate into the loss function, using a
product, loss = 1−Prec ·BP:

BP1 = exp(1−max(1,
r
c
)) (6)

BP2 = exp(1−max(
c
r
,

r
c
))

where r is the reference length and c is the candidate
length.

BP1 is asymmetric, it has value one when c ≥ r
and decays to zero when c < r. Note that precision
should decay when c > r as extra output will often
not match the reference. BP2 is two-sided: it has

3Optimising non-decompositional loss functions compli-
cates the objective function, which then cannot be solved ef-
ficiently using a dynamic program.

value one when c = r and decays towards zero for
c < r and c > r. In both cases, brevity is assessed
against the gold standard target (not the source) to
allow the system to learn the correct degree of com-
pression from the training data.

Maximisation Algorithm Our algorithm finds the
maximising derivation for H(y) in (5). This deriva-
tion will have a high loss and a high score under the
model, and therefore represents the most-violated
constraint which is then added to the SVM’s work-
ing set of constraints (see (4)).

The standard generation method from Section 3.1
cannot be used without modification to find the best
scoring derivation since it does not account for the
loss function or the gold standard derivation. In-
stead, we stratify the generation chart with the num-
ber of true and false positive tokens predicted, as de-
scribed in Joachims (2005). These contingency val-
ues allow us to compute the precision and brevity
penalty (see (6)) for each complete derivation. This
is then combined with the derivation score and the
gold standard derivation score to give H(y).

The gold standard derivation features, Ψ(xi,yi),
must be calculated from a derivation linking the
source tree to the gold target tree. As there may
be many such derivations, we find a unique deriva-
tion using the smallest rules possible (for maximum
generality). This is done using a dynamic program,
similar to the inside-outside algorithm used in pars-
ing. Other strategies are also possible, however we
leave this to future work. Finally, we can find the
global maximum H(y) by maximising over all the
root chart entries.

4 Evaluation Set-up

In this section we present our experimental set-up
for assessing the performance of the max margin
model described above. We give details of the cor-
pora used, briefly introduce McDonald’s (2006) sen-
tence compression model used for comparison with
our approach, and explain how system output was
evaluated.

Corpora We evaluated our system on two dif-
ferent corpora. The first is the compression cor-
pus of Knight and Marcu (2002) derived automati-
cally from the document-abstract pairs of the Ziff-



Davis corpus. Previous compression work has al-
most exclusively used this corpus. Our experiments
follow Knight and Marcu’s partition of training, test,
and development sets (1,002/36/12 instances). We
also present results on Clarke and Lapata’s (2006a)
Broadcast News corpus.4 This corpus was created
manually (annotators were asked to produce com-
pressions for 50 Broadcast news stories) and poses
more of a challenge than Ziff-Davis. Being a speech
corpus, it often contains incomplete and ungram-
matical utterances and speech artefacts such as dis-
fluencies, false starts and hesitations. Furthermore,
spoken utterances have varying lengths, some are
very wordy whereas others cannot be reduced any
further. Thus a hypothetical compression system
trained on this domain should be able to leave some
sentences uncompressed. Again we used Clarke and
Lapata’s training, test, and development set split
(882/410/78 instances).

Comparison with State-of-the-art We evaluated
our approach against McDonald’s (2006) discrimi-
native model. This model is a good basis for compar-
ison for several reasons. First, it achieves compet-
itive performance with Knight and Marcu’s (2002)
decision tree and noisy channel models. Second, it
also uses large margin learning. Sentence compres-
sion is formulated as a string-to-substring mapping
problem with a deletion-based Hamming loss. Re-
call that our formulation involves a tree-to-tree map-
ping. Third, it uses a feature space complementary to
ours. For example features are defined between ad-
jacent words, and syntactic evidence is incorporated
indirectly into the model. In contrast our model re-
lies on synchronous rules to generate valid compres-
sions and does not explicitly incorporate adjacency
features. We used an implementation of McDonald
(2006) for comparison of results (Clarke and Lapata,
2007).

Evaluation Measures In line with previous work
we assessed our model’s output by eliciting hu-
man judgements. Participants were presented with
an original sentence and its compression and asked
to rate the latter on a five point scale based on the in-
formation retained and its grammaticality. We con-
ducted two separate elicitation studies, one for the

4The corpus can be downloaded from http://homepages.
inf.ed.ac.uk/s0460084/data/.

O: I just wish my parents and my other teachers could
be like this teacher, so we could communicate.

M: I wish my teachers could be like this teacher.
S: I wish my teachers could be like this, so we could

communicate.
G: I wish my parents and other teachers could be like

this, so we could communicate.
O: Earlier this week, in a conference call with analysts,

the bank said it boosted credit card reserves by $350
million.

M: Earlier said credit card reserves by $350 million.
S: In a conference call with analysts, the bank boosted

card reserves by $350 million.
G: In a conference call with analysts the bank said it

boosted credit card reserves by $350 million.

Table 1: Compression examples from the Broadcast
news corpus (O: original sentence, M: McDonald
(2006), S: STSG, G: gold standard)

Ziff-Davis and one for the Broadcast news dataset.
In both cases our materials consisted of 96 source-
target sentences. These included gold standard com-
pressions and the output of our system and Mc-
Donald’s (2006). We were able to obtain ratings on
the entire Ziff-Davis test set as it has only 32 in-
stances; this was not possible for Broadcast news
as the test section consists of 410 instances. Conse-
quently, we randomly selected 32 source-target sen-
tences to match the size of the Ziff-Davis test set.5

We collected ratings from 60 unpaid volunteers, all
self reported native English speakers. Both studies
were conducted over the Internet. Examples of our
experimental items are given in Table 1.

We also report results using F1 computed over
grammatical relations (Riezler et al., 2003). We
chose F1 (as opposed to accuracy or edit distance-
based measures) as Clarke and Lapata (2006b) show
that it correlates reliably with human judgements.

5 Experiments

The framework presented in Section 3 is quite flex-
ible. Depending on the grammar induction strategy,
choice of features, loss function and maximisation
algorithm, different classes of models can be de-
rived. Before presenting our results in detail we dis-
cuss the specific model employed in our experiments
and explain how its parameters were instantiated.

In order to build a compression model we need

5A Latin square design ensured that subjects did not see two
different compressions of the same sentence.
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Figure 4: Compression rate vs. grammatical rela-
tions F1 using unigram precision alone and in com-
bination with two brevity penalties.

a parallel corpus of syntax trees. We obtained syn-
tactic analyses for source and target sentences with
Bikel’s (2002) parser. Our corpora were automat-
ically aligned with Giza++ (Och et al., 1999) in
both directions between source and target and sym-
metrised using the intersection heuristic (Koehn et
al., 2003). Each word in the lexicon was also aligned
with itself. This was necessary in order to inform
Giza++ about word identity. Unparseable sentences
and those longer than 50 tokens were removed from
the data set.

We induced a synchronous tree substitution gram-
mar from the Ziff-Davis and Broadcast news cor-
pora using the method described in Section 3.2. We
extracted all maximally general synchronous rules.
These were complemented with more specific rules
from conjoining pairs of general rules. The specific
rules were pruned to remove singletons and those
rules with more than 3 variables. Grammar rules
were represented by the features described in Sec-
tion 3.3.

An important parameter for our compression task
is the appropriate choice of loss function. Ideally, we
would like a loss function that encourages compres-
sion without overly aggressive information loss. Fig-
ure 4 plots compression rate against grammatical re-
lations F1 using each of the loss functions presented
in Section 3.3 on the Ziff-Davis development set.6

As can be seen with unigram precision alone (Prec)

6We obtained a similar plot for the Broadcast News corpus
but omit it due to lack of space.

Ziff-Davis CompR RelF1
McDonald06 66.2 45.8
STSG 56.8 54.3
Gold standard 57.2 —

Broadcast News CompR RelF1
McDonald06 68.6 47.6
STSG 73.7 53.4∗

Gold standard 76.1 —

Table 2: Results using grammatical relations F1
(∗: sig. diff. from McDonald06; p < 0.01 using the
Student t test)

the system produces overly short output, whereas
the one-sided brevity penalty (BP1) achieves the op-
posite effect. The two-sided brevity penalty (BP2)
seems to strike the right balance: it encourages com-
pression while achieving good F-scores. This sug-
gests that important information is retained in spite
of significant compression. We also varied the regu-
larisation parameter C (see (4)) over a range of val-
ues on the development set and found that setting it
to 0.01 yields overall good performance across cor-
pora and loss functions.

We now present our results on the test set. These
were obtained with a model that uses slack rescal-
ing and a precision-based loss function with a two-
sided brevity penalty (C = 0.01). Table 2 shows the
average compression rates (CompR) for McDonald
(2006) and our model (STSG) as well as their perfor-
mance according to grammatical relations F1. The
row ‘Gold standard’ displays human-produced com-
pression rates. Notice that our model obtains com-
pression rates similar to the gold standard, whereas
McDonald tends to compress less on Ziff-Davis and
more on Broadcast news. As far as F1 is concerned,
we see that STSG outperforms McDonald on both
corpora. The difference in F1 is statistically signifi-
cant on Broadcast news but not on Ziff-Davis (which
consists solely of 32 sentences).

Table 3 presents the results of our elicitation
study. We carried out an Analysis of Variance
(ANOVA) to examine the effect of system type (Mc-
Donald06, STSG, Gold standard) on the compres-
sion ratings. The ANOVA revealed a reliable effect
on both corpora. We used post-hoc Tukey tests to



Model Ziff-Davis Broadcast news
McDonald06 2.82† 2.16†

STSG 3.20†∗ 2.63∗

Gold standard 3.72 3.05

Table 3: Mean ratings on compression output
elicited by humans (∗: sig. diff. from McDon-
ald06 (α < 0.05); † sig. diff. from Gold standard
(α < 0.01); using post-hoc Tukey tests)

examine whether the mean ratings for each sys-
tem differed significantly. The Tukey tests showed
that STSG is perceived as significantly better than
McDonald06. There is no significant difference be-
tween STSG and the gold standard compressions on
the Broadcast news; both systems are significantly
worse than the gold standard on Ziff-Davis.

These results are encouraging, indicating that our
highly expressive framework is a good model for
sentence compression. Under several experimental
conditions we obtain better performance than previ-
ous work. Importantly, the model described here is
not compression-specific, it could be easily adapted
to other tasks, corpora or languages (for which
syntactic analysis tools are available). Being su-
pervised, our model learns to fit the compression
rate of the training data. In this sense, it is some-
what inflexible as it cannot easily adapt to a spe-
cific rate given by a user or imposed by an appli-
cation (e.g., when displaying text on small screens).
Compression rate can be indirectly manipulated by
adopting loss functions that encourage or discourage
compression (see Figure 4), but admittedly in other
frameworks (e.g., Clarke and Lapata (2006a)) the
length of the compression can be influenced more
naturally.

In our formulation of the compression problem,
a derivation is characterised by a single inventory
of features. This entails that the feature space can-
not in principle distinguish between derivations that
use the same rules, applied in a different order. Al-
though, this situation does not arise often in our
dataset, we believe that it can be ameliorated by in-
tersecting a language model with our generation al-
gorithm (Chiang, 2005).

6 Conclusions and Future Work

In this paper we have presented a novel method
for sentence compression cast in the framework of
structured learning. We develop a system that gener-
ates compressions using a synchronous tree substi-
tution grammar whose weights are discriminatively
trained within a large margin model. We also de-
scribe an appropriate algorithm than can be used in
both training (i.e., learning the model weights) and
decoding (i.e., finding the most plausible compres-
sion under the model). The proposed formulation al-
lows us to capture rewriting operations that go be-
yond word deletion and can be easily tuned to spe-
cific loss functions directly related to the problem at
hand. We empirically evaluate our approach against
a state-of-the art model (McDonald, 2006) and show
performance gains on two compression corpora.

Future research will follow three directions. First,
we will extend the framework to incorporate po-
sition dependent loss functions. Examples include
the Hamming distance or more sophisticated func-
tions that take the tree structure of the source and
target sentences into account. Such functions can
be supported by augmenting our generation algo-
rithm with a beam search. Secondly, the present pa-
per used a relatively simple feature set. Our inten-
tion was to examine our model’s performance with-
out extensive feature engineering. Nevertheless, im-
provements should be possible by incorporating fea-
tures defined over n-grams and dependencies (Mc-
Donald, 2006). Finally, the experiments presented
in this work use a grammar acquired from the train-
ing corpus. However, there is nothing inherent in our
formalisation that restricts us to this particular gram-
mar. We therefore plan to investigate the potential
of our method with unsupervised or semi-supervised
grammar induction techniques for additional rewrit-
ing tasks including paraphrase generation and ma-
chine translation.
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