
Anticipatory Artificial Intelligence

Michael Rovatsos

School of Informatics, The University of Edinburgh
Edinburgh EH8 9AB, United Kingdom

mrovatso@inf.ed.ac.uk

1 Introduction

Anticipation occupies a special role in Artificial Intelligence (AI). As AI strives to replicate
human intelligence in artefacts that utilise digital computing machinery, it involves multiple,
interdependent processes of predictive modelling, some of which occur on the side of the
designer at design time (when the system is built), while others take place within the artefact
itself at runtime (when the system operates in its environment).

From the designer’s perspective, in designing an AI system, one is typically interested in
building a computational system that can solve a class of problems in a given domain and
whose solution is assumed to require intelligence. The aim is to achieve a performance similar
(or superior) to that of humans along some pre-defined metric and/or to perform the task
in ways that resemble the ways in which naturally intelligent systems would proceed. Even
without making any assumptions regarding the anticipatory nature of this design process,
it is inevitable that the designer have a model of the system tasked with solving a class
of problems (as this will have to be eventually encoded on some machine), a model of the
problem domain (since problem instances will be encoded as input to this system), and a
model of the cognitive process humans/animals apply to the same class of problems (as this
is what the system is supposed to replicate). But given that there is a teleological, future-
directed rationale for designing AI systems (either solving a real-world application problem,
or learning more about the nature of intelligence), we have to consider the anticipatory nature
of this process. Then, the issue becomes one of choosing how to design the AI system based on
the anticipated consequences when viewing the system as an effector that impacts the future
state of the designer’s world [43], not only in achieving the designer’s primary objectives,
but also considering any unintended side-effects, including any considerations regarding the
safety, ethical behaviour, and social impact of the system.

Looking at the AI system itself, while theoretically – if we were to replicate all of human
intelligence in machines – anticipation would be indispensable, it is certainly not necessary
to build anticipatory processes into every such system. In fact, champions of purely reactive
systems [7, 8] have claimed that no explicit, predictive models of the world are needed for AI
systems to achieve intelligence, and some very recent advances in areas such as reinforcement
learning and deep neural networks focus on strong (i.e. implicit) anticipation, e.g. to recognise
relevant actions using attention [35] or to anticipate the occurrence of future visual represen-
tations in video feeds [59]. There are even researchers who view the explicit, so-called weak
model-based anticipation that is of most interest in the interdisciplinary study of anticipation
[38] as potentially less useful for computational models of cognition, given that any realistic
model of the problem environment might be way too complex to explore exhaustively to base
decisions on predictions [42]. Nonetheless, if we do want to focus on anticipatory AI, we need
to look at the main techniques that involve predicting events, planning complex courses of



actions, assessing alternatives in the face of uncertainty, and revising one’s decisions flexibly
to unforeseen circumstances.

This chapter aims to provide an introduction to anticipatory AI techniques, while linking
the anticipatory capabilities of the systems developed using AI techniques to the capacity these
methods afford the designers of these systems to anticipate their behaviour. This approach
is motivated by the belief that an understanding of these two types of anticipatory processes
has the potential to enable us to establish a more comprehensive methodological basis for
studying anticipation in AI.

As a motivating example, consider the recent success of the AlphaGo system [51] in achiev-
ing human-level performance at the game of Go, a game traditionally considered notoriously
difficult for computer programs. An important aspect of the design of this system is that
it was first trained on 30 million positions from games played by human experts to predict
human moves, and then improved its strategy by playing millions of games against itself,
simulating human behaviour. The internal model of the game the system uses allows it to
assess the quality of a move at any given point in time based on an anticipatory process that
evaluates the estimated quality of future game positions likely to result from this move. In
other words, it anticipates the future consequences of its possible moves by predicting the
behaviour of its opponent based on patterns derived from observation of human experts and
a simulation of their behaviour in situations not observed in historical game data.

The anticipatory process applied by the designers of the system operates on a different
level: It is based on the assumption that a large dataset of games played by humans is rep-
resentative of the behaviour of expert players, and that the amount of additional simulated
games the system played against itself is sufficient to explore most game situations and oppo-
nent strategies that might realistically occur. AlphaGo’s designers also assumed that testing
the system against a certain number of fictitious opponents would be sufficient to allow them
to anticipate its performance, and thus to give them a good idea of how well it might per-
form in a real tournament against a human champion. This involved a conscious decision
to establish when the system was “good enough” and its training was complete. Of course
there were also more basic assumptions embedded in the system’s design: The game of has
only certain valid moves, possible board configurations that can result from these moves, and
hence alternatives that have to be considered. The outcome of each move is deterministic as
Go involves no element of chance, and all of the system’s decisions can be executed correctly
and completely when playing the game.

At both levels, we observe the typical elements of an anticipatory process: a model of
the system is used to consider different alternatives about what might occur in the future,
and make decisions about what action to take in the present. And, the future is seen as a
projection of the past through the present [39].

What is maybe unique to anticipation in AI as opposed to other disciplines is the impor-
tance of assumptions and how they are embedded in the design of the system in a way that
links the system’s anticipatory properties to those of its designer. Since a lot of the predictive
“work” will be performed by the system itself in lieu of a human anticipatory process, the
issue of how to frame and bound the different futures the system should consider through
appropriate assumptions becomes central. As we will see below, such assumptions often take
the place of actual prediction of the system’s behaviour. Rather than actively engaging in
predicting the behaviour of the AI system, we expect that if its model of the world is correct,
its own reasoning will be a faithful representation of the anticipatory processes a human would
employ.



We hypothesise that is a consequence of the very nature of anticipatory AI and the belief
that if an AI system correctly implements human-like anticipatory behaviour, this would make
explicit prediction of (and critical reflection on) possible AI behaviours unnecessary. If true,
this would have interesting, but potentially also dangerous methodological consequences. Be-
low, we will survey basic AI techniques, explaining for each case, the correspondence between
the anticipatory methods applied by human designers and those embedded in the AI systems
that result from use of this method.

The remainder of this chapter is structured as follows. In section 2, we provide some basic
background on computational modelling, mainly aimed at readers without a background in
computing methods. Section 3 introduces a number of core AI techniques, commenting on
the role of anticipation within them. In Section 4, we turn our attention from individual AI
algorithms toward intelligent and autonomous agents, discussing what additional elements of
anticipation are embedded in notions of autonomy and in the specification of objectives for
these agents. Section 5 considers the issue of anticipating the behaviour of AI systems and
the broader impact of AI. Section 6 concludes.

2 Computational Modelling

Anticipation relies on models to capture the nature of a system, both the computational
artefact and the environment or problem domain within which it will operate. To characterise
the space of available models, we need to specify the language used to describe what states
a system can be in at any particular system, and how the system changes state as a function
of present and past states and the forces imposed on it from the outside [30].

Methodologically, AI borrows fundamental models of information processing from com-
puter science, adopting the “standard model” of computation on digital machinery. There are
three fundamental viewpoints of analysis that can be applied to this model: from the point of
view of data, the main question is how input is transformed to output using a computational
procedure; from the standpoint of algorithms, the question is what set of instructions this
computation procedure may consist of; and taking the standpoint of a machine, emphasis is
put on what types of artefacts may process these instructions to perform this computation.

These three viewpoints provide the fundamental buildings blocks of modelling in comput-
ing and AI, in the sense that, to be considered “computational”, any model of a system has
to specify what data is made available to it and how this is processed, using operations that
can be performed on standard computing machinery. The machine model representing digital
computers is that of the Turing Machine [58], an abstract model of a machine that can read
and write symbols on an infinite tape based on a finite set of rules. In reality, no computer
has infinite storage, but computers are programmed “as if” this were the case, which creates
no major problems as long as we do not require more storage than is actually available.

For the purpose of this chapter, however, we will assume a much simpler model, that
of a Finite-State Machine (FSM) [25], which is sufficient to capture any system that can
only be in a finite number of different states. A very simple example of an FSM might be a
hotel safe that can be locked with a 4-digit code. The safe has three states, it can be locked,
unlocked, or ringing the alarm. Entering the correct code will lock/unlock it, entering the
incorrect code will make the alarm sound. We can describe this FSM in diagrammatic form,
using a graph describing a state transition system, where edges (arrows) are labelled by inputs
(the data processed by the system) and connect nodes (circles) representing states, such that
the edges describe the transitions between states. The diagram for our FSM is shown in



incorrect

Locked Unlocked

Alarm

correct, incorrect

correct

correct
incorrect

Fig. 1. A simplified finite-state diagram describing our safe example

figure 1. There exist different notational variations for these diagrams, where outputs may
either be associated with the edges or with states, but these are mathematically equivalent.
In this example, we will assume that entering a new state is also associated with producing
an output, i.e. sounding the alarm.1

The first thing to observe about such models is that they involve determining the range of
states considered, which depends on what aspects of the system, including its environment,
are taken into account. Often, these are expressed through system variables that can take on
different values, and the possible states of the system is determined by considering all possible
combinations of values those variables can assume. For example, we might introduce a variable
state that can either be locked, unlocked, or alarm, to denote that the alarm will sound.
The input to the system (viewed as another variable describing the current state of the world)
can have two values, correct or incorrect. With this, we obtain 3 × 2 = 6 combinations
of what situation the system might be in at any time. Considering all these combinations is
essential to determine the so-called combinatorial complexity of a computational problem, as
it determines how hard it may be to compute the desired outcome. The larger the number of
possible states, the longer it may take to achieve a desired state.

For any but the most simple systems, specifying the behaviour of a system by drawing
such diagrams is not efficient, and programming languages are used instead, which specify
how system variables are manipulated through a number of instructions, taken from a fixed
set of instructions specified by the syntax of the language. The following is an example of
what a program for the safe described above might look like:

while(true) {

if(input==correct) then

if(state=locked) then

state=unlocked

if(state==unlocked) then

state=locked

if(input==incorrect) then

state=alarm

}

1 Formal definitions of FSMs normally also involve an initial state that the system starts off with, and a set
of final states where its operation would terminate, but we can ignore these for our purposes.



This contains the key elements of many programming languages, such as assignments (e.g.
state=locked) which change the value of a variable in the system’s memory, conditions (e.g.
input==correct) that involve inspecting a variable’s value, conditional statements (“if a
condition is satisfied then perform some action”) and loops (e.g. while(true)) that instruct
the system to repeat something under certain conditions. In our example, true is a constant
that is always true, so the part between the curly brackets will be repeated forever.

What our very simple program basically states is “repeat forever: if the correct code is
entered, unlock the safe if locked and vice versa, and if the incorrect code is entered, sound
the alarm” (note that this implies that entering the correct code will never return the safe
into locked/unlocked (non-alarm) state, unlike in the FSM of figure 1).

It is important to emphasise that any such computational model involves a conscious ab-
straction of reality, as this has important consequences for anticipation, both for the designer
and for the system. This process of abstraction manifests itself in different ways. Firstly, the
state space introduced makes specific distinctions between different situations that could be
made at various levels of granularity. In our example, we do not consider, e.g., how a user
might enter the digits individually, or keep track of intermediate states in the process until
the code is detected to be correct or incorrect. Secondly, by including certain variables we
invariably exclude others. For example, we choose to ignore whether there is any money in
the safe. If the safe had a sensor to check whether it is empty, sounding the alarm might
be considered unnecessary whenever it is, in fact, empty. Thirdly, all transitions, inputs, and
outputs are deterministic, instantaneous, and error-free – there is no modelling of any uncer-
tainty that input signals can be detected, that their content can be determined unequivocally,
that time passes between different steps in the computation, or that transitions may fail.

Modern computer science provides methods to express all of these additional aspects,
e.g. by labelling different transitions with probabilities denoting the likelihood that certain
events will occur or observed variable values will be correct, introducing a notion of time, or
modelling “hidden” system variables that cannot be directly observed. What is important,
however, is that any refinement of a model invariably increases its complexity, both in terms
of the size of the representation of the problem environment, and in terms of the complexity
of solving a specific problem, arising from the number of combinations of states and actions
implied by a certain model.

At this point, we should explain more precisely what we mean by “solving a problem” in
this context. Generally speaking, a designer will aim to define a system that achieves a certain
behaviour, i.e. computes certain outputs on certain inputs. In the example above, we want to
allow the user to lock and unlock the safe if they enter the correct access code, and sound the
alarm otherwise. The FSM and program we have given above define representations for the
input and output corresponding to real-world entities2 and constitute algorithms that specify
how outputs are generated from inputs. While our example only solves a very simple and
specific problem, there are algorithms that can operate on a whole range of inputs (e.g. for
sorting a list of numbers, finding a route on an arbitrary geographical map, etc).

In AI, as we are interested in tasks that involve elements of human intelligence, we gen-
erally expect a degree of flexibility and complexity that is much higher than that of a simple

2 In reality, we also have to consider that these somehow have to enter the system through sensors and
actuators by way of physical coupling of its computational components to the locking mechanism, the
keypad, and the alarm bell, but we omit these details from our discussion.



algorithm. In the following section, we review the principal categories of AI techniques, fo-
cusing on the ways in which they embed anticipation, both at design- and at run-time.

3 Anticipation in common AI techniques

This section reviews some of the most widely used techniques in AI, discussing what antic-
ipatory elements they embed. This survey is not intended to be exhaustive or to introduce
specific algorithms in detail, and it does not make explicit reference to major areas that focus
on specific types of systems, e.g. robotics, machine vision, or natural language processing3.
Instead, it considers the main categories of methods deployed in the design of AI systems,
distinguishing between the problem formulations they involve, and focusing on the relation-
ship between the designer’s anticipation capabilities, how they affect those of the system’s,
and what we can say about what behaviour human designers can anticipate of the system
when deployed in the real world.

3.1 Search-based problem solving

One of the most general approaches to solving complex problems using generic algorithms is
search [13]. The underlying problem formulation is based on considering the different possible
solutions to a problem, and systematically considering each of them one by one in order to
find one that constitutes a solution.

A search problem is defined by a graph that is explored step by step by generating successor
states from previous states explored, such as that shown in figure 2.

For example, when attempting to find a route from location x to location y in a map, the
search might start from node x and generate all its immediate neighbour locations, then check
whether any of these neighbours is y (this is called the goal test), and continue exploration
starting from one of x’s neighbours in the next step. The choice of which state/node to
continue from in the next step is determined by the search strategy, and using the right
strategy may significantly affect how many steps are needed (the so-called time complexity of
the algorithm) or how many nodes need to be stored during the search (the so-called space
complexity of the algorithm). Heuristics, i.e. rules of thumb that are supposed to speed up
the search process, are often used in so-called heuristic search, though the “shortcuts” they
suggest may make the algorithm incomplete (i.e. not able to identify a solution even though
one exists) or sub-optimal (i.e. perform more computation steps than are actually needed).

If there is only a finite number of states, and the algorithm avoids re-visiting states it has
already considered or using incomplete heuristics, standard search algorithms exist that will
always find the solution, simply by making sure that every state is visited eventually.

Search algorithms, like many other AI methods below, aim to be formulated in a domain-
independent way, i.e. we want to be able to specify the algorithmic procedure once, and
then apply it to many problems, given an appropriate encoding of the problem. In the
route planning example, we could identify the state by the name of the current location,
current location == Edinburgh, and use a database that contains a list of pairs of cities
neighbouring each other, e.g. neighbours(Edinburgh) = {Aberdeen, Glasgow, Newcastle} to
add successor states incrementally in the search graph.

Using a broad range of such possible encodings, standard search algorithms can be applied
to any problem that can be formulated in terms of a discrete (i.e. containing an enumeration

3 The reader is referred to general textbooks on AI, for example [45], for a more comprehensive treatment.



Edinburgh

Carlisle

Newcastle

York

London

Aberdeen

Sheffield

Leeds

Glasgow

Fig. 2. A search graph representing a route map that connects major cities of the United Kingdom. Edges are
undirected, as the can be travelled in both directions. The topology of places is depicted to roughy correspond
to their actual geographical positions, though a search algorithm may not have this information.

of distinct elements that can be iteratively constructed) state representation and a successor-
state operation that will generate states immediately adjacent to any given current state.
For example, we could use search to explore all combinations for the code of the safe in our
example from the previous section, all possible states that could occur in a game of chess, or
all expressions that could result from mutation and reproduction in a gene. In many cases,
we will be interested in the path to a solution state (e.g. a route from A to B in the route
planning example, a winning strategy in chess), which then provides a recipe for action the
system could implement to solve the problem.

This domain-independence is generally considered to be an aspect of intelligence of the
system, in the sense that once implemented, the same program could deal with a broad range
of concrete problems, in much the same way as humans may apply similar exploration of
all alternatives when performing a task. The intelligence may also lie in the heuristics used.
For example, when trying to plan a trip from A to B generally we will be trying to look for
intermediate waypoints that get us closer to the destination in terms of straight-line distance,
rather than considering all possible directions in every step of the way.

Search is based on the assumption that the transitions from one state to another are
fully captured by the problem formulation (e.g. all neighbouring locations are listed in our
database), that the effects of a transition are fully known and can be reliably anticipated (e.g.
in the formulation above we never run out of fuel, and we never end up in an unexpected
location), and that there is, in principle, unlimited computational resource to find a solution
regardless of how big the space of possible states might be. The anticipatory capabilities of
the system are bounded by these assumptions, in that they delimit the set of possible future



states in their consequences, and ignore any potential factors that have not been accounted
for, including any side-effects of deciding to actually enact what the solution dictates.

Some of these assumptions can be relaxed by using more advanced problem formulations,
for example by introducing non-determinism (e.g. by placing probabilities against the edges
of the search graph to express, for example, that the likelihood of the car breaking down at
any point while driving is 5%, and considering all possible strategies so as to pick the safest
one) or by limiting the number of states explored before making a decision (e.g. looking only
four moves ahead in a chess game, and then deciding what to play based on an evaluation of
the states reached even if they do not clearly indicate we have won or lost the game).

Nonetheless, the domain theory (the model of the world any given problem formulation
reflects) is assumed to be correct, meaning that there is no way of modifying it at runtime.
This is because, in some ways, search-based problem solving is purely anticipatory within the
limits of the model it employs – it provides no facility for reacting to any circumstances that
may arise while attempting to enact its decision at execution time in the real world (e.g.
actually drive from A to B).4 In section 4 we will discuss what role reactive properties of
AI systems play in relation to their proactive (future-directed, anticipatory) properties when
judging the intelligence of these systems.

When looking at the ways in which the designer can anticipate the system’s behaviour
at run-time, there is an important distinction we have to make, and which also concerns
the other methods described below: If all aspects of the system are known, and the system’s
operation is not affected by events occurring at execution time, then the behaviour of this
system can be entirely anticipated in principle. However, due to the complexity of systems
that solve hard problems, this will not be possible in practice in most real-world cases, as it
is simply not cognitively possible for a human to predict all possible search steps in a large
state space. In fact, in many applications for which AI systems are used, the very reason for
creating the system is to manage a complex solution space that a human cannot reason over.
We will return to a discussion of this interplay below in section 4.

3.2 Planning

Above, we have given examples of how search can be used to determine courses of action
to achieve a certain goal from a starting state. This is the focus of the area of automated
planning [22], which often utilises search as an algorithmic process to find a path from one
state to another, but involves more elaborate representations of states and actions that allow
for a far greater degree of flexibility.

Representations used in planning are used to encode action theories. Such action theories
describe the circumstances under which an action can be performed, and how it modifies the
state of the world when performed. In the classic STRIPS formulation of planning [15], for
example, an action is described by preconditions and effects, where effects are described using
an add-list (to add certain facts about the world after the action is executed) and a delete-list
(to remove facts no longer true after the action is performed).

Let us extend our route planning example from the previous section to a scenario that
describes how a car, when driven by a human driver, moves between locations. This scenario
may involve a number of action schemata, i.e. abstract specifications of the preconditions and
effects of different types of actions, e.g. driving from one location to another, re-fuelling the

4 Note that when referring to execution time, this should not be confused with runtime, i.e. when the algorithm
(rather than the solution it returns) is run to determine the solution.



car, etc. A schema drive(c, d, a, b) might be used to express that driver d moves car c from
a to b. Sensible preconditions for this action might be

driver(d), location(a), location(b), at(c, a), at(d, a)

and the effects could be specified as

−at(c, a),−at(d, a), at(c, b), at(d, b)

where the operator “−” indicates that this fact has to be deleted after the action is per-
formed, and facts that do not contain this symbol should be added to the current state. This
specification would be intended to express that for the action to be performed, d needs to be
a driver, a and b locations (you cannot drive between objects that are cars, for example), and
both c and d are initially located at a. After the action is performed, they would no longer
be at location a, and instead both be located at b. None of the other facts are affected by the
action, for example, d is still a driver, and c is still a car, after the action is complete.

At this point, it is worth providing a bit more detail regarding the notation we have used
in the example. First of all, facts of the form p(a1, . . . , ak) are written as predicates (with a
predicate name p and arguments a1 to ak, representing objects or variables), which borrows
from conventions used in mathematical and computational logic (see subsection 3.3 below),
but essentially is simply used as a query against the variables of the current state. Recalling
our treatment of state variables in section 2, the STRIPS notation assumes that the current
state is expressed using a knowledge base, which is essentially a database of properties of the
current state. In our example, it might contain the following facts:

{driver(Alice), car(Herbie), location(London), location(Edinburgh),

location(Glasgow), at(Alice, Edinburgh), at(Herbie, Edinburgh)}

to express that driver Alice and car Herbie are in Edinburgh, and Edinburgh, London, and
Glasgow are all locations in the system. When we pose a query against this knowledge base
with a predicate that contains variables, e.g. at(x, y), the knowledge base would return all
matching facts (at(Alice, Edinburgh) and at(Herbie, Edinburgh) in this case).

If we execute the action drive(Alice, Herbie, Edinburgh, Glasgow) (a concrete instanti-
ation, or grounding of the general action schema that contains no variables), we will end up
in a new world state

{driver(Alice), car(Herbie), location(London), location(Edinburgh),

location(Glasgow), at(Alice, Glasgow), at(Herbie, Glasgow)}

as prescribed by the effects of the schema, which remove at(Alice, Edinburgh) and at(Herbie,
Edinburgh), and add at(Alice, Glasgow) and at(Herbie, Glasgow). The preconditions of the
schema ensure that actions such as drive(Herbie, Herbie, Edinburgh, Glasgow) or drive(Alice
, Herbie, Glasgow, Edinburgh) are not applicable in the current state.

Planning algorithms enable us to determine what sequence of actions is necessary to
reach a given goal (e.g. at(Alice, London)) from an initial state like the one above, usually by
performing some form of search exploring every action available in each step and terminating
when any concrete state is found that satisfies the goal description.5 Many variations of

5 If Alice gets to London, lots of other things might still hold, but we only require this specific fact in this
case, which implies we do not care about what else might be true in the final situation achieved by the plan.



planning formalisms exist that extend the basic STRIPS model by additional features, e.g.
allowing for uncertain effects or effects that only occur under certain additional conditions,
require certain things about the world not to be true for the action to be executed, or involve
returning a plan that is not a sequence of actions but a more complex procedure that may
require sensing facts not known from the outset to select subsequent actions.

Despite resembling search-based problem solving to some extent, automated planning
affords additional capabilities that are essential to intelligent decision making. Crucially, it
breaks down the notion of state into its different properties, which introduces a notion of
relevance for different alternatives considered at any point in time in several ways. Firstly,
actions not applicable in a given intermediate state are not considered at all, which saves
the algorithm from looking at options that are not meaningful. Secondly, as each action only
modifies certain aspects of the state, we can track evolution of this state along a sequence
of actions by modifying the set of facts true after each step, rather than enumerating a
(potentially huge) hypothetical state space. Thirdly, the search algorithm will try only to
achieve those aspects of the state we care about in the goal description, which means that
any concrete state that satisfies them counts as a solution, and it can attempt to make all
the goal conditions true one by one. Finally, the facts that need to be satisfied provide very
useful information for search heuristics that speed up the search process massively, as they
allow for prioritising which actions to explore in each step much more systematically. This
has helped develop algorithms that used to scale only to plans of a few actions 20 years ago
to systems that can solve problems that involve thousands of actions nowadays.

What does the use of planning techniques imply in terms of anticipatory elements of intel-
ligence on behalf of the designer, and the planning system? In terms of the basic assumptions
regarding how much is known about the problem environment, and how predictable and cer-
tain the outcomes of actions are, planning is indeed very similar to search-based problem
solving, and all the remarks made at the end of section 3.1 apply also to planning. However,
planning adds an important element of anticipation related to the frame problem [32], com-
monly regarded as one of the fundamental problems in AI. The frame problem is concerned
with making sure that the representation of a problem domain and the inference procedures
over it capture all aspects of the world correctly, and attempts to address the fundamental
impossibility of achieving this. It can be broken down into further sub-problems, such as the
qualification problem, concerned with the impossibility of listing all the preconditions required
for a real-world action to have its intended effect, and the ramification problem, concerned
with the impossibility of listing all possible side-effects or indirect consequences of an action.

The implications of the frame problem are immediately obvious in the representations
used by planning. In our example, we have made an ontological commitment to only consider
certain aspects of the world when describing our action theory. For example, we have not
required that the car is in good working order, or that it is not struck by lightning en route,
and we have not captured effects like the reduction of fuel in the tank after driving. In terms
of anticipation, it is impossible to consider all possible variations in circumstances and all
possible side-effects when defining a concrete action theory. At the same time, the assumptions
made regarding the correctness of a planning algorithm (stating that it will only output plans
that will certainly achieve the goal from the initial state) and its completeness (stating that it
will find a solution if one exists) imply that the designer, at the time of specifying the action
theory, believes that successful automated planning reflects that the plan returned will be
executable, and that it will lead to the desired outcome.



This nicely illustrates that when delegating a planning task to an AI system the anticipa-
tory abilities of the designer are mirrored by those of the system, which will be no less and
no more provident than the human who imparted it with the theory of causal change in the
world she believes appropriate. Without additional machinery to repair faulty theories, they
can only ever reflect the understanding of their designers in terms of accuracy and realism.

3.3 Knowledge representation and reasoning

Our treatment of planning already used a very simple form of knowledge representation [4] as it
involved describing the world in terms of a vocabulary of facts and objects (called an ontology
in AI terminology), and a specific form or reasoning in the form of deriving the truth value of
facts in a state from their status in previous states and the assumed causal consequences of an
action. Methods for representing and reasoning about knowledge are central to AI research in
a much broader sense, and focus on the idea of being able to establish the truth of assertions
regarding aspects of the world not immediately observed in current input data. For example,
if we know that a car is at a certain location, then we know that its driver is at the same
location, even if we only have data about the GPS location of the car, and no image of the
driver sitting in the car. This type of information that is produced by inference from other
facts and rules about the problem domain goes beyond the notion of retrieving stored data.
If all we had added to a traditional database was the fact at(Herbie, London), a query of the
form “what are all the things that are in London?” would simply return Herbie as an answer.
Instead, querying a knowledge base that also contains the rule “if a car is in location X, its
driver is also at location X”, would return Herbie and Alice, if Alice is the driver of this car.

Being able to capture and utilise generalised knowledge of this form is seen as a key ca-
pability of intelligent systems, as it emulates the process of applying known properties of
the world to new data to deduce information about hidden (including future) aspects of the
world, just like humans do in everyday commonsense reasoning. In terms of anticipatory rea-
soning, we can in fact view knowledge representation techniques as an attempt to replicate the
prototypical modelling relation as described by Louie [30] in a mathematical/computational
system, which posits a coupling between inferential entailment in a formal system and causal
entailment in a natural system (that is to be modelled) via encoding and decoding relations,
which, in the case of computational systems, involve the formal languages these can process.

Two of the most common tools for representing knowledge and performing inference pro-
cedures on it are logic and probability theory. Logic-based methods are based on expressing
knowledge in a formal language that permits syntactic manipulation in order to derive new
knowledge. The fundamental contribution of common logical formalisms to AI is that they
come with rules for such syntactic manipulation that preserve the semantic truth of the as-
sumptions expressed in the logic. In other words, if the logical sentences we have written down
to express our assumptions hold true, then we can guarantee that the consequences derived
from these assumptions through a process of logical proof will be correct.

To return to our example, in the commonly used first-order logic, it would be captured
by the following facts:

car(Herbie)

driver(Alice, Herbie)

at(Herbie, London)



∀c, d, l .car(c) ∧ at(c, l) ∧ driver(d, c)⇒ at(d, l)

∀x, l, l′ .(at(x, l)⇒ ¬at(x, l′)) ∨ l = l′

The first three lines here express our assumptions that Herbie is a car, Alice drives Herbie,
and Herbie is in London. The fourth statement is a more complex rule that says “for any
entities c, d, and l, it holds that if c is a car, c is located at location l, and d is the driver of c,
then d is also located at l” (for the purposes of this example, we only call someone a driver if
they are currently driving the car). The final rule states that “for all x and any two locations
l and l′, either x is located at l and not at l′, or l and l′ are the same location”. Chaining the
two final rules would allow us, for example, to infer that Alice is not in Edinburgh if she is in
London, and demonstrates that more complex lines of reasoning can be performed if we use
algorithms that can reason over such knowledge bases.

Computational logic [19] is a broad field that is also relevant for many areas beyond
AI, but as far as using it practically to embed anticipatory methods in AI systems, the
expressiveness of first-order logic (roughly speaking) represents the limit in terms of what is
computable, i.e. there is an algorithmic procedure that will terminate when trying to answer
any arbitrary query over a finite knowledge base. In fact, even in the case of propositional logic,
a simpler variant of first-order logic that does not allow variables and quantifiers like “for all”
or “there exists” along with some other features, there are significant challenges regarding the
computational complexity of such proof procedures. In the worst case, a propositional logic
query may require an amount of time that is exponential in the number of symbols used in a
knowledge base to return a result. It is for this very reason that more constrained methods
like planning, which borrow certain ideas from logic but restrict the types of knowledge that
can be expressed and the queries that can be answered, are much more commonly used in
real-world implementations of AI techniques.

Probabilistic reasoning [37], which makes use of mathematical probability theory and meth-
ods that originate from mathematical statistics, has grown immensely in popularity over the
past thirty years due to the limitations of using purely logic-based knowledge representation
techniques. Its main strength is its ability to express uncertainty in quantitative terms, i.e.
to express to what degree something is certain (rather than, for example, first-order logic,
which only allows expressing this through disjunctions like “either x or y is true”). Using
this approach, causal relationships become statements about conditional (in)dependence and
statistical correlation.

Bayesian statistics provides the mathematical foundation for computing the probability
that a certain statement is true, by applying Bayes’ rule for conditional probabilities. Assume
Herbie is a self-driving, autonomous vehicle that can change location without a driver. We
observe that Herbie is in London (fact A), and want to know how likely it is that Alice is
there, too (fact B). Given our observation, this probability can be computed by considering the
likelihood that both A and B are true (how often are they both in London?) as a proportion
of the prior probability that Herbie is in London (how often is Herbie generally in London?).
Formally, this can be written as follows:

P (at(Alice, London)|at(Herbie, London))︸ ︷︷ ︸
conditional probability

=

joint probability︷ ︸︸ ︷
P (at(Alice, London ∧ at(Herbie, London))

P (at(Herbie, London))︸ ︷︷ ︸
prior probability



Assume Herbie has been spotted 20 times in London (this is the prior probability, before
we include new evidence that Herbie is there now), and Alice and Herbie were seen there 5
times.6 If we observe that Herbie is in London, this would lead us to believe that Alice is
there with a probability of 5÷20 = 25%. If, out of a long series of observations, we estimated
the prior probability of Alice being in London (regardless of any statement about Herbie’s
status) to be also 25%, then we would have that P (at(Alice, London)|at(Herbie, London)) =
P (at(Alice, London)), i.e. the locations of the two would be conditionally independent.7

This very simple example only scratches the surface of a whole range of the kinds of
uncertain knowledge that can be expressed using graphical models [29] that describe complex
probability distributions governing the behaviour of large numbers of variables. Probabilistic
methods have resulted in a broad range of effective algorithms for performing queries on such
models, and have been proven superior to “binary” logical models that are usually too brittle
to adequately express real-world domains adequately. This is particularly true of applications
where sensors and actuators have only limited precision or may occasionally malfunction, such
as robotics or speech recognition. But it also reflects the ability of quantitative uncertainty to
deal with certain aspects of the frame problem, as quantiative uncertainty allows us to make
simple statements about “all that is known to be unknown” without having to explicitly list
all factors and events that may lead to unexpected behaviour of the system. For example, a
statement like “there is a 5% probability the car will break down” allows us to estimate how
likely an action is going to fail while making an aggregate statement about the nature of all
factors that could lead to such failure.

The key tradeoff that has to be made in return for this robustness is that computationally
tractable probabilistic methods restrict themselves (roughly speaking) to the level of propo-
sitional logic. This means that each state and action variable in the system has to be treated
individually, and we cannot easily process more abstract, generalised rules that make state-
ments over entire classes of objects. In terms of design knowledge, use of probabilities implies
that accurate quantitative knowledge about the base probabilities of all facts and the correla-
tions between them have to be entered in the system, which requires much more fine-grained
assumptions than simply knowing what is “true” or “false” in a logic-based system.

Looking at these methods from an anticipation point of view, it is important to point
out that they can be used to express diagnostic, causal, or predictive knowledge, so they do
not always have an anticipatory, forward-looking element. When they do, each of them adds
different types of complexity in terms of design-time anticipation to the model of a problem
environment compared to the techniques we have discussed previously.

In the case of logic-based reasoning, fairly compact sets of assumptions about the world
can lead to complex domain theories, allowing very large (potentially infinite) numbers of
statements to be inferred at runtime. On the other hand, as these theories become more
complex, it becomes harder to anticipate the outcome of queries to a knowledge base, or the
amount of time it will take for a query to return a result. As before, this illustrates that the
more anticipation is enabled on the side of the system – here in the shape of inference of

6 This is a simplified account of the meaning of probabilities following a frequentist model that estimates the
probability of an event based on its past frequency over a long period of time. While other interpretations
of probabilities exist, this one is sufficient for our example.

7 Note that this does not preclude the events being causally linked, as the two probabilities might be coinci-
dentally identical despite them being linked. One should not confuse correlation with causation, and in fact
much more complex theories have been proposed to model causation in a probabilistic setting [36].



implicit, not directly observable properties of the world – the less the human designer can
anticipate solutions generated (and thus, potentially, decisions influenced) by this system.

In the case of probabilistic reasoning, the novel element this introduces is making explicit
how much about the world is known in quantitative terms. In terms of anticipatory capability
this is a real step change compared to our previous models, as it implies that no statement
is ever considered “true” or “false”, but just becomes more or less likely. In other words,
all alternatives always remain within the realm of possibility, and are simply weighted by
relevance based on available evidence. An additional benefit of this approach is that the system
can also quantify how certain it is about its estimations or predictions, which is interesting
from the standpoint of anticipation, as it endows the system with a reflexive capability that
allows it to gauge how much it can rely on its predictions. On the other hand, the amount of
knowledge that has to go into an accurate model of a domain governed by uncertainty, and the
computation that may have to be performed to update the probabilities of relevant variables
in order to answer a concrete query, however, demonstrate the demands on the designers of
systems who aim for this level of anticipatory capabilities in a system.

3.4 Learning

The previous section introduced methods that allow designers to add knowledge and obser-
vations to an AI system using general-purpose languages that can be effectively manipulated
by computational procedures, but not for the system itself to extract this knowledge from
observation. Methods developed in the area of machine learning [2, 33] aim to enable AI sys-
tems to construct models of the world from observed data, and roughly fall into three areas,
which we will briefly introduce in the following sections.

In supervised learning, data is presented to the algorithm in the form of input-output
samples and the task is to predict the output on input previously not seen. As an example,
consider a set of journeys given as a list

Edinburgh→ Glasgow→ Manchester→ Nottingham : Bad

Edinburgh→ Carlisle→ Leeds→ York : Good

Aberdeen→ Edinburgh→ Glasgow : Bad

Glasgow→ Newcastle→ York→ Sheffield : Good

where the route contains features of the input, and the output (good/bad) indicates whether
Alice enjoyed the journey (and is here just a single feature, but this is not a necessary re-
striction). The task of a learning algorithm is to derive a model for this data that would
allow it to accurately predict whether Alice would like an arbitrary journey, e.g. whether
Edinburgh → Newcastle → Glasgow → Inverness would be classified as Good or Bad.
Since the possible outputs can be viewed as “classes” of items, supervised learning is often
called classification, and the notion of “supervision” derives from the fact that training data
used to choose a hypothesis (here about what makes a good or bad journey) contains “ground
truth”, ostensibly provided by a human or real observation. In this sense, the learning process
is supervised – there is a source of reliable information that tells the algorithm which learning
samples belong to which category. The hypothesis output by a learning algorithm based on
the data in our example will be determined by looking for patterns and regularities in the
training data. In our example, a sensible hypothesis might be that Alice only likes a journey
if it passes through York.



Many algorithms have been proposed for performing such learning tasks, which are often
based on some form of adaptation of an initial hypothesis based on every data item seen.
Decision tree learning, for example, builds a tree that makes a series of decisions by checking
the value of each input attribute at internal nodes, with the leaf nodes of the tree labelled
by output values. It considers how different values of the input attributes predict each other
(e.g. the value of the first city in the journey vs. the second, the second vs. the third, and so
on), and is able to ignore irrelevant features altogether.

Neural networks emulate simplified networks of brain cells, where a neuron “fires” once the
sum of the outputs of its preceding neurons exceeds a threshold and propagates its own value
of activation (normally a number between 0 and 1) to successor neurons. The result of a new
data sample is obtained by feeding the activation of input features through the network and
reading off the predicted output at a designated output layer. In our example the output layer
might contain just a single neuron, indicating that “good” is a value above 0.5 and “bad” below
0.5. In a nutshell, training a neural network involves evaluating the error produced on a new
sample given the current weights between connected neurons that determine how activation is
propagated, and adjusting these weights to minimise this error. Using techniques like neural
networks one can learn arbitrarily complex numerical relationships between variables, though
it is hard to “see” the final hypothesis by examining the network (it is implicitly encoded in
the values of the numerical weights between the neurons), yet it is easy to input an unseen
sample and obtain the predicted output.

Bayesian classifiers model the correlations between features in the data explicitly as joint
probability distributions between them, updating these distributions as they track the fre-
quency of co-ocurrence of specific variable values during training. This is achieved by applying
the principles discussed in section 3.3.

Many other similar methods have been proposed in the literature for supervised learning,
but what they all have in common is that they apply what is called an inductive bias to
hone in on regularities in the data early, and have a facility of evaluating the quality of their
current hypothesis by way of some form of built-in critic, usually based on prediction error.
Inductive bias, which can be implemented, for instance, by preferring simpler hypotheses
over more complex ones, is essential to the success of machine learning algorithms. If such
an algorithm were to consider all hypotheses equally likely in each step, it would be unable
to detect frequently observed patterns in the data soon enough, which would slow down the
learning process [33]. At the same time, excessive bias may lead to overfitting, i.e. deciding
to “lock into” a subset of hypotheses before having seen a sufficient amount of data that is
representative of the real-world phenomenon the algorithm is trying to model.

These problems are equally important in unsupervised learning, where data is not labelled
with explicit and reliable output features to be predicted, and the algorithm is instead trying
to detect regularities mostly by looking at shared patterns in the data. An important class
of these algorithms are clustering techniques [26], which attempt to group different data
items together based on similarities between them. This process often involves checking which
attributes of the data samples lead to the most coherent clusters, where coherence is often
based on having as few clusters as possible while making sure samples are as close to each
other based on the distance metric applied, and/or having as few outliers that are far away
from any cluster centre as possible. Unsupervised learning is often used as an initial stage
before coming up with a clear idea of what to predict based on the data, e.g. when data
samples contain hundreds or thousands of variables, and it is unclear which of these are
relevant. Many advanced machine learning algorithms involve a process of feature selection,



(b)

+1

−1

0.705 0.655 0.611 0.388

0.762 0.611 −1

+10.9180.812 0.868

(a)

Fig. 3. A typical reinforcement learning problem: The agent has to navigate a grid, but when moving forward,
may with some probability turn left or right involuntarily. There are only two states where a reward of +1 or
-1 is received. The optimal policy is indicated by the arrows in figure (a), and is derived from the estimated
utilities shown in figure (b). It indicates that in the bottom row of the grid, for example, choosing the longer
route to reach the high-reward state is better than risking the low-reward state.

which attempts to compare the predictive value of different features to simplify the learning
process by ignoring features that are less predictive and just constitute “noise” in the data.

The third category of learning methods, reinforcement learning [56], can be seen as a
form of semi-supervised learning. Here, the algorithm is not given precise information as to
which examples are positive and negative (or belong to which output class, in a more general
setting), but a numerical reward that provides some relative feedback for the decision of
the algorithm. Most commonly, reinforcement learning is applied in a setting of sequential
decision making. The system experiences a current world state, and may choose to perform
an action from a defined set of alternatives, which will stochastically lead to a new state, and
produce a numerical (stochastic) reward informing the system of the quality of its decision in
this individual step. This feedback may be delayed, for example when driving around various
cities, the user may only tell the system that she liked the journey at the very end of the trip,
and there may be a notion of terminal states, which, when reached, conclude an individual
episode of training that counts as a complete training sample.

In reinforcement learning, the goal of the system is to come up with an optimal policy, i.e.
a mapping from states to actions that will tell it what choice to make in each step, after a
number of training episodes. In this context, a policy is considered optimal if it maximises the
expected total reward achieved along the way among all possible alternative policies. If every
transition from a state to its successor states only depends on the current action (i.e. previously
taken actions do not matter for the current step), the world can be represented as a so-called
Markov Decision Process (MDP) [40]. An MDP is essentially a large probabilistic search
graph with rewards attached to some (or all) nodes, and as such represents a generalisation
of search-based problem solving with elements of probabilistic methods. Figure 3 shows an
example of a reinforcement learning problem adapted from [45].

If transition probabilities and rewards are known and do not have to be approximated
from trial and error at runtime, a reinforcement learning problem degenerates into a decision-
theoretic planning problem [3]. This can be viewed as a generalisation of a planning problem
as defined in section 3.2 with additional non-determinism and a graded notion of goal achieve-
ment, whereby the total aggregate reward is maximised across all visited states, rather than
just reaching a set of goal states.



If the problem is only partially observable, the AI system only has uncertain information
about which state it is in at every step, and has to additionally maintain hypotheses about
which observations map to which states. For example, our self-driving car may not know
which city it is currently passing through and has to estimate its location from weather
information. This is known as a Partially Observable Markov Decision Process [28], viewed
by many as the most general formulation of an AI task (sometimes called “AI normal form”),
as it involves a stochastically behaving dynamic environment with partial observability and
uncertain outcomes of actions.

Many methods used in reinforcement learning, such as Q-learning [60], proceed by main-
taining a running estimate of the quality of certain actions of states which is propagated from
successor states to predecessor states periodically based on the idea that a state (and action)
is worth visiting if the states that can be reached from it produce high rewards (shown in
part (b) of figure 3). Through repeated trial and error, these algorithms are able to converge
to the optimal policy in arbitrary MDPs under certain conditions.

These conditions mainly require that, even though the environment is non-deterministic,
the probability distributions that govern this non-determinism do not change over time, and
that the right balance is struck between exploration (trying out new alternatives to avoid
missing opportunities to achieve rewards higher than those experienced in the past) and
exploitation (repeating decisions that have produced good rewards in the past). Typically, such
a balance will involve high degrees of exploration in early stages of learning, and increasing
exploitation in later stages in order to converge to a stable policy in the long term. The
exploration-exploitation problem is an example of the broader issue of making sure a machine
learning algorithm applies the correct sampling strategy whenever it can influence the choice
of what training samples to consider.

Learning algorithms mark a clear step change in terms of anticipation, both for the de-
signer and for the system. At a meta-theoretical, epistemological level, they are based on the
fundamental assumption that a correct model of the future behaviour of the world can be
derived from observation of its past behaviour, i.e. that the future is an extrapolation of the
past. Of course, we know of applications, for example predicting stock markets, where even
human experts have been often faced with situations where no existing model predicted the
experienced future behaviour, so this assumption does not always hold true.

In machine learning, the main mode of anticipation is one of data-driven prediction, and
places much more weight on empirical evidence than the previous methods, which mainly
relied on a designer-driven modelling process. From the designer’s point of view, this implies
that the coupling between their view of the world and that of the AI system becomes looser
when using machine learning. Even though the designer can still make certain choices, e.g.
which training data to supply to the learning system, how many training iterations to perform,
which “critic” method to apply, and how to fine-tune the parameters of the algorithm, she
cannot anticipate what the output of the algorithm will be. Hence, even though many of the
properties of the algorithm can be verified offline (e.g. through mathematical analysis), its
runtime behaviour cannot be fully anticipated.

Moreover, the inspection (and thus, intervention) opportunities some of the learning meth-
ods provide determine to what extent a human designer or operator can identify (and modify)
what the system has learned. For example, neural networks or reinforcement learning algo-
rithms are often encoded in large matrices of numerical weights that are hard to understand
for a human. This means that even if the system is behaving as anticipated for some time,
there is no guarantee that it will do so in the future. Such problems may occur even after the



learning phase is complete and the system is simply applying what it has learned so far, but
they are even more likely if it will keep adapting its hypothesis in the future.

From the point of view of the algorithm itself, its anticipatory capabilities will depend
on the accuracy of the model learned, which is largely determined by whether enough data
has been provided to the system that is representative of the long-term behaviour of the
task environment. Generally speaking, for any realistically complex process it is impossible
to know whether enough data has been seen, though this can often be estimated by looking
at how well the system is performing on new, unseen data. It is important to point out
that despite the power of machine learning methods, effective use of learning-based methods
remains challenging in complex, real-world tasks (as the AlphaGo [51] example of section 1
shows). In practice, it often requires a handcrafted choice and integration of different methods
(in the case of AlphaGo, randomised search, neural networks, and reinforcement learning)
with human-based testing and iterative fine-tuning to achieve good performance. To some
extent, this is a consequence of our currently lacking abilities in terms of anticipating the
performance of a learning system, but it remains to be seen how much of this process itself
can be automated in the future, in order to enable AI systems to learn how to learn.

4 Anticipation in intelligent, autonomous agents

So far, we have only considered AI methods that are run offline, i.e. executed by a human
designer or operator in order to obtain a solution to a given problem. At least since the mid-
1990s, the notion of an intelligent and autonomous agent [63] has received much attention,
which extends this offline view by a view of AI that has a piece of software and/or hardware
operating persistently in an environment to achieve some task on behalf of its designer. An
agent perceives its environment through sensors (in a very broad sense, from physical sensing
devices to keyboard input or a message received over a computer network), and acts on this
environment through actuators or effectors (again, interpreted in a very broad sense). This
situatedness in an environment (that can usually only be partially controlled, and may contain
other agents, each with their own spheres of influence [50, 61]) marks a departure from the
traditional view of computation as the process of mapping some input to some output in a
one-off, self-contained procedure, to a view of autonomous operation in an environment [9,
34, 44]. This shift from a program to an agent has major implications for anticipation.

One way of looking at this is considering the horizon of anticipation at the time of de-
ploying the system into its environment. If we could perfectly anticipate all possible future
circumstances while a solution returned by the system is executed, we could essentially come
up with a lifelong plan that would determine the system’s operation until it terminates or is
decommissioned. This, however, would require a complete understanding of all details of the
problem domain, which is unrealistic for most real-world tasks. Therefore it is more realistic
to think of system designs that only consider a limited time horizon, attempt to make the
best decision up to this limit, implement this decision, and then repeat this procedure. In
heuristic search, this is often necessary because the search tree is too large to be explored
completely (cf. the Go example of section 1), and the system only looks ahead a limited
number of rounds. In planning, real-world systems often use execution monitoring which may
lead to re-planning, and may even occur before a plan has failed or has reached its (limited)
time horizon, simply to check whether circumstances are not as anticipated at the time of
calculating the original plan [12]. In learning, the agent may re-start its learning procedure



from scratch every once in a while to avoid putting too much emphasis on regularities in the
data that occurred much earlier on and might now be obsolete.

Another perspective we can take is that of responding to changes in a dynamic environ-
ment, which requires a balance of reactivity and proactiveness [27]. Proactive behaviour is
based on anticipating future circumstances based on information about the current state of
affairs, and is obviously essential to taking goal-rational action directed at achieving some
objective. In itself, it is not capable of dealing with a dynamic environment where things may
change, and this capability is generally believed to also be an essential part of human and
animal intelligence that we should replicate in AI systems. If Alice has started her trip from
London to Edinburgh via York, it would be unreasonable to stick to this plan if the car breaks
down at York. A more sensible strategy might be to call a garage, have the car repaired, and
then resume her journey. Of course, a more provident Alice might have considered this before
departing, and her plan might have included this contingency as part of her overall policy,
but this would require, at least in the limit, the kind of lifelong planning described above.

A third view closely related to the previous two, is that of bounded rationality. This
concept, pioneered by Simon [52], and then mapped onto a concrete decision-theoretic math-
ematical model by Russell [47], involves considering the resources available for reasoning when
making decisions. In its simplest form, bounded rationality states that rationality is limited
by the amount of information available, the limited capabilities of any reasoning process, and
the amount of time available to make a decision. Limiting the number of future states to
be explored in an anticipatory process, or only processing as much training data as can be
analysed within a certain fixed amount of time are typical examples of applying bounded
rationality, but there have been also notable attempts to make the AI system reason about
how much effort it should put into reasoning. Reasoning about how to reason, also known as
meta-reasoning [48, 49], is based on the following idea: Assume you have information about
how solution quality depends on effort spent to come up with the solution, and an idea of
how much the reasoning process itself costs per possible alternative considered. Once the cost
of reasoning outweighs the possible additional gain by performing more reasoning, it is not
worth engaging in further reasoning.

Suppose Alice needs to stop for a meal on her trip from Edinburgh to London, and she is
on a tight budget, so she would like to choose the cheapest restaurants on the motorway. She
has access to a restaurant app on her phone, and can, in principle, look up any restaurant,
visit its web site and compare prices, but this is a tedious process that takes time. Quite
likely, picking a random restaurant might result in a high bill, but after comparing several
restaurants, the additional gain will start diminishing, as it is unlikely that further options will
be much cheaper. Assume considering a new alternative costs £1 to Alice, and the expected
gains in every step (from first to second option, second to third option etc) follow the pattern
£5, £2, £1, £0.5, £0.1 and are 0 thereafter. After one step, she will find a solution that
makes her save £5, but will have spent £1 thinking about it, i.e. she obtains a total gain of
£4. In the second step, this number is £4 + £2 - £1 = £5, in the third £5 + £1− £1, and
thereafter the additional costs outweigh further benefits. This means she can stop considering
alternatives after having checked two options.

Such meta-reasoning of course requires additional knowledge about how useful additional
reasoning is in a given problem domain, but whenever this is the case, it enables a different
type of anticipation – one that involves a certain degree of introspection and awareness of the
agent’s reasoning capabilities.



4.1 Autonomy and intelligence

All three aspects discussed above ultimately relate to the same crucial property of agents,
autonomy, as they all involve “letting the agent loose” (even if only for a while) and allowing
it to make decisions at runtime, rather than having worked out a full solution to the problem
in advance and having the AI system simply implement it. Despite the fact that autonomy
is such a key aspect of agency, and transfers anticipatory power from the designer to the
artificial agent, it remains one of those most extensively debated in the AI community [61].

The range of definitions proposed for autonomy usually includes the following: an agent is
autonomous if it is able to operate without external intervention (this often closely associated
with physical detachment from a human operator, e.g. in autonomous robots); the more the
agent’s behaviour depends on its own experience, the more autonomous it can be considered
to be (in the sense that it exhibits behaviour that was not precisely anticipated at design time,
this is particularly relevant if the agent is learning from experience); the less an observer knows
about an agent’s internal functioning or is able to predict its behaviour, the more autonomous
the agent is (this emphasises interaction with another agent/human and external insight and
understanding); the agent is the more autonomous, the less it obeys external commands (this
emphasises self-determination, and is closely related to the risk of AI systems “running wild”).

The relationship between autonomy and intelligence is also a tricky one. Commonsense
intuition has it that the less guidance we have to give to someone, the more complex the
tasks we can delegate to them reliably, the more variation in their behaviour we observe,
the more flexible they are in responding to different circumstances, the more knowledge they
are able to extract from their own experience to improve, and the more they are able to
rationally pursue their objectives, the more intelligent they are. While these properties are
all undoubtedly linked to different aspects of autonomy, we can also find many examples
where autonomy exists without intelligence and vice versa: A thermostat is a very simple
device that is completely autonomous (except for the user’s intervention in specifying the
desired temperature), but hardly intelligent. A pocket calculator can perform mathematical
operations that are far beyond the cognitive abilities of a human, yet has no autonomy at all.

We believe that the concept of anticipation may be helpful in clarifying things at this
point. If a human designer can anticipate the behaviour of the system, whether by analysing
its behaviour through extensive testing, by mathematically proving the properties of the
algorithm it implements, or by making assumptions about the circumstances under which the
system will operate, then no matter how complex the actual computations carried out by this
system or the behaviours it generates, it has no genuine autonomy in the narrower sense, and
can be operated in a predictable way. If a system has anticipatory processes itself, then part
of this human anticipation will have been delegated to it deliberately, and it will appear to
exhibit (at least some degree of) autonomy.

4.2 Telling an agent what to do

Given these considerations, the final question to consider is how, given increasing amounts
of autonomy in agents, we can influence and anticipate their operation at design time. If we
want these agents to perform complex activities on our behalf, this boils down to answering
the question “how should we tell an agent what to do?”

In section 3, we have already seen how objectives can be encoded into different types of AI
algorithms: in search-based problem solving, we only distinguish between solution states and



non-solution states, i.e. the distinction between success and failure is binary. Planning main-
tains this distinction by considering goal states and non-goal states, but uses representations
that allow us to inspect whether a goal has been partially achieved. Knowledge representa-
tion techniques consider a solution as the answer to a query, establishing whether it is true or
false, or how likely it is to be true. Learning techniques aim to maximise prediction accuracy
or to optimise long-term rewards obtained when acting in an environment, adding a further
refinement to the definition of objectives by introducing a quantiative notion of success.

Hence, these techniques afford us with different ways of specifying objectives by way of
defining which states should be achieved (or avoided), what questions should be answered, or
that a certain degree of “utility” representing a performance metric should be maximised.

When moving from a monolithic view of a single execution of an algorithm to the notion
of an agent that repeatedly engages in making decisions based on the current situation using
some form of anticipation, how can we adapt our methods for specifying these objectives
appropriately for them to be applicable in this setting? To answer this question, it is worth
considering different types of agent architectures [61], models for the internal structure of
agents that specify what meta-reasoning control mechanism is used on top of the internal
problem-solving algorithms they use.

In our bounded rationality example above, we have already implicitly introduced one
very general architecture, that of decision-theoretic agents (which is also implemented by the
reinforcement learning agents as described in section 3.4). Decision theory [17], developed
largely in the behavioural sciences and economics, postulates that a rational choice in a
decision-making situation is one that maximises expected utility: Given the probabilities of all
possible outcomes of a decision, and the utility of each of these outcomes, we should choose
the decision that maximises the average “return” we expect from this decision, taking the
uncertainty into account that is reflected by the probabilities of outcomes it may lead to.

This view of rational behaviour is based on a mathematically rigorous formalisation of
benefit and uncertainty, it can be applied over any time horizon the agent wishes to make
decisions over, it can accommodate updates to the utility values and probabilities in the
world model using the methods we have introduced above, and is generally applicable in any
problem formulation as long as there is a defined state and action space. Also, these elements
are mapped to numerical utilities that reflect satisfaction of the agent’s design objectives.
Using probabilistic methods and techniques such as reinforcement learning, algorithms have
been proposed that enable provably optimal rational agent design [46]. This model, however,
also requires that the human designer has a way of assigning utilities to every possible state
that might be encountered, and it may require a large amount of exploration to converge to
an optimal policy, or may even be intractable in realistic state spaces.8

At the opposite end of the spectrum between “pure”, mathematically grounded, adaptive
methods, we find deliberative architectures like the Beliefs-Desires-Intentions (BDI) model of
rational agency [20]. These architectures stand in the tradition of logic and planning, and
draw from models of human practical reasoning [6]. Roughly speaking, BDI models (and the
programming languages that have been developed to implement such agents [41]) are based
on the idea that the agent has general desires, i.e. preferences regarding things it would like
to achieve, but which may only be achievable or relevant in different situations. For example,
when Alice’s car breaks down, fixing it will have higher priority than continuing her trip to

8 For this reason, elements of this model are used in many real-world applications, but often combined with
other, more ad hoc meta-level control components.



London. At different points in time, the agent considers its current beliefs about the world
(which are revised in every step based on observations) to determine which desires are worth
pursuing. This process is called deliberation, and while the agent is deliberating, no specific
commitment is made to pursuing a particular goal. Once such a decision is made, the desire
becomes a concrete intention that is a concrete goal the agent will remain committed to unless
it becomes achieved or unachievable [11]. For example, if Alice commits to fixing the car, she
will continue to make “reasonable attempts” to achieve this intention.

Additionally, intention reconsideration [62] rules may be supplied to the agent that will
force it to deliberate again even though its current intention has not been achieved or become
unachievable. In our example, such a rule might be “if you start feeling unwell, reconsider your
intentions”, and make her drop the intention to fix the car and adopt an intention to visit a
doctor instead. While an intention is active, the agent will try to create a plan to achieve it
(e.g. drive to a garage, speak to the mechanic, wait until the car is fixed, and pay the bill)
using techniques such as automated planning, or simply retrieve a suitable, pre-fabricated
plan from a plan library.

The BDI model essentially represents a meta-level architecture that acts like a continuous
planning loop, trying to map high-level design objectives encoded as desires to concrete plans
for action by generating new, concrete goals at different points in time [5]. It can thus be seen
as a typical example of attempting to break down “lifelong” planning into smaller, manageable
chunks in order to balance reactivity and proactiveness, and to implement a notion of bounded
rationality by performing only a limited amount of planning in every deliberation cycle, so
that responsive, real-time behaviour can be achieved.9

If every intention adoption rule is a simple stimulus-response pair saying “in situation
X, perform action Y ”, and all Y are single-step, atomic actions that immediately succeed
or fail (and thus the intention is always abandoned after a single step, and the agent de-
liberates again), these architectures degenerate to purely reactive architectures [14] such as
the subsumption architecture [7] that involve no anticipatory planning, and simply embed a
hierarchy of simple behaviours executed one by one based on the current state.

While BDI is largely based on a less mathematically rigorous model of rational agency
than decision-theoretic methods, it embeds anticipatory processes that seem to resemble more
those of human practical reasoning. It is therefore maybe not surprising that a number of
programming languages have been designed that enable a designer to write down models
of plans for specific intentions, belief conditions that trigger the adoption of intentions, and
similar other rule-based elements to control an agent.

Arguably, with respect to anticipation, it may be the case that models like BDI provide a
better “interface” between the anticipatory processes of humans and those of the AI systems
they build, as they make it easier to structure and inspect the methods an artificial agent
uses to anticipate different circumstances in the world and make appropriate decisions.

5 Anticipating the behaviour and impact of AI systems

Throughout this chapter, we have made several remarks on the implications the use of different
AI techniques has for human anticipation regarding the behaviour of systems that use them.
We described the teleological [30] underpinnings of investigating AI and implementing AI

9 This also prevents the agent from taking so long to create complex plans that the world may have changed
by the time it has computed its plan, and it may no longer be relevant.



systems, highlighted the shift from prediction of behaviour to assumptions about a system,
which is more strongly pronounced the more reasoning and autonomous decision making is
transferred to the AI system, and discussed how increasing complexity in the system and its
environment reduces the capacity of a designer to make precise predictions.

Putting all these ideas together, we can attempt a more comprehensive characterisation
of the anticipatory processes involved when humans develop and use AI systems. Viewing
such anticipation in the light of theories such as situated cognition [55] and the extended
mind approach [10], both the models embedded in AI systems and the predictions about their
behaviour can be viewed as a tool for human problem solving and learning. But what are
the mechanisms involved in this anticipatory process? To answer this question, we need to
determine how and when anticipation occurs in this context, and what its outcomes are.

Generally speaking, there are three mechanisms that can be employed when anticipating
AI behaviour: mathematical analysis, observation, and inspection. Whenever mathematical
analysis is possible (e.g. a proof of the completeness of a search algorithm or of the convergence
of a machine learning algorithm), we can establish firm results about the properties of the
behaviour of the AI system, typically before its operation. How universally valid these results
will be, and how much we trust them, will of course depend on the way the properties are
formulated, including their generality (e.g. does the algorithm produce the desired behaviour
on a specific problem, or on a whole range of problems?) and the assumptions we have made
when conducting the analysis (e.g. do the properties we are verifying accurately reflect what
we want to know?). Clearly, as analytical methods operate in the abstract realm of formal
models, their inherent reductionism will always limit the ways in which they can capture the
full complexity of the real world. Whenever AI systems themselves use formal proof methods
(as, e.g., in knowledge representation and reasoning), this limitation equally applies to them.
In fact, this criticism has motivated a whole line of AI research that rejects such methods [8].

Observation of an AI system, on the other hand, occurs either in simulation, which allows
human designers to assess and correct its behaviour without risking negative impact in the
real-world application domain, or when they are deployed in a real-world environment to
perform a task. On the positive side, observation is almost always possible, and can help assess
a much broader range of behavioural properties of a system, including those hard to formalise
using mathematical tools (e.g. is a robot nurse acceptable to its elderly users?). But like any
empirical method of analysis, its anticipatory strength relies on the assumption that past
observations are representative of the future. There are examples of domains where human
history shows that the future does not necessarily extend the past, such as unpredictable
financial crises, or complex – so-called “wicked” – decision-making situations that lack clear
precedent (e.g. hard societal problems like climate change).

In the case of AI systems that learn from experience, an additional problem is that their
future behaviour cannot necessarily be extrapolated from past behaviour. Numerous results,
for example on the fairness of machine learning algorithms that generate predictions on
population data and may embed unwanted, discriminatory biases [18] show that it can be
very hard, if not impossible, to preclude any such adverse effects when the future output of
an AI system is contingent on the future inputs it will experience.

While mathematical analysis and observation can be employed on other kinds of artefacts
beyond AI, inspection of the internal models of an AI system offers much richer mechanisms
than those available for other technologies. In terms of “looking under the hood” of the
system, techniques that use human-interpretable internal representations are likely to afford
us with more opportunities to anticipate their behaviour. We have already commented on



how different AI representations and agent architectures vary in this regard, but it is worth
pointing out that in the current research and policy landscape, much effort is being invested in
developing explainable AI, as witnessed, e.g., by DARPA’s major research initiative in this area
[23]. An important feature of AI in this respect is that it provides methods that go significantly
beyond the traditional notion of “inspection”, as AI systems can interact with humans at
runtime, and this affords us with a broader range of options to diagnose, instruct, and correct
their behaviour. There is much work, for example, on robots learning from demonstration [1],
and recently the issue of AI systems learning to align their values from observation of humans
[53] has become a hot topic in the area. From the standpoint of anticipation, such methods
imply that anticipating the behaviour of AI must involve anticipating our own behaviour
toward them, and much more work is needed to develop a deeper understanding of this issue.

There is one important issue that the above discussion neglects, namely that of emergence
[21, 24]. In the tradition of reactive/behavioural AI [7, 8, 14], which views intelligence itself
as a phenomenon that emerges from the interaction of an agent with its environment, there
have been many approaches to develop AI systems by using bio-inspired and evolutionary
approaches [16], or considering the collective intelligence that emerges from the simple inter-
actions between large numbers of agents [57] and/or humans [31]. At first glance, it would
seem that emergence, and with it, emergent intelligence, is conceptually rather at odds with
the concept of anticipation as far as humans anticipating the behaviour of AI systems is con-
cerned. After all, if the intelligent behaviour emerges, this means that it was not anticipated
at design time. But this is, we believe, a somewhat oversimplified view.

Consider, as an example, the famous Mars rover simulation [54], where a robot trying to
collect rock samples drops crumbs from a sample it is carrying that can be sensed by other
robots, thus directing them to areas of the planet’s surface where more samples are likely to
be found. Experiments with this system show that, even though the individual robots only
follow very simple stimulus-response rules and cannot directly communicate with each other,
this is sufficient for complex global patterns of behaviour to emerge that could be considered
intelligent. While these patterns could not be precisely predicted, the designers of the system
certainly built the system to test whether they would emerge, and had the objective for the
robot collective to be able to perform the task effectively. So some slightly more elaborate
process of anticipation occurred, one which involves some anticipation of emergence itself.
The designers hypothesised that simple rules governing the behaviour of a simple robot (e.g.
change direction if you encounter an obstacle, drop a crumb if you are carrying a sample, etc)
would together give rise to effective individual behaviour, and that placing several identical
robots in the same environment would yield effective collective behaviour.

Yet, ultimately, this kind of anticipation of emergence is rather uncertain, and it is hard to
analyse in terms of the typical errors that can occur in the process, i.e. having bad models, bad
effectors, or bad side-effects [30]. This is because the observed behaviour cannot be directly
causally linked to the model of the AI system the designer assumes, or to the models of the
world the AI system itself uses.

6 Conclusions

In this chapter, we have provided an overview of anticipation in core AI techniques and in the
design of intelligent agents. To this end, we introduced fundamental concepts and methods
used in mainstream AI at a non-technical level, while aiming to convey as concrete as possible
a sense for the capabilities of modern AI technology. For each of the techniques discussed, we



attempted an analysis of the types of anticipatory processes it embeds, and what consequences
this has for the ways in which human designers and users of AI systems can anticipate their
behaviour.

An assumption that underlies our treatment of the topic, and which we have tried to
argue for throughout this chapter, is that the more anticipation is left to an AI system, the
more we are limiting the ways in which humans will be able to anticipate its behaviour. This
tension may prove to be ultimately unresolvable if we want to endow these systems with
capabilities that emulate (or even surpass) human intelligence – after all, we expect these
intelligent machines to encapsulate enough flexibility and providence to deal with situations
we cannot anticipate at design time.

Crucially related to this is also the insight that the more complex a problem is, the harder
it becomes to specify what exactly we want an AI system to achieve. In fact, many of the
discussions surrounding the risks of AI highlight the issue of the objectives of future intelligent
systems being misaligned with those of humans, but again, this may be a fundamentally
unresolvable issue. Driving a car safely, winning a game of Go, performing complex surgery
– fundamentally no human can give another human concrete, explicit instructions on how to
achieve that in a comprehensive way, and while we rely on teaching and providing advice,
the “learner” of these tasks has to fill in the gaps with their own reasoning resources and
experience over time through trial and error.

Although this may be a rather speculative conclusion, we believe that, to balance antici-
pation among humans and intelligent systems in practice, appropriate techniques are needed
that allow for inspection of and interaction with complex AI systems. In particular, it seems
like explanation and justification of decisions would allow humans to better understand what
models of anticipation artificial agents apply when making them, a research issue that has
been largely overlooked in the literature. Also, the design of future AI systems needs to afford
users facilities to communicate with these systems in such a way that they can rectify not
only errors these systems make, but also the design errors humans are responsible for due to
a lack of anticipating future circumstances when designing these systems.

References

1. B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from demonstration.
Robotics and Autonomous Systems, 57(5):469–483, 2009.

2. C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag, 2006.
3. C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning: Structural assumptions and computa-

tional leverage. Journal of Artificial Intelligence Research, 11:1–94, 1999.
4. R. J. Brachman, H. J. Levesque, and R. Reiter. Knowledge Representation. MIT Press, 1992.
5. M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and resource-bounded practical reasoning. Com-

putational Intelligence, 4(4):349–355, 1988.
6. M.E. Bratman. Intentions, Plans and Practical Reason. Harvard University Press, Cambridge, MA, 1987.
7. R. A. Brooks. Intelligence without representation. Aritificial Intelligence, 47:139–159, 1990.
8. R.A. Brooks. Elephants don’t play chess. Robotics and Autonomous Systems, 6:3–15, 1990.
9. C. Castelfranchi. Guarantees for Autonomy in Cognitive Agent Architecture. In M. J. Wooldridge and

N. R. Jennings, editors, Intelligent Agents: Proceedings of the First International Workshop on Agent
Theories, Architectures and Languages (ATAL-94), pages 56–70. Springer-Verlag, 1995.

10. A. Clark and D. J. Chalmers. The extended mind. Analysis, 58:7–19, 1998.
11. P. R. Cohen and H. J. Levesque. Intention is choice with commitment. Artificial Intelligence, 42:213–261,

1990.
12. M. desJardins, E. H. Durfee, C. L. Ortiz Jr., and M. Wolverton. A survey of research in distributed,

continual planning. AI Magazine, 20(4):13–22, 1999.



13. S. Edelkamp and S. Schroedl. Heuristic search: theory and applications. Elsevier, 2011.
14. J. Ferber. Reactive distributed artificial intelligence: Principles and applications. In G.M.P. O’Hare and

N.R. Jennings, editors, Foundations of Distributed Artificial Intelligence, pages 287–314. John Wiley &
Sons, New York, NY, 1996.

15. R.E. Fikes and N.J. Nilsson. STRIPS: A new approach to the application of theorem proving to problem
solving. Artificial Intelligence, 2(3-4):189–208, 1971.

16. D. Floreano and C. Mattiussi. Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies.
MIT Press, 2008.

17. S. French. Decision Theory: An Introduction to the Mathematics of Rationality. Halsted Press, 1986.
18. S. A. Friedler, C. Scheidegger, and S. Venkatasubramanian. On the (im)possibility of fairness. CoRR,

abs/1609.07236, 2016.
19. D. M. Gabbay, J. H. Siekmann, and J. Woods, editors. Handbook of the History of Logic, Volume 9:

Computational Logic. Elsevier, 2014.
20. M. P. Georgeff, B. Pell, M. Pollack, M. Tambe, and M. Wooldridge. The belief-desire-intention model of

agency. In J. Müller, M. P. Singh, and A. S. Rao, editors, Proceedings of the 5th International Workshop
on Intelligent Agents V : Agent Theories, Architectures, and Languages (ATAL-98), volume 1555, pages
1–10. Springer-Verlag: Heidelberg, Germany, 1999.

21. C. Gershenson and N. Fernández. Complexity and information: Measuring emergence, self-organization,
and homeostasis at multiple scales. Complexity, 18(2):29–44, 2012.

22. M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory and Practice. Morgan Kaufmann,
2004.

23. D. Gunning. Explainable artificial intelligence (xai), 2017.
24. J. H. Holland. Emergence: From Chaos to Order. Helix Books, New York, 1998.
25. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Computation. Addison-

Wesley, 1979.
26. Anil K. Jain and Richard C. Dubes. Algorithms for clustering data. Prentice-Hall, Upper Saddle River,

NJ, 1988.
27. C.M. Jonker and J. Treur. Compositional verification of multi-agent systems: a formal analysis of pro-

activeness and reactiveness. In W.P. de Roever, H. Langmaack, and A. Pnueli, editors, Proceedings of
the International Workshop on Compositionality (COMPOS-97), Lecture Notes in Artificial Intelligence
vol. 1536, pages 350–380. Springer-Verlag, 1998.

28. L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable stochastic
domains. Artificial intelligence, 101(1):99–134, 1998.

29. D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009.
30. A. H. Louie. Robert rosen’s anticipatory systems. Foresight, 12(3):18 – 29, 2010.
31. T. W. Malone, R. Laubacher, and C. Dellarocas. The collective intelligence genome. Sloan Management

Review, 51(3):21–31, 2010.
32. J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of artificial intelligence.

Machine Intelligence, 4:463–502, 1969.
33. T. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.
34. M. Nickles, M. Rovatsos, and G. Weiss, editors. Agents and Computational Autonomy - Potentials, Risks

and Solutions. Postproceedings of the First International Workshop (AUTONOMY 2003), July 14, 2003,
Melbourne, Australia, volume 2969 of Lecture Notes in Computer Science. Springer-Verlag, 2004. 275
pages.

35. Dimitri Ognibene, Eris Chinellato, Miguel Sarabia, and Yiannis Demiris. Contextual action recognition
and target localization with an active allocation of attention on a humanoid robot. Bioinspiration &
Biomimetics, 8(3):035002, 2013.

36. J. Pearl. Causality. Cambridge University Press, 2009.
37. Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan

Kaufmann, San Francisco, CA, 1988.
38. R. Poli. An introduction to the ontology of anticipation. Futures, 42(7):769–776, 2010.
39. R. Poli. The many aspects of anticipation. Foresight – The journal of future studies, strategic thinking

and policy, 12(3):7–17, 2010.
40. M. L. Puterman. Markov Decision Problems. John Wiley & Sons, New York, NY, 1994.
41. A.S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In W. van der

Velde and J. Perram, editors, Agents Breaking Away: Proceedings of the Seventh European Workshop
on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW-96), Lecture Notes in Artificial
Intelligence vol. 1038, pages 42–55. Springer-Verlag, 1996.



42. A. Riegler. The role of anticipation in cognition. In D. M. Dubois, editor, Computing anticipatory systems,
volume 573, pages 534–541. Proceedings of the American Institute of Physics, 2001.

43. R. Rosen. Anticipatory Systems: Philosophical, Mathematical, and Methodological Foundations. Pergamon
Press, 1985.

44. M. Rovatsos and G. Weiß. Autonomous Software. In S. K. Chang, editor, Handbook of Software Engineering
and Knowledge Engineering. Volume 3: Recent Advances, pages 63–84. World Scientific Publishing, River
Edge, NJ, 2005.

45. S. J. Russell and P. Norvig. Artificial Intelligence. A Modern Approach. Pearson Education (Prentice-Hall),
Upper Saddle River, NJ, 2 edition, 2003.

46. S. J. Russell and D. Subramanian. Provably Bounded-Optimal Agents. Journal of Artificial Intelligence
Research, 2:595–609, 1995.

47. S.J. Russell and E.H. Wefald. Do the right thing: Studies in limited rationality. The MIT Press, Cambridge,
MA, 1991.

48. S.J. Russell and E.H. Wefald. Principles of rationality. Artificial Intelligence, 49(1-3):361–395, 1991.
49. Stuart J. Russell and Eric Wefald. Principles of metareasoning. In Ronald J. Brachman, Hector J.

Levesque, and Raymond Reiter, editors, KR’89: Principles of Knowledge Representation and Reasoning,
pages 400–411. Morgan Kaufmann, San Mateo, California, 1989.

50. Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems – Algorithmic, Game-Theoretic, and Logical
Foundations. Cambridge University Press, 2009.

51. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7587):484–489, 2016.

52. H. A. Simon. Models of Bounded Rationality: Empirically Grounded Economic Reason. MIT press, 1982.
53. N. Soares. The value learning problem. In Ethics for Artificial Intelligence Workshop at 25th International

Joint Conference on Artificial Intelligence (IJCAI-2016) New York, NY, USA 915 July, 2016.
54. L. Steels. Cooperation between distributed agents through self-organization. In Y. Demazeau and J.-P.

Müller, editors, Decentralized A.I., pages 175–196. North-Holland, Amsterdam et al., 1990.
55. L. A. Suchman. Plans and situated actions: The problem of human-machine communication. Cambridge

University Press, New York, NY, 1987.
56. R.S. Sutton and A.G. Barto. Reinforcement Learning. An Introduction. The MIT Press/A Bradford Book,

Cambridge, MA, 1998.
57. K. Tumer and D. H. Wolpert. A survey of collectives. In Collectives and the Design of Complex Systems,

pages 1–42. Springer, 2004.
58. A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Journal of

Mathematics, 58:345–363, 1936.
59. C. Vondrick, H. Pirsiavash, and A. Torralba. Anticipating visual representations from unlabeled video.

In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016),
pages 98–106, Las Vegas, June 26th to July 1st, 2016.

60. C.J.C.H. Watkins and P. Dayan. Q-learning. Machine Learning, 8:279–292, 1992.
61. M. Wooldridge. An Introduction to Multiagent Systems, 2nd edition. John Wiley & Sons, Chichester,

England, 2009.
62. M. Wooldridge and S. D. Parsons. Intention reconsideration reconsidered. In J. P. Müller, M. P. Singh,

and A. S. Rao, editors, Intelligent Agents V, volume 1555 of LNAI, pages 63– 80, Berlin, Germany, 1999.
Springer-Verlag.

63. M. J. Wooldridge and N.R. Jennings. Agent theories, architectures, and languages: A survey. In M. J.
Wooldridge and N.R. Jennings, editors, Intelligent Agents, Lecture Notes in Artificial in Artificial Intelli-
gence, vol. 890, pages 1–39. Springer-Verlag, Berlin et al., 1995.


