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Abstract—WiFi fingerprinting has received much attention for
indoor mobile phone localization. In this study, we examine
the impact of various aspects underlying a WiFi fingerprinting
system. Specifically, we investigate different definitions for fin-
gerprinting and location estimation algorithms across different
indoor environments ranging from a multi-storey office building
to shopping centers of different sizes. Our results show that the
fingerprint definition is as important as the choice of location
estimation algorithm and there is no single combination of these
two that works across all environments or even all floors of a
given environment. We then consider the effect of WiFi frequency
bands (e.g., 2.4GHz and 5GHz) and the presence of virtual access
points (VAPs) on location accuracy with WiFi fingerprinting. Our
results demonstrate that 5GHz signals are less prone to variation
and thus yield more accurate location estimation. We also find
that the presence of VAPs improves location estimation accuracy.

I. INTRODUCTION

In this paper, we take a microscopic look at the well-
known WiFi fingerprinting approach when applied for indoor
mobile phone localization. Specifically, we examine the impact
of various aspects underlying a WiFi fingerprinting system,
including: the definition of a fingerprint, run-time location
estimation algorithms, frequency band and presence of virtual
access points (VAPs). Our investigation considers several
different real indoor environments ranging from a multi-storey
office building to shopping centers of different sizes. Seven
different definitions of fingerprints are considered that span
RSSI based, AP visibility based and combinations of both.
With respect to location estimation algorithms, we compare
three different deterministic techniques (including the often
used Euclidean distance based nearest neighbor method) with
two probabilistic techniques that use Gaussian and Log-normal
distributions for RSSI modeling.

Our findings are summarized as follows:

• Section IV: Our analysis shows that the fingerprint def-
inition is at least as important as the choice of location
estimation algorithm; the latter has received significantly
more attention in the literature till date. Moreover, there
is no single combination of fingerprint definition and
localization algorithm that always yields the optimum
localization result across all the different environments
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we considered. In fact, even different floors within the
same building have different optimum combinations.

• Section V: We consider the impact of frequency band
used (2.4GHz vs. 5GHz) on WiFi fingerprinting and find
that 5GHz offers relatively better location accuracy due
to lower RSSI variation.

• Section VI: We also consider, for the first time, the effect
of virtual access points (VAPs), which are now becoming
commonplace in most indoor environments. Contrary to
intuition, we find that the presence of VAPs significantly
improves WiFi fingerprinting accuracy which we believe
is due to two reasons: VAPs have a substantial influence
on the AP density, a factor known to affect accuracy
with WiFi fingerprinting; and fingerprints obtained from
different co-located VAPs operating on the same channel
are somewhat dissimilar, capturing the temporal variabil-
ity inherent to wireless signal propagation and providing
robustness against it.

II. RELATED WORK

WiFi fingerprinting has emerged as a popular WiFi based
localization technique in the past 10-15 years since the idea
was first put forth in the RADAR system [1]. The attractive
thing about WiFi based localization approach is that it exploits
the prevalent WiFi infrastructure in many indoor environments
and the presence of WiFi interfaces now common in smart-
phones. With fingerprinting there is the added advantage of not
having to go through the process of accurate radio propagation
modelling which can be quite challenging in multipath rich
indoor environments. Instead the idea is to use the signal char-
acteristics at each location (usually signal strength from visible
APs) as a signature to infer location. Generally speaking,
fingerprinting systems consist of two phases. The first phase
involves building a fingerprint database or constructing a radio
map through measurements associated with known locations.
This phase is sometimes referred to as site survey / offline /
training phase. Then in the second phase, variously referred
to as online / runtime / positioning / tracking phase, signal
measurement samples collected by a user’s device are used to
“look up” the closest matching samples in the database / radio
map to infer the user’s location. Early WiFi fingerprinting
systems including RADAR [1] and Horus [2] rely on an initial
training phase to construct fingerprint database for use as a
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reference in the positioning phase later but training phase can
be quite time consuming and expensive. More recent WiFi
fingerprinting systems make this training phase automated
via crowdsourcing using various mechanisms with increasing
sophistication (e.g., Redpin [3], OIL [4], Zee [5]).

More closely relevant to this paper are the studies com-
paring different WiFi fingerprinting techniques (e.g., [6]) and
analyzing the properties of WiFi signals as they pertain to
location fingerprinting (see [7] and references therein). A
number of factors are now recognized to have an impact on the
accuracy of WiFi fingerprinting systems to varying degrees,
including user orientation, temporal and spatial variations of
WiFi signals, device hardware, transmit power, number of
measurement samples [1], [2], [7].

Our work differs from and advances the previous work in
the sense that it considers factors such as fingerprint definition,
effect of frequency band and VAPs that are beyond those have
been previously considered in the context of smartphone based
WiFi fingerprinting in diverse environments. Concerning our
investigation on the effect of frequency band, [8] have also
come up the same conclusions although they do not analyze
the underlying reasons. Specifically, [8] studied the effect of
different device hardware types on RSSI behavior including
some dual-band WiFi interfaces. The authors observed that
5GHz exhibits relatively low standard deviation of RSSI and
they conjecture that it could be possibly be due to low
interference and propagation effects in 5GHz band without
any experimental validation.

III. METHODOLOGY

A. Data Collection

We obtain WiFi fingerprinting data for our study using An-
droid phones and IndoorScanner, a custom mobile application
we developed for this specific purpose. For each measurement
position, which we note as the ground truth, IndoorScanner
relies on the Android API (specifically, the getScanResults()
method in the WifiManager class) to do multiple (20) scans,
each taking approximately 1 second. Information gathered
from each scan includes service set identification (SSID), basic
service set identification (BSSID), RSSI, channel and UNIX
timestamp. Scan results are annotated with the corresponding
ground truth position and stored in a MySQL database, in a
separate table for each different environment. We use either
Samsung Galaxy S3 or HTC Nexus One phones, both Android
based, to generate the various datasets.

B. Environments

We consider a multi-storey office building and three differ-
ent shopping centers as representative set of diverse environ-
ments. Layout of these different environments is shown for
reference in Figure 1 and Figure 2.
Multi-storey office building. As a representative office build-
ing, we consider the Informatics Forum building in the Uni-
versity of Edinburgh which houses the School of Informatics.
We focus on five floors of this building which constitute the
main areas with staff/student offices, common spaces and labs.

Figure 1 shows the floor plan for two of the floors. Note that
the grey area in the middle is empty across all floors. Also
note that two of the floors, including the second floor shown in
Figure 1(b), are slightly different with an open plan common
space in place of some rooms. As a result the number of
sampled measurement locations are different between floors —
floors with open spaces have more number of measurement lo-
cations. There is a university run wireless LAN service across
the whole building with several APs installed per floor. Each of
these physical APs function as two virtual APs corresponding
to two wireless networks with different user authentication
mechanisms. In addition, a number of other APs can be seen
across the building, some installed by various research groups
in the building while others from surrounding buildings. The
WiFi fingerprint dataset for this building was generated by
measurements using our IndoorScanner app described above
along the corridors and in common spaces at a granularity of
1 square meter cells, colored cyan in Figure 1.

Shopping centers. Besides the office building described
above, we also consider three shopping centers of different
sizes in Edinburgh, UK as shown in Figure 2. We use WiFi
scan results with our IndoorScanner app along with a dis-
tinct id we manually assigned for each measurement position
(shown as purple colored cells in Figure 2 to produce the
individual datasets for each of these environments. Note that
compared to the office environment described above, sampling
of these shopping environments is sparser as they are public
spaces with less flexibility in choosing measurement location
and also given their size. These measurements were collected
during busy shopping times to better capture a realistic usage
scenario.

C. Fingerprint Definitions

What constitutes a WiFi fingerprint, i.e., the fingerprint
definition, potentially influences the accuracy of a WiFi fin-
gerprinting system even if other aspects such as the location
estimation algorithm are kept fixed.

As a starter, a vector of mean1 signal strength values from
different WiFi APs seen at a location can be taken as the
WiFi fingerprint for that location, as in [1]. We refer to this
fingerprint definition as the Default fingerprint definition in
the rest of this paper. However, as shown in section IV,
we observe that this default definition yields poor location
accuracy when compared to some of the alternative and
“shorter” fingerprint definitions we consider in our study (7
in total). These other definitions are outlined below and share
a common characteristic that they involve choosing a subset
of APs (5 in our implementation) for each location that satisfy
a particular criterion (e.g., highest strength).

1) RSSI based: Received signal strength (RSSI) of beacons
from APs is a key feature commonly considered in WiFi
fingerprinting. We consider the following three different fin-
gerprint definitions based on RSSI:

1This could be some other summary statistic (e.g., median).
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(a) First Floor (b) Second Floor

Fig. 1: Floor plans for first and second floors of Informatics Forum, University of Edinburgh (office environment). Sampled locations
during data collection are shown as cyan colored cells.

(a) Gyle (Shop. Ctr. 1) (b) St. James (Shop. Ctr. 2)

(c) Ocean Terminal (Shop. Ctr. 3)

Fig. 2: Layouts of three shopping centers in Edinburgh (shopping center environments). Purple colored cells represent the locations
sampled during data collection.

Strength: In this definition, for each location in the training
data, the subset of APs with highest mean RSSI values are con-
sidered along with the runtime fingerprint data corresponding
to those chosen APs for estimating the location using one of
the algorithms described in section III.D.

Stability: This definition focuses on the most stable subset
of APs based on the standard deviation of their RSSI values.
The rationale for considering this definition is two-fold: (i) as
received signal strength is inherently time varying, the signals
that vary less would more likely result in better accuracy of
localization; (ii) [7] conclude from their analysis that RSSI
standard deviation is the most influential factor determining
the accuracy of a WiFi fingerprinting system.

Variance: This definition is based on the observation that
it is ideal for a fingerprinting based localization system if
fingerprints from different cells are sufficiently distinct from
each other, i.e., fingerprints serve as unique location signatures.

Specifically, with the variance fingerprint definition, the subset
of APs in each cell (i.e., a sampled location in the radio
map construction phase) that have the highest variance, across
all cells with respect to their mean RSSI values, are chosen
to compare with the corresponding set of APs from runtime
fingerprints to find the closest matching cells.

2) AP Visibility based: The visibility of APs is an important
aspect for WiFi fingerprinting systems that has so far received
less attention in the literature. Some proposals assume that
identical set of APs are seen across the whole space of interest,
whereas others implicitly suppose that the visibility of an AP
is constant over time. These assumptions often do not hold in
practice. To capture the impact of AP visibility on the accuracy
with WiFi fingerprinting systems, we consider the following
two different definitions:

Constancy: At a given location, there may be differences
between different APs in terms of how often they are seen in



2013 International Conference on Indoor Positioning and Indoor Navigation, 28-31st October 2013

fingerprint measurements because of weak signals, small-scale
fading, beacon loss due to co-channel interference etc. The
constancy definition essentially captures this aspect. Specifi-
cally, for each cell, we select those APs which appear the most
number of times across multiple site survey measurements at
that cell during radio map construction. The mean RSSI of
this subset of APs is then compared with the runtime RSSI
measurements of the same set of APs for location estimation.
Coverage: This definition captures a different spatial aspect
of AP visibility. It picks, for each cell, the subset of APs that
are most widely seen across all cells in the space of interest
for pattern matching during location estimation.

3) Hybrid Definitions: Recall that we select a subset of
APs satisfying a certain property in our alternative set of
fingerprint definitions. However when using the constancy
definition, we observed that often several APs are seen in a
cell the same number of times. We randomly break ties with
the vanilla constancy definition described above, whereas here
we consider hybrid definitions that combine constancy with
other similar definitions. We focus on constancy combined
with either strength or stability as strength and stability show
good correlation with constancy (see Table I). Based on this,
we consider the following two fingerprint definitions:
Constancy+Strength: With this definition, we first rank the
APs seen in a cell in the decreasing order of their constancy.
Between APs with the same constancy, we prefer those with
a higher strength as indicated by their mean RSSI value in the
fingerprint database.
Constancy+Stability: As with the previous definition, APs
seen in a cell across all measurements in the radio map con-
struction phase are ordered based on their relative constancy
so that APs with higher constancy appear earlier in the order.
Then stability of the APs as defined above is used to choose
among the APs with the same constancy.

TABLE I: Pearson correlation coefficient computed between
constancy and strength / stability for different floors in our Forum

office environment.
Floor Constancy-Strength Constancy-Stability

1st Floor 0.4050907 0.1883634
2nd Floor 0.6191411 0.3272367
3rd Floor 0.6430674 0.3887892
4th Floor 0.6001379 0.35482358
5th Floor 0.6507656 0.45762849

D. Location Estimation Algorithms

In our study, we consider five different location estimation
algorithms. The first three belong to the deterministic tech-
niques (e.g., RADAR [1]) whereas the other two fall under the
category of probabilistic techniques exemplified by Horus [2].

1) Deterministic or Nearest Neighbor (NN) Techniques:
The use of nearest neighbor techniques is quite common with
WiFi fingerprinting systems. Essentially, the idea is to compute
the distance in signal space between pre-collected, location
tagged fingerprints in a database and a runtime fingerprint to
find the closest match or matches. Different NN techniques

differ in the distance computation methods used. We consider
three representative methods as outlined below.

Euclidean Distance: This method used in [1] and other WiFi
location fingerprinting systems uses equation 1 to compute the
distance between fingerprints from the database, each with
an associated location and denoted by S, with a runtime
fingerprint R. In equation 1, n is the number of APs considered
in the fingerprints; in our study, this is total number of APs
in the environment with the default fingerprint definition and
5 for the other definitions. And si is the mean RSSI value of
AP i in the fingerprint from the database, whereas ri is AP
i’s RSSI in the runtime fingerprint.

EucDist(S,R) =

√√√√ n∑
i=1

(si − ri)2 (1)

Manhattan Distance: Manhattan distance, which is also men-
tioned in [1], is another well-known NN method. It is defined
as the sum of the absolute differences of values between
fingerprint from database and runtime fingerprint as indicated
by the following equation:

ManDist(S,R) =
n∑

i=1

|si − ri| (2)

Mahalanobis Distance: Mahalanobis distance is yet another
NN method considered in the WiFi fingerprinting literature
(e.g., see [7] and references therein). It is more sophisticated
compared to the previous two methods and accounts for
correlations between compared vectors. An interesting feature
of Mahalanobis distance is that it is based on assumptions of
stable patterns of RSSI distributions and it also takes into ac-
count variance in RSSI as done in probabilistic techniques [9],
[10]. Mathematically, Mahalanobis distance computation is
shown by equation 3 where S is the covariance matrix of
S and P of the same distribution.

MahalDist(S,R) =
√
(S− R)TS−1(S− R) (3)

2) Probabilistic Techniques: This class of techniques infer
the probability that a user is at a certain location based on
modeling RSSI measurements in each cell from the radio
map construction phase as a probability distribution. In simple
terms, they select the cell x that maximizes the conditional
probability P (x/R) given an online fingerprint R as the user’s
most likely location. Different techniques differ in the type
of distribution used for RSSI modeling. We focus on two
commonly considered distributions: Gaussian (as in [2]) and
Log-Normal.

IV. IMPACT OF FINGERPRINT DEFINITION AND LOCATION
ESTIMATION ALGORITHMS

In this section, we assess the relative importance of finger-
print definition in relation to location estimation algorithms
for different environments. Throughout we use at least 15
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Fig. 3: CDF of estimated location errors with different fingerprint definitions and location estimation algorithms across all floors in the
office environment.
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Fig. 4: Summary statistics (median and 3rd quartile) location
estimation error for the best combination of fingerprint definition

and location estimation algorithm for various floors separately and
together in the office environment.

measurement samples (WiFi scans) per location for the refer-
ence fingerprint database, and 5 samples for runtime location
estimation.

We look at the office environment first and then the various
shopping center environments.

Office Environment. Figure 3 shows the cdf of location
estimation errors with all possible combinations of fingerprint
definitions and location estimation algorithms when all 5 floors
in the office building are seen as one whole. We see that
various fingerprint definitions appear clustered in two separate
groups with significant difference in accuracy between them.
Constancy, strength and the two hybrid definitions fall in the
best performing group. Surprisingly, stability and variance
yield poor performance for all algorithms as does coverage.
As mentioned earlier in section III, default is also in the same
group providing poor location accuracy.

Now turning attention to the various location estimation
algorithms, we see that Manhattan distance performs slightly
better among the deterministic techniques. It is noteworthy that
probabilistic techniques yield poor accuracy compared to all
three deterministic techniques; this is more apparent if results
are compared near the right end of the plots near 10m error.
We believe this is because the true RSSI distribution differs
from the one chosen to model it (Gaussian or Lognormal).

Overall we can also observe that the choice of fingerprint
definition has as much or more impact than the location
estimation algorithm. Table II summarizes the best combina-
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Fig. 5: CDF of estimated location errors with different fingerprint definitions and location estimation algorithms for first floor in the office
environment.

tion of fingerprint definition and location estimation algorithm
which turns out to be Strength with Manhattan distance for
the whole building case. The best combination is obtained
by first identifying the combination providing least median
estimation error; in case there are several such combinations
then their performance is compared in terms of 3rd quartile
estimation errors; if there are still multiple candidates then
the one providing the smallest maximum error is chosen as
the best combination.

When each floor is seen in isolation, Table II also shows
that the best combination is different between floors. This is
also evident when we look at the median and 3rd quartile
estimation errors in Figure 4. We see that the second floor has
higher errors. This is because of the open area on that floor
where all combinations have difficulty telling apart different
cells within that open area. CDFs of location estimation
errors for the first and second floors shown in Figure 5 and
Figure 6, respectively, further illustrate this point. We also
notice that differences between different fingerprint definitions
and location estimation algorithms become more apparent at
the individual floor level.

Shopping Centres. Different shopping centers are quite dif-

TABLE II: Office Environment: best combination of fingerprint
definition and location estimation algorithm
Floor Loc. Est. Algo Fingerprint Defn.
1 Manhattan Strength
2 Mahalanobis Constancy+Strength
3 Manhattan Constancy
4 Manhattan Constancy+Stability
5 Manhattan Strength
All Manhattan Strength

ferent in terms of their location estimation error statistics as
shown in Figure 7. We can see that shopping center 3 is the
easier of the three to localize as it is more compact and rich
in multipath.

Notice also that errors in Figure 7 are also higher compared
to Figure 4, partly because of the sparser location sampling in
the former as mentioned in section III. As with the office
environment, we see from Table III that best combination
changes from one environment to the other. This is true even
between floors within shopping center 3, the only one spanning
2 floors in our study. But interestingly, Mahalanobis distance
always emerges as the location estimation algorithm in all best
combinations cases.
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Fig. 6: CDF of estimated location errors with different fingerprint definitions and location estimation algorithms for second floor in the
office environment.
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Fig. 7: Summary statistics (median and 3rd quartile) location
estimation error for the best combination of fingerprint definition
and location estimation algorithm for different shopping center

environments.

V. THE IMPACT OF FREQUENCY BAND

In this section, we explore the impact of frequency band
(2.4GHz vs. 5GHz) on WiFi fingerprinting accuracy. While
2.4GHz was the only band originally used for WiFi, increas-
ingly 5GHz is also being used despite its relatively poorer
propagation characteristics resulting from higher frequency

TABLE III: Shopping centers: best combination of fingerprint
definition and location estimation algorithm

Environment Loc. Est. Algo Fingerprint Defn.
Shop. Ctr. 1 Mahalanobis Stability
Shop. Ctr. 2 Mahalanobis Constancy+Stability
Shop. Ctr. 3-GF Mahalanobis Constancy
Shop. Ctr. 3-FF Mahalanobis Constancy+Stability
Shop. Ctr. All Mahalanobis Constancy

operation. This is because 5GHz band is less crowded and
also there is far more spectrum available in 5GHz band.
From a WiFi fingerprinting system perspective, in a typical
environment today with APs using both 2.4GHz and 5GHz
bands, a measurement sample (WiFi scan) obtained either
during the radio map construction phase or subsequent runtime
phase will likely include a mix of 2.4GHz and 5GHz APs. This
in turn could impact the accuracy of the WiFi fingerprinting
system as signals from these two bands behave differently.

To study the impact of frequency band on WiFi fingerprint-
ing, we used a smart phone that supports both 2.4GHz and
5GHz bands (Samsung Galaxy S3) to collect multiple samples
for each measurement location shown in Figure 1(a) for the
first floor of the Forum office environment.
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Fig. 8: CDF of estimated location errors across 2.4GHz and 5GHz bands and together for different fingerprint definitions and Euclidean
distance method for the first floor in the office environment.

Figure 8 shows the CDF of location estimation errors for
the cases where only APs from one band are considered as
well as the case considering APs from both bands. We show
results for only one location estimation algorithm (Euclidean
distance) for brevity as the results are qualitatively similar
for other algorithms. Results in Figure 8 show that the cases
including APs from 5GHz band show a clear and significant
benefit compared to using only the 2.4GHz band even though
the number of APs in the environment are evenly distributed
across the two bands.

To better understand the reasons behind the improvement
in WiFi fingerprinting accuracy obtained using 5GHz band,
we setup an AP with a multiband WiFi card and had a client
in the form of laptop with AirPcap USB dongle2 listening
to beacons sent from the AP on channels from both bands.
Figure 9 shows the mean and standard deviation of RSSI of
AP beacons, separately for each band. While the lower mean
RSSI in the 5GHz is expected, the relatively higher standard
deviation in RSSI in 2.4GHz is interesting and we believe is
also the key reason why using APs for 2.4GHz band alone
results in poor location accuracy. We also conducted a similar
experiment in two shopping centers using a AirPcap equipped
laptop listening to beacons from already existing multiband
APs for 1.5 hours and find that beacons received on 2.4GHz
consistently show greater variation in RSSI.

From inspecting the packet logs in the above experiments,
we find that beacons in 2.4GHz are transmitted at 1Mbps
802.11b DSSS bit-rate, whereas 5GHz beacons are sent at
OFDM based 6Mbps bit-rate. This difference may explain the
high variation in RSSI seen for beacons on 2.4GHz. Note
that RSSI is measured only for the PLCP header of received
frames. The 48 bits long PLCP header for DSSS 1Mbps BPSK
modulation takes 48us to transmit whereas the same length
PLCP header takes only 4us at OFDM 6Mbps rate. The shorter
duration for RSSI sampling in 5GHz makes it relatively less
affected by temporal signal variations due to people movement
etc., thereby resulting in a more stable RSSI.

We also carefully examined whether low RSSI variation in

2http://www.metageek.net/products/airpcap/
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Fig. 9: Mean and standard deviation RSSI of beacons received on
2.4GHz and 5GHz bands from the same AP.

TABLE IV: Best combination of location estimation algorithm and
fingerprint definition including and excluding VAPs.

Case Loc. Est. Algo Fingerprint Defn.
Including VAPs Manhattan Strength
Excluding VAPs Mahalanobis Constancy+Strength

5GHz is due to low co-channel interference. Towards this end,
we setup an AP transmitting beacons in a channel of 5GHz
band and an interfering node (on the same channel) with a
modified device driver with CCA (Clear Channel Assessment)
disabled so that it can continuously transmit without regard to
whether channel is idle or busy. By measuring loss and signal
strength of beacons at a client station associated with the AP,
we find that increase in traffic intensity from the interfering
node only increases the beacon loss but does not affect RSSI.

We have also obtained similar qualitative results comparing
different bands for shopping centers but we do not include
them due to space limitations.

VI. THE EFFECT OF VIRTUAL ACCESS POINTS

In this section, we study, again for the first time in the
literature, the effect of virtual access points (VAPs) on WiFi
fingerprinting accuracy. VAP is a way to realize multiple APs,
each potentially using a different security mechanism and
targeting a different set of users, with a single physical AP
via time sharing. It is the wireless counterpart of VLANs. The

http://www.metageek.net/products/airpcap/
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Fig. 10: Summary statistics (median and 3rd quartile) location
estimation error for the best combination of fingerprint definition

and location estimation algorithm with VAPs included and excluded
for the first floor of the office environment.

BSSIDs of VAPs corresponding to a physical AP are typically
derived from the BSSID (MAC address) of the physical AP.
From our study of WLAN deployments in offices and public
spaces, we observe that VAPs are common today.

Our interest here is to study the impact of the pres-
ence/absence of VAPs on WiFi fingerprinting. Towards this
end, we studied the effects of VAP presence of both office
and shopping center environments. However for the sake of
brevity, we focus on the results for the first floor of the Forum
office environment. As noted earlier in section III.B, each of
the physical APs in the university WLAN network advertise
two VAPs. On the first floor there are 33 university run APs
resulting in 66 VAPs, plus 10 other non-VAP APs. Thus in
total there are 76 APs in total when VAPs are counted, and 43
otherwise. In this environment we find that BSSIDs of VAPs
share the first ten digits with the BSSID of their corresponding
physical AP. It is relevant for WiFi fingerprinting to understand
how the beacons of VAPs are transmitted. By capturing all
beacons in the air with a laptop running Kismet application,
we find that beacons for each of the VAPs corresponding to
a physical APs are sent within a short period of 100ms, the
default beacon transmission interval. This suggests all VAPs
can be usually detected via passive scanning as the time spent
on a channel before hopping to another channel is 100ms by
default.

To study the effect of VAPs, we consider two cases, one with
VAPs included and the other in which VAPs are excluded.
The case with VAPs included simply treats each VAP as a
separate physical AP; this is what we did so far in this paper. In
contrast, only one VAP per physical AP is retained in the latter
case. Figure 10 differentiates between these two cases in terms
of their median and 3rd quartile errors considering the best
combination of fingerprint definition and location estimation
algorithm for each case (see Table IV). Clearly, including
VAPs significantly reduces location estimation error, especially
in terms of median. Figure 13 demonstrates the benefit from
considering VAPs in more detail.

We attribute the gain seen from including VAPs to two
reasons. Firstly, including VAPs increases the AP density
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Fig. 11: Relative differences in signal coverage between each pair
of VAPs corresponding to a physical AP in terms of cells where

they are seen.
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Fig. 12: Differences in mean and standard deviation of RSSI of
each pair of VAPs as seen from a cell that shows maximum

improvement in location accuracy from including VAPs.

which tends to have a positive correlation with higher location
accuracy for WiFi fingerprinting systems. For the results
shown here, the case with including VAPs has 76 APs in
total whereas excluding VAPs brings that down to 43, both
for the same area. Secondly, even though we may expect
VAPs corresponding to a physical AP to have identical signal
characteristics, this is not always the case as beacons from
different VAPs are separated in time each capturing a slightly
different time-varying environment context as demonstrated by
Figure 11 and Figure 12.

VII. CONCLUSIONS

We have examined the impact of fingerprint definitions
along with location estimation algorithms on WiFi finger-
printing location accuracy across diverse environments. We
find that the combination of fingerprint definition and location
estimation algorithm that yields best location accuracy is
highly dependent on the environment and even specific floor
within a given environment. We also find that the choice of
frequency band (2.4GHz vs. 5GHz) and inclusion of VAPs
has a significant impact on the location accuracy of WiFi
fingerprinting systems; we analyze the potential reasons to
explain these findings.
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Fig. 13: CDF of estimated location errors including and excluding VAPs for different fingerprint definitions and Manhattan/Mahalanobis
distance methods for first floor in the office environment.
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