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ABSTRACT

Emerging 5G mobile networks are envisioned to become multi-
service environments, enabling the dynamic deployment of services
with a diverse set of performance requirements, accommodating the
needs of mobile network operators, verticals and over-the-top (OTT)
service providers. Virtualizing the mobile network in a flexible way
is of paramount importance for a cost-effective realization of this
vision. While virtualization has been extensively studied in the case
of the mobile core, virtualizing the radio access network (RAN) is
still at its infancy. In this paper, we present Orion, a novel RAN slic-
ing system that enables the dynamic on-the-fly virtualization of base
stations, the flexible customization of slices to meet their respective
service needs and which can be used in an end-to-end network slicing
setting. Orion guarantees the functional and performance isolation of
slices, while allowing for the efficient use of RAN resources among
them. We present a concrete prototype implementation of Orion for
LTE, with experimental results, considering alternative RAN slicing
approaches, indicating its efficiency and highlighting its isolation ca-
pabilities. We also present an extension to Orion for accommodating
the needs of OTT providers.
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1 INTRODUCTION

5G is on the horizon. There is an evolutionary dimension to 5G
aimed at significantly scaling up and improving the efficiency of
mobile networks to meet the demanding requirements such as 1000x
increase in capacity via new radio access technologies and spectrum
bands (e.g., massive MIMO, millimeter waves). On the other hand,
an alternative and complementary service-oriented vision for 5G
presents a significant opportunity to innovate on the architectural
front with several resulting benefits (ease in service creation, network
sharing, reduce capex/opex costs, enhance user experience, realize a
more energy-efficient mobile network infrastructure, etc.). The idea
underlying this service-oriented view is for the network to support
a wide range of services, differing significantly in their service re-
quirements and device types (including machine-type devices). For
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example, ITU [29] identifies three broad classes of 5G services (en-
hanced mobile broadband, massive machine type communications,
ultra-reliable and low latency communications) and several specific
services within these three service classes.

As a one-size fits all architecture is unlikely to be suitable for
such diverse use cases, realizing the service-oriented 5G vision in a
cost-effective manner necessitates a flexible mobile network archi-
tecture that can turn the physical infrastructure into multiple logical
networks or slices, one per service instance. Each slice in such
an architecture is an end-to-end virtualized network instance, span-
ning both the core and radio access network (RAN), and is tailored
in terms of resources to meet the requirements of the service in
question. Here resources comprise of different types including com-
puting, network, storage, radio, access hardware and virtual network
functions (VNFs). Unsurprisingly, most prominent 5G architec-
tural visions embrace slicing [7, 16, 49, 52, 60, 61], building on its
earlier success in multi-experiment testbed infrastructures such as
PlanetLab [12] and multi-tenant data centers. As virtualization and
softwarization (via software-defined networking (SDN) and network
function virtualization (NFV)) are key slicing enablers, research pro-
totypes and operational systems using virtualization technologies
and SDN/NFV principles have started to appear, especially in the
mobile core [9, 19, 30, 42, 46, 57, 58]. In fact, an early form of core
slicing called dedicated core networks (DECOR) is already specified
by the 3GPP standards [2].

In this paper, our focus is on RAN slicing which refers to the abil-
ity to dynamically create and manage virtual RANs, each customized
to meet the requirements of an end-to-end service. RAN slicing
is a challenging problem that is only starting to receive attention.
The key difficulty is that the RAN virtualization and apportionment
into different slices should satisfy two key objectives: (1) to ensure
slice independence (functional isolation) so that tenants maintain
full control of their slices to be able to tailor them to meet the respec-
tive service requirements; (2) to flexibly and adaptively share RAN
resources (radio, processing, memory, networking), among different
slice owners (or tenants), so that the RAN infrastructure is used as
efficiently as possible, without violating objective (1).

Previous work on RAN slicing, as elaborated in the next section,
represents extreme points in the design space and therefore has man-
aged to only partially address the aforementioned objectives. One
approach originating in RAN sharing focuses mainly on efficient
sharing of radio resources with no support for functional isolation,
giving the infrastructure provider full visibility and control over
slices [18, 19, 50]. The other approach puts the isolation at the center
stage without considering the efficient use of resources [47, 48].

In this paper, we present Orion, which to our knowledge is the first
RAN slicing system that provides functional isolation among slices
while facilitating efficient sharing of the RAN resources. The design
of Orion makes an explicit distinction between the infrastructure



provider and service providers (slice owners), providing mechanisms

that allow flexible and adaptive provisioning of resources to slices

based on their requirements. Each slice can manipulate its allocated
resources in a virtualized form completely independently, and simi-
larly customize its control plane as per the service needs. The Base

Station Hypervisor in Orion plays a key role in achieving this

by virtualizing the radio resources via a novel set of abstractions

introduced in this work and by having the control plane of each
slice operating in an isolated container over it. Moreover, Orion’s
design allows the control planes of slices to be composed flexibly
and independently, employing different levels of centralization, ef-
fectively leading to a more efficient utilization of the RAN resources
and simplifying the coordination of base stations where and when
required.

In summary, this paper makes the following contributions:

o (Sections 3 and 4) Present a realizable RAN slicing design in the
form of Orion, that enables both the functional isolation among
slices, as well as the efficient utilization of the underlying RAN
resources via the novel Hypervisor component and by facilitating
the flexible composition of the control planes of individual slices.

e (Section 4) Introduce a novel set of abstractions for the virtualiza-
tion of the radio resources that is applicable to both current (LTE)
and future (5G New Radio) RANSs.

e (Sections 4, 5 and 6) Provide a concrete implementation of Orion
over the OpenAirlnterface (OAI) LTE platform [51] along with
a detailed experimental evaluation of the various aspects of the
system that highlight its performance and scalability as well as its
various capabilities compared to the state-of-the-art solutions.

e (Section 7) Present an extended form of Orion that supports over-
the-top (OTT) service providers and demonstrating its benefits.

2 RELATED WORK

RAN Slicing. State of the art on RAN slicing can be traced back to
the earlier works on active RAN sharing [13, 22, 53, 63, 70]. Broadly
speaking, two approaches under the names of Multi-Operator Core
Networks (MOCN) and Multi-Operator RAN (MORAN) have been
considered. While both approaches imply the use of separate core
networks for each participating operator, MOCN allows for spectrum
sharing among operators while MORAN requires dedicated spectrum
for each. Relatively, more attention has been given in the literature to
the MOCN approach (e.g., [26, 35, 41]), which has been standardized
for LTE in Release 8. NVS [35] is a representative example. Note that
the use of the term virtualization in some of these works is somewhat
misleading as it refers only to the UE perceived performance isolation
(i.e. throughput) among operators sharing the RAN radio resources
and not on the functional isolation and corresponding performance
isolation of the slices’ virtual network functions in terms of the
required computing resources (processing, memory, networking).
As indicated at the outset, functional isolation is additionally essential
in the RAN slicing context. The major focus of these works is on
the design of efficient radio resource scheduling algorithms while
considering certain guarantees for operators. The fact that radio
resource sharing is also relevant for efficient RAN slicing is reflected
in the more recent algorithmic work in this thread [11, 23, 32, 43].
This body of work is complementary to our focus on systems support
for RAN slicing. In fact, we employ the NVS scheduling algorithm

in our prototype to highlight the efficient radio resource use feature
of Orion.

From a systems perspective, RAN sharing oriented slicing (with
no functional isolation among slices) has been explored through the
use of the FlexRAN software-defined RAN platform [18, 19, 36, 50],
which we include in our comparative evaluations. FlexRAN de-
couples the control from the data plane of base stations using a
custom-tailored southbound API and introduces a flexible and pro-
grammable control plane. Network slicing is enabled with FlexRAN
by programmatically defining the way in which the radio resources
need to be allocated among the connected UEs based on the require-
ments of the slice they belong to. A unified control plane, which is
controlled by a single entity (usually the infrastructure provider), is
responsible to perform the corresponding control operations. This
approach can be limiting, since the capabilities of the slices are fully
dependent on the types of control functions that are bundled in the
control plane of FlexRAN. In contrast, Orion allows independent and
fully customizable control planes for each slice so that slice owners
can flexibly introduce their own functionality in the RAN and tailor
their slice as per the needs of their service.

To accommodate this need for slice customizability, the other
RAN slicing approach taken in the literature seeks full isolation (by
running the virtual base station instance of a slice within a Docker
container for example) but assumes dedicated radio hardware and
spectrum per slice [47, 48], bearing some similarity to the MORAN
form of RAN sharing in that resource sharing among slices is limited
at best to computing, memory and storage resources. This has the
downside of inefficient use of radio resources and foregoing potential
statistical multiplexing gains. The work presented in [52] also takes
the same approach, although the focus there is on the idea of a net-
work store for VNFs to aid in dynamic network slicing. On a more
general note, wireless virtualization overview and position papers
like [5, 25, 39, 69] advocate functional isolation, which strengthen
the motivation for the approach we take in Orion to have an isolated
and customizable control plane for each slice.

In terms of radio resource virtualization, recent works in the do-
main of RAN slicing [24, 25, 36, 39] have advocated the need for
abstractions that decouple the control plane decisions from the physi-
cal radio resource grid. However, the abstractions presented in these
works are high-level and do not consider the constraints that can
be imposed by the physical layer (e.g., frequency-dependencies in
scheduling). The abstractions introduced in Orion for radio resource
virtualization not only overcome these limitations but are also generic
in that they are applicable to both current LTE and future 5G-NR air
interface technologies.

Core Slicing. There has been significant progress on mobile core
slicing to the point that it is fairly mature and also made its way into
3GPP standards in a basic form under the name of DECOR [2]. Virtu-
alization of core network functions combined with the use of mature
virtualization technologies (e.g., KVM [34], LXC [27], Docker [44],
VLAN:S [8, 64]) have led to systems that realize core network slic-
ing [33, 48, 52]. Even the possibility of EPC as a service over the
cloud has been explored [66]. Several research proposals leveraging
NFV in the core appeared in the recent past, aimed at its optimization
for better scalability (e.g., [9]), customization for particular use cases
(e.g., [67]) and in general making it more flexible (e.g., [58]).
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Figure 1: High-level architecture of Orion.

Management and Network Orchestration (MANO). The end-
to-end nature of services create the need for a MANO entity respon-
sible for realizing end-to-end slices spanning the core and the RAN
as well as their life-cycle management to ensure compliance with
their service requirements. This has led to MANO oriented research
work [65] and several open-source MANO framework implemen-
tations (e.g., OSM [17], ONAP [40]). More pertinent to our work,
the authors of Proteus [65] acknowledge the lack of a flexible RAN
slicing solution and therefore consider use cases that focus on in-
novations around the mobile core. Orion fills this void. We present
how Orion can be used in an end-to-end slicing context by interfacing
with any of the MANO solutions mentioned above.

3 ORION OVERVIEW

The core contribution of this paper, Orion, is a novel RAN slicing
system design that is in line with the spirit of network slicing and the
needs of a flexible and cost-effective multi-service mobile network
architecture — isolation among multiple virtual networks provides
the necessary flexibility to customize and control a slice, whereas
efficient sharing of the underlying physical infrastructure allows sup-
porting diverse services in a cost-effective manner. Simultaneously
being able to satisfy both these concerns of functional isolation be-
tween slices and efficient resource use in the context of the RAN is
the main, as yet unresolved, challenge addressed by Orion.

Towards this end, Orion’s design (Fig. 1) explicitly distinguishes
the infrastructure provider from the service providers (the slice own-
ers). The infrastructure provider is the owner of physical base stations,
comprising of hardware resources (i.e., radio equipment, processing,
memory, and network) and a chunk of spectrum. While it can be
realized either via dedicated specialized hardware or in a cloud en-
vironment using re-programmable hardware (e.g., C-RAN baseband
processing unit and remote radio heads), each physical base station in
our model supports a single Radio Access Technology (RAT), mean-
ing that all radio and spectrum resources available at the base station
can be exploited through a shared physical layer. Note that, for con-
creteness in the description of Orion’s design and implementation,
we consider LTE as the underlying RAT and downlink scheduling
as a running example throughout.

The Base Station Hypervisor that sits over the physical layer
is the heart of Orion’s design. It is the component used for man-
aging RAN slices, for ensuring their full isolation — control logic
for functional isolation and resources for performance isolation, as

well as facilitating efficient sharing of underlying physical resources.
Essentially, the Hypervisor binds the individual and isolated slices
to the physical infrastructure, providing them with a virtual view of
the underlying radio resources via a novel set of abstractions and
the data plane state as well as applying their state changes over the
physical data plane by mapping virtual to physical resources. The
Hypervisor is part of the infrastructure provider’s software infras-
tructure to support RAN slicing. The infrastructure provider is also
responsible for admission control.

Service providers (e.g., MVNOs and verticals) in Orion realize
their RAN slices through the creation of virtual base stations over
the Hypervisor. Each virtual base station is a composition of a
virtual control plane, responsible for managing data plane state that
is revealed to it by the Hypervisor. The virtual control plane of a
slice is effectively a local RAN-level slice controller running as a
separate process, responsible to tailor the functionality and manage
the allocation of resources to mobile devices (UEs) associated with
the slice as if it was operating using its own dedicated infrastructure.
The virtual control plane is also responsible for implementing the
control protocols required for the communication and coordination
of the virtual base station with the rest of the mobile infrastructure
(e.g., S1 and X2 interfaces in LTE). This means that all operations
defined for a given mobile network architecture can be supported by
slices (including roaming) so long as the appropriate interfaces and
messages are implemented as part of the respective virtual control
planes. Note that although we discuss the data plane aspect both in
our design and implementation, our primary focus expectedly is on
the control plane. Following SDN principles, our design assumes
control-data plane separation that is now widely accepted in the
mobile networking domain [19, 37, 57, 68].

The communication of the slices’ virtual control planes with the
Hypervisor is message-based and happens through independent
physical/virtual communication channels. This approach allows the
deployment of slices either over the same physical machine as their
Hypervisor or over separate physical machines. It also gives the
flexibility to slice owners to compose their control planes using
different levels of centralization to enable coordination based on
their services’ needs, independently of other slices.

The design of Orion provides strong isolation guarantees while
allowing efficient resource sharing. First, since each of the slice con-
trollers is running as a separate process, isolation among controllers
in terms of memory and CPU can be achieved by employing well
known OS and process virtualization techniques, like virtual ma-
chines (e.g., KVM) or containers (e.g., LXD and Docker). Second,
the Hypervisor is the sole entity responsible for handling actual
radio resources which it distributes among slices after virtualizing
them, ensuring isolation from a radio resource perspective. Third, it
can internally facilitate efficient resource use via a suitable allocation
algorithm that also considers slices SLAs and underlying physical
conditions. Additionally, from a UE perspective, the whole slicing
operation is transparent, with each slice appearing as a different
MVNO as in RAN sharing.

4 SYSTEM DESIGN & IMPLEMENTATION

This section details the key components of Orion: Base Station
Hypervisor and Virtual Control Plane of a slice.
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4.1 Base Station Hypervisor

The Base Station Hypervisor (Fig. 2) acts as the intermediary
between the data plane of the physical base station and the virtual
control planes of slices. The Hypervisor communicates with the
data plane via an API to access and modify the data plane state
(e.g., obtain signal quality measurements and transmission queue
sizes of UEs, apply scheduling decisions, etc.). The Hypervisor
is responsible for allocating physical radio resources to slices with
respect to their SLAs, transforms them into virtualized resources that
are revealed to virtual control planes of slices in an isolated manner.
On the other direction, slices use the provided virtual resources
for their control plane operations and send their commands (e.g.,
scheduling decisions) back to the Hypervisor, which then translates
them to a physical representation and applies them to the data plane.
We now detail the internals of the Hypervisor.

4.1.1  Slice Context Manager. Prior to a slice’s creation, the slice
owner comes to an agreement on the required service type with the
infrastructure provider, subject to admission control. This is formally
translated into a slice service description that includes two elements:

A Service Level Agreement (SLA) that identifies the service re-
quirements of the slice owner (e.g., average throughput, resource
blocks). Orion does not restrict the SLA parameters and instead
provides a flexible framework to implement suitably tailored mecha-
nisms for admission control and fine-grained resource allocation.

A list of User Equipment (UE) identifiers required for the map-
ping of UEs to slices. Any unique identifier provided by the UE
during the attachment process could be used.

The Slice Context Manager (Fig. 2) is responsible for the
life-cycle management of slices at the base station. Each slice is
associated with a context (Table 1) capturing the slice’s capabilities
and current state. Apart from the slice’s SLA, this context keeps
track of the active UEs on the slice, stores the configuration of the
communication channel between the Hypervisor and the slice’s vir-
tual control plane, and all data structures for bookkeeping operations
related to the use of physical resources by the slice in the past and
present. The Slice Context Manager can obtain the identifiers of
the UEs belonging to the slice from the management plane through
a lookup function, further explained in Section 4.3.

Upon request for creation of a new slice, the Slice Context
Manager does admission control. By checking the number of active
slices, their SLAs and activity (through their context), and using an
admission control policy adopted by the infrastructure provider (e.g.,

Slice Context
Slice id
UE identifier lookup function
Current slice SLA/policy settings
UE:s currently connected to the slice
Communication channel configuration to slice local controller
Bookkeeping on usage of physical resources

Table 1: Per slice context maintained by the Hypervisor.

along the lines of [35]), either the slice is admitted with a correspond-
ing context created, or rejected due to insufficient resources.

4.1.2  Radio Resource Manager. The Radio Resource Manager
is responsible for the allocation of physical radio resources among
co-located slices in a flexible and efficient manner, while ensuring
slice isolation. While this is dependent on the nature of each resource,
Orion adopts the principle that any physical radio resource meant
for individual UEs can also be allocated among slices in an isolated
fashion, because, by definition, they can be quantized and assigned
to specific UEs. Such resources include radio resources allocated for
downlink/uplink user and control traffic as well as for paging.

As an example, consider downlink LTE scheduling, involving two
types of radio resources: (i) Resource Blocks (RB) for transmission of
user traffic and (ii) Control Channel Elements (CCE, essentially a set
of OFDM symbols) for transmission of the corresponding scheduling
decisions. Due to their nature, these resources can be dynamically
allocated to individual slices based on various criteria, like their
SLAs, the channel conditions experienced by UEs in the slice etc.
On the other hand, physical resources used either for the transmission
of cell-related information (e.g., broadcast) or in a contention-based
manner (e.g., random access) should not be allocated to slices be-
cause concurrent modifications from multiple slice control planes
could lead to conflicts. Such resources are exclusively managed by
the Hypervisor as discussed later in this section.

Orion provides a generic framework for the dynamic allocation
of radio resources, which allows the implementation of different
radio resource allocation mechanisms to fulfill different types of
SLAs. Any allocation algorithm implemented in Orion would have
inputs in the form of the physical radio resource grid and the con-
text information of the active slices. The radio resource allocation
process occurs periodically once every allocation window of du-
ration t. At the beginning of each window, the Radio Resource
Manager obtains the bookkeeping information and the SLAs of all
the active slices from the Slice Context Manager. Through this
information, and with the current cell configuration and allocation
mechanism implemented, the Radio Resource Manager decides
a splitting of the available radio resources among slices for the up-
coming window. For each type of partition-able radio resource, it
fills a two dimensional array that expresses the slice assignments
of resources through a generic representation of the resource in the
time and frequency domain. As an example, Fig. 3 illustrates LTE
downlink scheduling for 2 slices. Each column represents a Ims LTE
subframe in Transmission Time Interval (TTI) units and each row
the corresponding resource in the frequency domain (RBs in Fig. 3a
and OFDM symbols in Fig. 3b). The tabulated numbers correspond
to the ids of the slices to which the resources were allocated.

The decision of the Radio Resource Manager is forwarded to the
Slice Context Manager to update the context of slices with allo-
cated resources. Note that the Slice Context Manager and Radio
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Resource Manager can be seen to provide the functionality of the 5G
network slice broker introduced in the context of the 3GPP network
sharing management architecture in [63]. When the slices’ control
planes make the scheduling decisions based on a virtualized and
isolated form of their allocated resources via the Virtualization
Manager, the Radio Resource Manager translates and updates the
base station data plane state through the control-data plane API, and
keeps track of the physical resources used by slices (via context
updates) to inform the allocation in upcoming windows.

4.1.3 Virtualization Manager. The Virtualization Manager
(Fig. 2) directly interacts with the virtual control plane of slices, main-
taining slice isolation in terms of physical network resources. The
interaction occurs through dedicated slice communication channels
managed by an asynchronous interface. Besides, the Virtualization
Manager undertakes two main tasks: (i) presenting an abstract view
of radio resources to slices by mapping physical to/from virtual re-
sources at runtime; (ii) presenting a virtual/abstract view of the data
plane state to slices. The challenge for this component is to realize
these tasks in a manner that does not compromise slice isolation.

Abstracting radio resources To ensure radio resource isolation, the
Virtualization Manager, creates a virtualized view of the radio
resources tailored to each slice, by obtaining the map of resources
assigned by the Radio Resource Manager from the slice contexts.
This virtualized view omits all resources not dedicated to a slice,
including resources for random access, broadcasting, resources used
only by the physical layer (e.g., for reference signals) and those
allocated to other slices. It also omits the exact placement of the
resources in the resource grid along the frequency dimension and
instead reveals an abstract representation to the slices’ control planes.
On one hand, this allows the control planes of slices to directly and
independently view and control the radio resources allocated to them,
which can be dynamically re-assigned to different slices over time.
On the other hand, by withholding the frequency dimension, potential
inference and manipulation of resources allocated to a slice by other
slices is prevented, keeping in mind that different tenants could in
fact be direct competitors. It should be noted that this inference issue
is not present in RAN sharing or in a static radio resources allocation
setup. In the RAN sharing case, a single entity (the infrastructure
provider) performs all the control operations and thus the exact usage
of the resources is ‘hidden’ from the slice owners, while in the other
case, the radio resources are statically assigned to slices, providing
no visibility to the resources of other co-located slices.

For the case of downlink/uplink UE data transmissions, one of
the main challenges is how to reveal the virtualized radio resources
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to slices so that they can be allocated to the UEs in the most flex-
ible way and keeping in mind that the slices must be completely
unaware of the physical resource grid layout, while at the same time
respecting the allocation constraints imposed by the physical layer.
Such constraints include group-based allocations, where more than
one physical resource block (PRB) must be used as the minimum
allocation unit for a UE (e.g., as specified in some types of LTE
allocations [4]). Other constraints include frequency dependencies
that might arise in the radio resource allocation process, where the
use of a certain PRB limits the scheduling of a UE to only a subset
of all the available resources. Such frequency dependencies are very
common in many radio resource allocation schemes, like for example
in the type 1 downlink resource allocation of LTE [4] or in sched-
uling schemes where frequency hopping is employed for frequency
diversity gains (e.g., in some types of LTE uplink allocation [4]).

In order to deal with these issues, Orion introduces two abstrac-
tions for the virtualization of the radio resources, i.e., the virtual
Radio Resource Block (VRRB) and the vRRB pool.

The vRRB is the fundamental radio resource abstraction em-
ployed by Orion. Each VRRB is characterized by a capacity, used to
indicate the amount of data that it can hold. Capacity is expressed as
the number of OFDM symbols contained in the VRRB and can be
directly translated into a number of bits by the virtual control planes
of slices based on the modulation and coding scheme (MCS) used. A
VRRB can aggregate the OFDM symbols of one or more PRBs, after
omitting symbols used for control channels and reference signals.
This aggregation allows Orion to group together PRBs that must be
used as a single unit, meaning that the capacity among different
vRRBSs can vary, as illustrated in Fig. 4 (VRRBs of one or two PRBs).

The Hypervisor aggregates and reveals the vRRBs to slices in
the form of vRRB pools, where different sets of pools exist for the
uplink and downlink. In each subframe, each slice can be assigned
zero, one or more pools for downlink and correspondingly for uplink,
each containing at least one VRRB. For example, in Fig. 5a, slice 1
has two VRRB pools, while slice 2 has only one. A slice can only view
and allocate the VRRBs that are available in its pools (Fig. 5b), with
the only constraint being that a UE can only be allocated vRRBs from
the same pool. For example, in Fig. 5, a UE belonging to slice 1 can
only be allocated resources from the red or yellow pool, but not both.
The aggregation of vVRRBs to pools captures the aforementioned
frequency dependencies, since RBs that are mutually exclusive for a
UE are assigned to different pools by the Hypervisor.

It should be noted that the abstractions of Orion are suitable both
for current LTE as well as for future 5G New Radio (NR) networks,
since both are based on OFDM and have the same fundamental frame
structure [59]. The main difference is that NR is expected to support
a more flexible resource grid, in which the number of TTIs and the
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Figure 5: Illustration of Orion uplink/downlink radio resource
virtualization abstractions in the context of LTE.

sub-carrier spacing of the RBs in a subframe can vary (Fig. 6) to
support the diverse requirements of services and to provide support
for mmWave communications [56]. In this context, the physical
grid layout of the radio resources is one additional dimension that
the Hypervisor should consider for mapping the physical resources
to VRRBs. For example, for the FDD downlink grid presented in
Fig. 6, a low data rate service without latency constraints should be
allocated vVRRBs 2 to 5 by the Hypervisor to maximize efficiency,
while a low-latency service should be allocated vRRBs 6 and 7.

In contrast to the resources used for user traffic, control resources
are provided in a simpler form, where the Hypervisor indicates to
the virtual control planes of slices the role and amount of the assigned
control resources through a message-based API. On the downlink, a
virtual control plane can find out through this API how many CCEs
are available for transmitting the scheduling decisions of its UEs, the
resources available for sending uplink power control instructions as
well as the resources available for uplink resource grants. On the
uplink, this involves the TTIs in which a UE of the slice could report
its signal measurements, so that it can be configured correspondingly
by the higher layers of its virtual control plane (e.g., RRC).

The Virtualization Manager, besides presenting virtualized
resources to slices, also performs the reverse mapping from slices’
decisions over virtual resources to their physical counterparts. This
involves consulting the context of the slices and performing all trans-
formations required so that a command issued by the virtual control
plane of a slice can be realized by the physical layer. Referring again
to the example of LTE downlink scheduling, this mapping would
involve a modification of the virtual control plane’s scheduling de-
cision to convert the vRRB allocation into a physical one, and the
merging of the scheduling decisions from different slices into a single
scheduling decision for the physical layer. Similarly, it would require
the conversion of CCEs from the virtual to the physical form.
Virtualizing the data plane state To apply its control logic, a slice
must be aware of its data plane state besides the resources allocated
to it. Another task for the Virtualization Manager is to reveal the
relevant data plane state to slices in an isolated manner, guaranteeing
that any type of information related to specific UEs or their flows
will be reported only to the corresponding slice. This virtualization
in the data plane state ensures the isolation of data plane operations
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Figure 6: Orion uplink/downlink radio resource virtualization
abstractions in the context of SG NR - Flexible TTI and sub-
carrier spacing numerology.

among slices, since the control plane of each slice is unaware of the
data plane aspects that are relevant to the UEs of other co-located
slices. Examples of relevant UE information include signal quality
measurements, transmission queue sizes and number of flows (bear-
ers in LTE) as well as event notifications like the (de)activation of a
UE, the establishment of new flows, scheduling requests, etc. Given
that the frequency domain is abstracted from the resource grid of
slices, any UE-specific information related to the frequency domain
is reported to the slice in an abstract form. As an example, relating to
signal quality measurements and to the more fine-grained sub-band
CQI reports that LTE can provide, the Virtualization Manager
furnishes the measurements in the context of the vVRRBs rather than
the actual frequencies, through suitable mapping.

Apart from UE specific information, the Virtualization Manager
also informs slices about cell-related configuration information like
resource block sizes, supported transmission modes, nominal trans-
mission power of base station, etc. Since all slices need to be aware
of this information and in order to ensure a conflict-free operation of
the physical base station, all such cell-related information is provided
to slices in a read-only form, while the infrastructure provider retains
the exclusive privilege for making changes, when needed.

4.1.4 UE Association Manager. The UE Association Manager
(Fig. 2) associates UEs with slices in two steps: (i) the discovery of
slices by UEs via the physical base station; (ii) the mapping of UEs
to slices. To achieve this, the UE Association Manager interacts
with the broadcast and random access processes of the base station,
which are internal to the Hypervisor and not revealed to slices.

To aid in discovery, the UE Association Manager obtains the
active slices from the Slice Context Manager. This information
is then broadcasted by the base station. In the context of LTE, this
can be done as in RAN sharing, where the base station broadcasts the
list of PLMN ids, indicating all the MVNOs that are present. When
a UE discovers a cell from its slice, it initiates the random access
process. If successful, the attachment process begins and the UE is
expected to send a unique identification (e.g., IMSI in LTE). Using
this unique identifier, the UE Association Manager maps the UE
to the appropriate slice by consulting the UE lookup function (Ta-
ble 1) available for each slice through the Slice Context Manager.
Once the correct slice is identified, the UE Association Manager
updates the list of active UEs in the context of that slice. The corre-
sponding virtual control plane is notified about the event through the
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Virtualization Manager and from that point on takes up control
of the UE (authentication, establishment of flows, scheduling, etc.).
The attachment process is fully transparent to UEs in the sense that
no changes are required to the protocols and signaling messages used
for the interaction between the base station and the UEs.

4.2 Virtual Control Plane

As already alluded to in Section 3, Orion isolates memory and pro-
cessing resources of slices by separating their virtual control planes
from each other and the Hypervisor, thereby achieves functional iso-
lation. Virtual control planes of slices in Orion are separate processes
that exchange messages with the Hypervisor through dedicated com-
munication channels. This separation allows slice deployment in
a fully isolated manner using OS virtualization technologies, like
containers and virtual machines, to enforce limits in terms of the
allocated amount of memory and CPU.

A virtual control plane of a slice can be associated with multiple
physical base stations (through their Hypervisors). Thus, the virtual
control planes of individual slices can be composed independently
and flexibly, like in the example of Fig. 7 for the case of two slices.
As it can be seen, control plane centralization can be introduced into
different regions of the RAN for each of the slices, based on the
corresponding service’s needs. This approach gives the flexibility
to slice owners to enable RAN coordination (for load balancing,
improved mobility management, etc.) when and where required. At
the same time, it also enables an efficient utilization of the available
computing resources for the placement of the slices’ virtual control
planes as demonstrated later through experiments in Section 5.2.

The communication between the virtual control plane of a slice
and the Hypervisor is asynchronous (Fig. 8). To perform its opera-
tions, the control plane obtains the state of the virtual data plane and
resources from the Hypervisor and stores it locally in a virtual RAN
Information Base (VRIB). In its simplest form, the vRIB contains data
structures with a raw representation of the virtual data plane state.

The VRIB can be both read and written by the slice’s control plane,
so changes due to control operations are first reflected in the VRIB.
To maintain its consistency, the vRIB state is periodically synchro-
nized with the Hypervisor via its Virtualization Manager and
an asynchronous interface. Since the virtual control plane of slices
and the Hypervisor can be deployed either on the same or on sep-
arate physical machines, depending on the setup and the available
resources, the synchronization frequency of the vRIB can be tuned
to the characteristics of the communication channel.

4.3 End-to-End Network Slicing

We now discuss how Orion can be integrated in an end-to-end network
slicing setting. The virtualization of various components making
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Figure 8: Virtual control plane of a slice in Orion.

up the slice (including network functions) is key to enabling flexi-
ble component placement over the network infrastructure through a
MANO entity, based on the needs of the service corresponding to
the end-to-end slice. This is certainly not a hurdle for Orion as its
components can be turned into VNFs. For a complete solution, it is
also very important to investigate the interactions of the Orion com-
ponents with the management plane and with the other components
making up the slice. These interactions and the entities involved
are depicted in Fig. 9, where each number-annotated arrow repre-
sents an interaction required for the right instantiation, operation and
management of a slice throughout its life-cycle.

Slice
Information
Service

Management
Plane

15
Orion Virtual Control
Plane VNF

Edge Cloud Infrastructure

Virtual Network

Central or Edge
Cloud Infrastructure

Figure 9: Interactions among components involved in an end-to-
end network slicing setting.

Starting from the RAN and before the deployment of any slice,
the MANO must deploy the VNFs of the physical base stations and
the Orion Hypervisor for the RAT of choice (I1). This VNF is
expected to outlive the slices’ VNFs. Management of slices should
occur through an appropriate interface between the MANO and the
Hypervisor (I12). The orchestration of a slice by the MANO involves
the creation, migration and destruction of the Orion virtual control
plane VNF (I3), as well as of the core network VNFs (I4) (e.g.,
LTE EPC components). While a slice is active, its core network
VNFs interact with the Hypervisor for the user plane (I16) and with
the virtual control plane for the control plane operations (17), while
the Hypervisor VNF also communicates with the slice’s virtual
control plane (I5). A Slice Information Service is required on the
management plane, so that the Slice Context Manager in the
Hypervisor can locate the information required for the mapping of
UEs to slices (18). This resembles the role of the HSS in LTE, but
storing slice-related registration information instead.

Fig. 9 also illustrates that the Orion VNFs are deployed over an
edge cloud near the RF front-end, while the core network VNFs



can be deployed either at the edge or in a central cloud, depending
on the slice’s requirements. For example, control plane VNFs (e.g.,
MME) could be centralized to simplify control/management, while
data plane VNFs (e.g., S-GW) could be placed closer to the user
[15]. Similarly, different slices could employ different core network
VNF setups, optimized for their particular use case (e.g., as in [67]
for MTC traffic). The flexible placement of VNFs, coupled with the
capabilities offered by Orion for the customization of the RAN, allow
the creation of flexible slices adapted to the service needs.

4.4 Implementation

We developed a prototype implementation of Orion, following the
design described so far in this section and considering LTE as the
RAT. The Orion Hypervisor was implemented from scratch in C. For
the interaction of the Hypervisor with the base station data plane,
we leveraged the control-data plane API of the publicly available
FlexRAN platform [1], which in turn is based on an open-source
software implementation of LTE called OpenAirInterface (OAI) [54].

Our implementation provides full support for the virtualization
of downlink radio resources, with the Hypervisor creating a single
VRRB pool per slice in each subframe (equal to a TTI of 1ms in
LTE), with each of its VRRBs corresponding to a group of physical
resource blocks (2, 3 or 4 based on the bandwidth of the cell). This
is because OAI currently supports resource allocation type O on the
downlink, in which, based on the LTE specification [4], resource
blocks can be assigned to UEs only in groups of 2, 3 or 4 blocks
depending on the available spectrum.

The identifier used for mapping UE:s to slices is the IMSI stored in
the SIM card of UEs. This is sent to the MME of the network by UEs
during their attachment using the Non-Access Stratum (NAS) proto-
cols of LTE and is normally not visible to the eNodeB. Therefore,
the RRC layer of OAI was modified to capture the relevant signaling
messages, obtain these ids and pass them to the UE Association
Manager of the Hypervisor. OAI was further modified to allow core
networks (EPCs) of different slices to be connected over the same
eNodeB. This required enabling the association of the MMEs, HSSs
and S/P-GWs of different slices with the same eNodeB as well as the
redirection of newly attached UEs to the correct core network by the
UE Association Manager both for signaling and user traffic. Once
a UE completes the random access process, its signaling messages
are directed to the correct MME so that it can be authenticated by the
corresponding slice’s HSS and a bearer can be established with the
slice’s S/P-GW. From that point on, all the UE traffic goes through
the core network of the hosting slice.

The current implementation allows expressing the SLA parameters
stored in the context of active slices (Table 1) in three ways: (i) a fixed
allocation of resource blocks; (ii) an average of the aggregate amount
of resource blocks allocated to the slice over a window of 100ms;
and (iii) an average target throughput for the slice over a window of
100ms. For the second and the third case, the current implementation
uses the NVS radio resource allocation algorithm [35].

To realize the virtual control plane of slices, we implemented a
modified version of the FlexRAN controller that operates over the
abstract virtual resources presented by the Hypervisor and also with
an enhanced RIB structure that supports write primitives. Given that
the virtual control planes of slices can be deployed either locally or

over a networked setting, we implemented two types of channels
for message exchanges with the Hypervisor: one TCP-based chan-
nel optimized for a minimum message exchange delay in a network
setting and one optimized for inter-process communication using
ZeroMQ [28]. The appropriate type is specified in the slice’s service
description during the creation of the slice and the proper commu-
nication channel is deployed accordingly. Moreover, depending on
the type of deployment, the synchronization of the Hypervisor with
the vRIB must also be optimized. Towards this end, in the current
implementation with inter-process communication the vRIB is fully
synchronized with the Hypervisor every 1ms, while in a networked
setting, only the time critical parts of the VRIB (virtual resource
allocations, time synchronization in subframes) are synchronized at
this rate, with the rest synchronized infrequently every 4ms.
Finally, we created VNFs for the Hypervisor and the virtual
control plane of Orion using Juju charms, enabling their deployment
over an OpenStack-based environment and allowing usage of Orion
with any OpenStack-compatible MANO framework (e.g., OSM).

S EVALUATION

In this section, we quantitatively study Orion’s resource consumption
in different scenarios and benchmark it against other proposed RAN
slicing solutions. We also examine the impact of the communication
channel between the Hypervisor and the slice control plane. For the
experiments, we used 2 Intel Xeon machines (E3-1245 @ 3.4GHz,
16GB RAM each) and 1 Intel i7 machine (5557U @ 3.10GHz, 8GB
of RAM) for deploying physical base stations, the Orion Hypervisor
and the virtual control planes of slices, depending on the specific
experiment. All machines have Ubuntu 16.04 with a low-latency
kernel and had support for Docker v1.13.1 [44], allowing the Orion
components (Hypervisor, slice control planes) to be deployed in
isolated containers. The core part of the network was deployed on an
additional Intel-based machine (i7-4770R @ 3.2GHz, 8GB RAM),
running the openair-cn open source EPC implementation [6]. For
the RF front-end of physical base station, we used Ettus USRP B210
SDR boards and for UEs, up to 4 physical units (LG Nexus 5 and
Samsung Galaxy Note 4 and 2 Huawei E3372 LTE dongles).

5.1 Scalability

Here we quantify how Orion scales in terms of the processing and
memory requirements. To assess the overhead incurred for the virtu-
alization operations performed by the Orion Hypervisor, we used
a setup where each slice had 20 assigned (emulated) UEs and the
available spectrum was saturated with TCP traffic. The results in
Fig. 10a show that, apart from the initial overhead associated with
the first slice, the addition of extra slices incurs a small and almost
constant incremental overhead, both in terms of CPU and memory.
This increase is mainly due to the Hypervisor’s Virtualization
Manager operations (construction of the virtual resource grids of
slices, synchronization with slices’ virtual control planes). The initial
bigger increase observed after the creation of the first slice is due to
the activation of the asynchronous interface as well as the periodic
execution of the Radio Resource Manager for the allocation of
resources to slices, which is inactive when there are no slices. The
actual number of slices that can be supported by a physical base sta-
tion depends both on the Hypervisor overhead presented here and
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) System FLARE FlexRAN | Orion

# Slices
T SMIz SMIz | SMiz
2 5SMHz/slice 10MHz 10MHz

5SMHz for slices 1,2
10MHz for slice 3

Table 2: Allocation of channel bandwidth among slices. Both
Orion and FlexRAN use shared spectrum for all slices.

3 20MHz 20MHz

on the physical layer requirements, which can greatly vary depending
on where the most demanding physical layer operations occur (e.g.,
at the baseband processing unit or at a remote radio head).

Next we turn our attention to the virtual control plane of a slice and
quantify its overhead with a varying number of UEs (0 to 20) which
increases linearly with the number attached UEs (Fig. 10b). The in-
creases in the memory consumption are mainly due to the additional
information stored in the vRIB as more UEs get attached and the
memory required for the message exchanges with the Hypervisor.
The initial sharp rise in the memory consumption is due to the cre-
ation of the UE-related part of the vRIB, once the first UE gets
attached. The rise in CPU utilization is a result of the communica-
tion with the Hypervisor for the synchronization of the vRIB and
from the scheduling of the attached UEs. However, the overhead is
still fairly modest, meaning that the virtual control planes of multiple
slices could be deployed side-by-side over the same physical machine
(e.g., over an edge cloud data-center) without scaling issues. For
example, in the commodity machine used for these experiments, at
least eight slice control planes could be deployed without any issues.

5.2 Comparison with the State-of-the-Art

Here we compare the overall memory and processing requirements of
Orion versus the state-of-the-art virtualization and RAN sharing solu-
tions from the literature. One representative approach is FLARE, the
RAN slicing solution proposed in [47, 48], which ensures isolation
by deploying different instances of OAI over Docker containers and
each slice is statically assigned a dedicated chunk of spectrum. The
other alternative approach is represented by FlexRAN [18, 19, 50]
that has been shown to provide RAN slicing capabilities following a
RAN sharing approach but without functional isolation. It should
be noted that, like Orion, both FLARE and FlexRAN are built using
OAI as their basis. Therefore, any performance differences among
them come mainly from the design choices of each system regarding
how to perform RAN slicing; a fact that makes this comparison fair.

We design an experiment to compare Orion with these two alter-
natives for a varying number of slices, where each slice has TCP
traffic (mimicking an aggregate demand from a set of UEs) to a single
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Figure 11: Comparison of Orion with FLARE and FlexRAN
with varying number of slices.

physical UE. Each slice was allocated spectrum according to the con-
figuration of Table 2 for fairness. Three physical machines were used
for this experiment as compute nodes for the various components
required for each architecture. To capture the overall system per-
formance, we measured the aggregate resources required for all the
RAN components of each architecture across all physical machines.
For the CPU utilization, this meant measuring the jiffies allocated
to the RAN-related processes of each architecture over a constant
number of 10 CPU cores (the total number of cores of all physical
machines) and dividing this value with the total jiffies of all the CPUs
for all system processes during the course of the experiment.

We see from Fig. 11a that Orion has relatively higher CPU re-
quirements compared to FlexRAN, which is expected due to the
Hypervisor’s operation and the unavoidable cost to pay for the addi-
tional control plane processes that must be deployed as new slices are
added. On the other hand, Orion starts with higher CPU requirements
than FLARE, but soon becomes more lightweight, due to the fact that
each new FLARE slice requires the deployment of a complete proto-
col stack, including the very demanding (CPU-wise) physical layer.
Since in Orion all slices share the same physical layer, its overhead
comes mainly from the Hypervisor and the slices’ virtual control
planes, which, as shown earlier, are fairly lightweight. The same
observations and for the same reasons can be made for the memory
consumption (Fig. 11b), with Orion performing significantly better
compared to FLARE and marginally worse compared to FlexRAN.

Since both Orion and FlexRAN are composed of a number of
different network functions (Hypervisor/physical layer and virtual
control planes in Orion; Agent/data plane and controller in FlexRAN),
it is insightful to break down the results of Fig.11 in order to un-
derstand their differences. This is illustrated in Fig.12a for three
slices. As it can be observed, the Orion virtual control planes and the
FlexRAN controller consume a negligible amount of memory. On
the other hand, in terms of CPU utilization, Orion’s biggest impact
comes from the physical layer and the Hypervisor, but, in contrast
to memory, a significant contribution is also made from the virtual
control planes of slices. In the case of FlexRAN, the base station net-
work function (FlexRAN Agent and data plane) has the biggest CPU
utilization, also with a significant contribution from the controller.

One important thing to notice is that while some components
of both systems, namely the Orion Hypervisor and the FlexRAN
Agent, are placed near the base station and are effectively monolithic
components regardless of the number of deployed slices, this analogy
is not carried over to the other network functions. While in the case
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of FlexRAN the controller is also a monolithic component, Orion
provides individual control planes to slices. Apart from the functional
isolation that this ensures, it also enables a better utilization of the
underlying resources through the flexible placement of the control
plane functions over the available compute nodes. We illustrate this
point through an experiment in which three slices are deployed using
Orion and FlexRAN and the overall control plane CPU utilization
is measured for a varying number of UEs per slice. Results shown
in Fig.12b indicate that Orion always performs slightly worse than
FlexRAN, however this overhead is compensated by the fact that the
control plane can be broken down into three functions that can be
flexibly placed over different CPU cores or even completely different
compute nodes; something that FlexRAN is unable to do.

5.3 Impact of Communication Channel

We now assess Orion’s requirements for the communication between
a slice control plane and the Hypervisor (in terms of bandwidth and
latency) for their deployment in a networked setting. Understanding
these requirements is very important from an end-to-end perspective
for deploying the components of Orion as VNFs, since the orchestra-
tion entity needs to be aware of the physical constraints regarding
their placement as part of the overall network service description.

To measure the bandwidth requirements of the control channel, we
varied the number of UEs for a slice over the physical base station with
SMHz spectrum. In this experiment, UEs continuously had traffic
to keep the slice at full load. The highest overhead was incurred for
messages sent by the Hypervisor towards the control plane of the slice
(Fig. 13a), for the synchronization of the vRIB and for the provision
of the slice with virtual radio resources. The overall bandwidth
requirements for this setup did not exceed 20Mbps, implying that
such a scenario is feasible in practice.

To study latency constraints, we used a similar setup but with a
single COTS UE attached to the slice. We used netem [21] to set the
latency between the Hypervisor and the slice’s virtual control plane
and measured the drop in the maximum achievable throughput for
the UE compared to a co-located deployment. Fig. 13b shows that
networked deployment of Orion is efficient only when the latency
remains below 2ms. This constraint could be relaxed to an extent
with some optimizations (e.g., HARQ reporting optimizations) but a
co-located deployment is preferable if possible. The slice controller
could also be made distributed and hierarchical, so that time-critical
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Figure 14: Isolation of RAN slices in terms of radio resources
and control functions (scheduling).

scheduling operations can be handled at or near the physical base sta-
tion, while other operations can be placed flexibly at other locations.

6 CASE STUDIES
6.1 Isolation Capabilities

‘We demonstrate the ability of Orion to provide radio resource and
functional isolation, which is not possible with RAN sharing oriented
slicing approaches [18, 19]. In this experiment, 2 slices with propor-
tional fair downlink schedulers were created and statically allocated
SMHz of spectrum in equal shares by the Hypervisor. Initially, we
connected 2 physical UEs (one per slice) and performed a throughput
measurement to both using iperf, ensuring ideal channel conditions.
As shown in instance t1 of Fig. 14, the Hypervisor guarantees the
radio resource isolation so that each slice can obtain only half of the
available radio resources, leading to an equal throughput for the UEs.
Further aspects of this isolation of radio resources are demonstrated
in instances t2 and t3 of Fig. 14 where more UEs are added to the
slices and where each UE is constrained by the Hypervisor to the
radio resources allocated within its slice. For example, in instance 2
the performance of UE3 remains unaffected by the addition of UE2
since UE2 belongs to a different slice.

Finally, the inter-slice functional isolation is illustrated in instance
t4 of Fig. 14. The scheduler in the virtual control plane of slice
2 was replaced with a class-based scheduler allocating 70% of the
resources to UEs in class 1 and the rest to class 2. In the experiment,
UE3 and UE4 were assigned to class 1 and class 2, respectively. As
shown in Fig. 14, the change in the control plane of slice 2 only
affects the throughput of the UEs belonging to that slice, leaving the
control plane and the UEs of slice 1 completely oblivious.
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6.2 Flexible Radio Resource Allocation

We now demonstrate the flexibility offered by Orion for dynamic radio
resource allocation and how it can be used for efficiently utilizing the
spectrum among co-existing slices. We created 2 slices, each with an
average aggregate throughput requirement of 14Mbps. As a baseline,
we considered FLARE, with each slice statically allocated SMHz of
spectrum. For the same scenario, we employed Orion with a pool of
10MHz for both slices and implemented the radio resource allocation
using the algorithm of [35]. In the beginning of each allocation
window, the resources were allocated to slices based on their effective
traffic rate and on their average throughput requirement.

We connected 1 UE on slice 1 and 3 UEs on slice 2 and we used
the D-ITG traffic generator [10] to generate TCP flows in slice 1.
Specifically, we created a TCP flow with a constant rate of 2Mbps.
On top of it, we sporadically created some short-lived flows (20s
each), capable of attaining various rates (4-12Mbps). In slice 2, all
the connected UEs accessed a DASH-based video streaming service
to stream a video offering a wide range of bitrates. Using this setup,
we measured the instantaneous (Fig. 15a) and the average (Fig. 15b)
aggregate throughput achieved by each slice in FLARE and Orion for
a period of 240s. As observed, for slice 1, both FLARE and Orion
give similar results, fully covering the offered load and respecting the
SLA of slice 1 for up to 14Mbps of average aggregate throughput.

For slice 2, however, Orion is seen to perform much better than
FLARE, dynamically reallocating the idle resources from slice 1 and
allowing the UE:s in slice 2 to stream videos with a higher bitrate.
FLARE, unlike Orion, is spectrum-limited and cannot go beyond
14Mbps at any point in time, irrespectively of what happens in slice
1. The flexibility of Orion comes without compromising slice SLAs.
When slice 1 requires all of its expected resources (e.g., 210-230s
in Fig. 15a), the Radio Resource Manager allocates fewer radio
resources to slice 2, so the aggregate throughput of this slice drops.

6.3 Deployment in an End-to-End Setting

Here we highlight the capability of Orion to be deployed in an end-to-
end network slicing setting and the effect of the slice configuration
to overall performance in terms of throughput and delay. For this
experiment we created 3 slices, each composed of VNFs for an EPC
(HSS, MME, S/P-GW) and a virtual base station deployed over Orion.
Forslices 1 and 3, the S/P-GW VNFs of the EPC were placed on hosts
1 hop away from the eNodeB, to reduce the delay of the EPC—eNodeB
communication as much as possible (less than 0.3ms). For slice 2,
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Figure 16: Performance impact of Core-eNodeB latency and ra-
dio resource allocation policy/guarantees for low and high of-
fered loads (load values in parentheses on x-axis).

we deployed the S/P-GW VNF on a host connected to the eNodeB
through a 20ms delay link (emulated with netem [21]) to reflect the
placement of the mobile core functionality far from the eNodeB (e.g.,
in a central cloud). The eNodeB in this experiment was allocated
5SMHz of spectrum, supporting a total rate of 14Mbps in ideal channel
conditions. Finally, the Orion Hypervisor was configured so that
slice 1 was guaranteed a static allocation of 4 resource blocks per
subframe (maximum achievable throughput of 2Mbps) while slices
2 and 3 were guaranteed an average throughput of 2 and 8Mbps
respectively, performing the allocation using the algorithm in [35].
In this setup, we used the D-ITG traffic generator [10] to generate
downlink UDP traffic with exponentially distributed packet inter-
arrival times and measured slice performance in terms of average
throughput and delay. Initially, the load offered to slices was kept
low, compared to the slices” SLA guarantees, and all slices manage to
support the traffic demand (Fig. 16a). Moreover, we can observe that
the average packet delay for slice 2 was higher than that of slices 1
and 3 by about 20ms, something expected considering the (emulated)
‘far from eNodeB’ placement of the core functions for slice 2.
Next, we re-run the experiment, increasing the load offered to
slices to reach their limit (Fig. 16b). As we can observe, all slices
still achieve an average throughput close to their offered load, which
was expected since their load remains within the guaranteed limits.
However, while the average delay of slice 1 stays at the same level,
the average delay of slices 2 and 3 is over 200ms. The reason is
that the static allocation used for slice 1, although inflexible, ensures
stricter delay guarantees, as arriving packets could always be served
without queuing for long. On the other hand, the flexible dynamic
allocation of radio resources to the other slices guarantees the average
throughput, but this was done over 100 ms windows (as described
in Section 4.4), rather than per subframe. In such almost saturating
traffic conditions the packets are more likely to experience a longer
waiting time in the slice queues, increasing the average delay.

7 MULTI-SERVICE SLICES EXTENSION

The design of Orion enables RAN slicing in cases where the UE has a
1:1 relationship with the slice (e.g., MVNOs and verticals). However,
deployment of Over-The-Top (OTT) services as distinct slices breaks
this assumption and control decisions among slices cannot be guaran-
teed to be conflict-free. To overcome this, we propose an extension to
Orion in the form of service containers, which targets slices offering
multi-service capabilities (e.g., an MVNO with OTT services).
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Figure 17: Extension of Orion to support multi-service slices.

The idea behind service containers is that an OTT service provider
agrees with an MVNO to assume control of the flows corresponding
to its service through its own isolated functions deployed over the
virtual control plane of the slice. This concept is similar in spirit to
the 3GPP Service Capability Exposure Function (SCEF) [3] and with
research works like [62], where an API is defined for the interaction
of applications with the mobile network to modify the service level
or to obtain information about the network state. The deployment of
service containers over the base stations of MVNOs can enhance this
model with real-time control and monitoring capabilities, enabling
the further optimization of OTT applications.

The design of this extension (Fig. 17) inherits the design principles
discussed in Section 4. Service containers are deployed as processes
over the virtual control plane of a slice, each with its own isolated
memory and processing resources. The virtual control plane of the
slice is extended with a Northbound API, enabling the exchange of
information between the MVNO and the service provider. Using the
API, a service can obtain information about the flows of UEs assigned
to it (available UE flows, transmission queue sizes, signal quality
etc.), as well as about the (abstracted) radio resources available for it.
On the other direction, the service can issue scheduling decisions,
indicating how its allocated resources should be distributed among its
flows. A Service Manager sitting between the virtual control plane
of the MVNO and the Northbound API is responsible to map flows
to services, distribute the abstract radio resources to the containers
and perform access control, ensuring that service containers can only
access information and radio resources related to their serving flows.

In order to demonstrate the benefits of service containers, we con-
sider the example of a DASH-based adaptive bitrate video streaming
service provider for which a service container was developed and
deployed over Orion for monitoring and scheduling the video flows
of streaming UEs. The control function of this container is com-
posed of a monitoring and a scheduling component. The monitoring
component observes the CQI of the UEs that are streaming videos
and provides real-time feedback to the video streaming client about
the maximum sustainable bitrate that a UE can achieve given its
CQI. Based on that feedback, the client readjusts the bitrate of the
video to avoid freezes. The scheduling component makes the sched-
uling decisions (priority and MCS) for the video flows of the UEs
by communicating with the video streaming clients every second
and observing the buffer size of each video stream. Flows of video
streams with lower buffer sizes are given a higher priority, on the
premise that such flows need faster treatment to avoid buffer freezes.

For our evaluation, we considered a scenario with 2 UEs streaming
a video [45] using the DASH reference client [14]. UE 1 had a fixed
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Figure 18: Video streaming performance in MVYNQO-managed
vs. OTT-optimized control of flows.

optimal signal quality and for UE 2 we introduced a big drop of the
signal quality at t = 35s and then a big increase at t = 75s. Results
obtained when the service container was active and managing the
video flows (Fig. 18b) are compared against the regular non-assisted
DASH service with the MVNO being responsible for scheduling all
flows through a proportional-fair scheduler (Fig. 18a). When the
signal quality of UE 2 changes suddenly, the non-assisted mechanism
fails to adapt fast, leading to buffer freezes. In comparison, the cross-
layer optimized control of flows enabled by the service containers
allowed the bitrate to adjust more appropriately and to avoid stalls in
the video stream, thus improving the overall quality of the service.
This example is merely intended to demonstrate the capabilities
enabled by service containers for OTTs, by allowing them to make
control decisions using information unavailable to a non application-
aware MVNO. More sophisticated control mechanisms could also
be employed, like the cross-layer optimization mechanism for video
delivery in [31] or the content-aware schedulers in [38] and [55].

8 CONCLUSIONS

We have presented Orion, a flexible RAN slicing architecture. Orion
slices can be deployed dynamically over the network infrastructure,
co-existing in a fully isolated manner in terms of radio resources and
control functions. At the same time, Orion facilitates efficient radio
resource sharing among slices. A prototype implementation of Orion
was developed for LTE, with the performance evaluation indicat-
ing that it is a lightweight and flexible RAN virtualization solution.
Orion’s capabilites were highlighted through a number of use cases,
revealing its suitability for future multi-service mobile networks.

The virtualization capabilities enabled by Orion can be seen as
a concrete step towards realizing the so-called RAN-as-a-Service
(RaaS) paradigm, where virtual RAN instances can be dynamically
created over a cloud infrastructure. However, apart from virtualiza-
tion, another significant aspect of the RaaS paradigm is the capability
to perform a dynamic functional split of the RAN in terms of control
and data plane operations, enabling a more flexible composition of
RAN instances. Extending the design of Orion to accommodate this
need, while retaining its virtualization capabilites is a natural next
step. Another important aspect in the context of 5G is the efficient
virtualization of radio resources in multi-RAT settings. Orion is cur-
rently designed for single-RAT settings, however investigating the
feasibility of extending its capabilities for multi-RAT is a signifi-
cant topic for future work. These and other future work issues are
discussed further in [20].
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