

On-line environment anticipation using multivariate Legendre series

by

Aaron Lee, B.Sc.

A Thesis

in

Electrical Engineering

Submitted to the Graduate Faculty

of Texas Tech University in

Partial Fulfillment of

the Requirements for the Degree of

Master of Science

Approved

Richard Gale

Chair of the committee

Mohan Sridharan

Peggy Gordon Miller

Dean of the Graduate School

December, 2011

Copyright 2011, Aaron Lee

Texas Tech University, Aaron Lee, December 2011

ii

ACKNOWLEDGMENTS

I would like to thank my advisor and committee Chair Dr. Richard Gale for

recognizing my abilities and subsequently making it advantageous for me to remain in

graduate school at Texas Tech instead of going elsewhere. I'm grateful for the amount

of flexibility that he allowed me in being able to choose my own particular path. I

would also like thank Dr. Mohan Sridharan for serving on my committee, and for

enriching Texas Tech's computer science department by teaching a robotics AI course

that focused on creativity and results. Much thanks to my mother who told me I was

smart so often that I eventually believed it, and to my father who taught me how to say

"Hello World" in C.

Texas Tech University, Aaron Lee, December 2011

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. II

ABSTRACT .. IV

LIST OF TABLES .. V

LIST OF FIGURES ... ERROR! BOOKMARK NOT DEFINED.

I. INTRODUCTION .. 1

1.1 Motivation ... 1

1.2 Discrete dynamical systems .. 3

1.3 Fourier series of orthogonal functions ... 6

II. MIMIC SYSTEM DEVELOPMENT ... 10

2.1 Calculating Legendre polynomials .. 12

2.2 Stochastic term search ... 13

2.3 Term weight adjustment .. 17

2.4 Reference system generation ... 22

III. RESULTS .. 25

IV. CONCLUSIONS AND FUTURE RESEARCH .. 34

BIBLIOGRAPHY .. 35

Texas Tech University, Aaron Lee, December 2011

iv

ABSTRACT

In this thesis we use an orthogonal series expansion to do an on-line

approximation of a system function. We first discuss usefulness of this technique

along with a number of its potential applications. The types of systems this method

can be used with and their properties are then discussed. Then, we go through the

basics of multivariate orthogonal series expansions, along with a brief explanation of

Legendre polynomials. This is followed by a discussion on what the role of the mimic

system is, and what types of mathematical techniques are related to this one.

We explain why the Legendre polynomials are the choice of the orthogonal

basis, and the special considerations taken when calculating them. Afterwards, the

issues of memory constraints are used to explain a number of design decisions related

to representation of the orthogonal series. This discussion includes how the issue of

there being a finite number of orthogonal functions was addressed, and how the

difficulty in acquiring state relationships and information was addressed. The method

used in adapting the mimic to the reference system is then explained.

The creation of randomly generated reference systems is looked into, as well as

what they are used for. A series of tests were conducted on the mimic system to test its

abilities, and the results of these tests are given and explained. A number of possible

improvements and extensions to this method are possible, and some of these are given.

Texas Tech University, Aaron Lee, December 2011

v

LIST OF TABLES

TABLE 1.1 FIRST SIX LEGENDRE POLYNOMIALS .. 9

Texas Tech University, Aaron Lee, December 2011

vi

LIST OF FIGURES

FIGURE 2.1 SYSTEM RELATIONSHIP DIAGRAM ... 10

FIGURE 3.1 TEST ITERATION LOOP ... 25

FIGURE 3.2 EXAMPLE OF 2D FUNCTION APPROXIMATION 26

FIGURE 3.3 POLYNOMIAL DEGREE USE VS. NUMBER OF REFERENCE

POINTS .. 28

FIGURE 3.4 EXAMPLE OF POLYNOMIAL DEGREE USE OVER TIME 29

FIGURE 3.5 EXAMPLE OF AVERAGE ERROR OVER TIME 30

FIGURE 3.6 NUMBER OF TERMS VS. MIMIC ERROR .. 31

FIGURE 3.7 ACCELERATION FACTOR VS. MIMIC ERROR AT 100

ITERATIONS .. 32

FIGURE 3.8 ACCELERATION FACTOR VS. MIMIC ERROR AT 1000

ITERATIONS .. 33

FIGURE 4.1 EXAMPLES OF GOOD AND POOR ESTIMATION 35

Texas Tech University, Aaron Lee, December 2011

1

CHAPTER I

INTRODUCTION

1.1 Motivation

 We endeavor to see the future so that we so that we may change it, and vice

versa. At the time of this writing, the global economy is in the midst of a major crisis.

So if we are looking for an example of motivation for why we would like to predict

the future, this provides a good one. Currently computer systems are already employed

calculating results for macroeconomic models. People who trust these models tend to

believe that the the most influential factors in the dynamical systems have been

identified and included. However, types of systems such as the global economy are

extremely complex, and therefore most corresponding models are extremely

unreliable. This is why a typical news report will read: "Housing market performs

worse than expected" instead of: "Housing market performs about as well as

expected". If the most well trusted models had actually been able to predict the

economic downturn of 2008, it may have been easily prevented. Like most models,

macroeconomic models rely heavily on human derived assumptions. A method which

is able to identify important factors humans look over would be a much needed

improvement. The method presented here would be able to automatically discover

trends and missed dependencies.

 On a related topic, trading stocks and currencies have been analyzed by

computers as well. There is a great deal of money to be made here with very little

human effort, so this has garnered much attention. Multilayer neural networks are a

popular tool used for this type of task. The problem with using neural networks is the

difficulty in predicting what the structure of the network should be. Also, neural

networks as function approximators are usually somewhat inefficient due to their

inefficient use of hardware multipliers. What might work better is the method

Texas Tech University, Aaron Lee, December 2011

2

presented here, which deals with nonlinearity easily, does not require a network

structure to be developed at all, and would efficiently use computer hardware.

 Control systems are another area where future prediction is helpful. Let's say

instance that we have created a complex robotic arm, but we would like to avoid

having to take the effort in creating a physics model that may not even be as accurate

as we would like. If we could have a model that learned the cause and effect

automatically by observing the arm move around its entire range of motion, it would

save a great deal of human effort. This model would do just that, and would be

continually improved over the lifetime of the robot.

 Usually the military has its products built for ruggedness and reliability.

Moving parts in tanks, jets, ships, etc are susceptible to damage due to the nature of

the profession. Because of this, a good control system should be able to automatically

adapt to any changes in the system. For example, a fighter jet is in the air and takes

damage to wing flap causing it to behave according to a model different than what's in

the jet's computer. A better, more adaptable control system for this could save the

mission, and the pilot.

 Artificial intelligence is another area where this sort of trend analysis is

needed. There has been much work in human-robot interaction over the years, and one

area which currently has gathered a lot of attention is human assisted learning. An

example of this would be a human giving verbal feedback to the robot about its

performance. For this application, a system could be developed to predict what sort of

emotion a human is feeling when he/she speaks. The system presented here could

observe a simplified frequency spectrum of the speaker over time, and predict if the

person is happy with the robot, or angry.

 Because the system which will be performing these sorts of tasks is attempting

to reproduce the output of another system one step ahead, we will call this the mimic

system. The system that the mimic system is attempting to mimic will be called the

reference system. The mimic system will not necessarily accomplish anything by

Texas Tech University, Aaron Lee, December 2011

3

itself, and often would be used in conjunction with an agent that tries to perform some

task.

1.2 Discrete dynamical systems

 Because we are using digital computers, we have little choice but to sample the

reference system. Therefore we must treat all systems as discrete. The sorts of systems

that will be dealt with are not limited to the so called discrete-event dynamic systems.

The number of possible states in these systems is finite (Hrúz and Zhou 2007). For the

systems we deal with here, the number of possible states is infinite. In simplest terms,

a discrete dynamical system can be thought of as a set of variables describing the

system, and a function that describes how these variables change with time. More

precisely, it is a mapping:

(1.1)

When considering the system to have an -dimensional state vector , it gives the

relation

(1.2)

where indicates the time step.

A system like this does not take into account any inputs or outputs to the system, so

taking this into consideration the mapping would be

 (1.3)

where is the number of inputs, and the number of outputs.

Texas Tech University, Aaron Lee, December 2011

4

 The subscript on indicates that the mapping is possibly time dependent. That

is, that the way that the state vector is transformed may change at any given time step.

This type of system is called non-autonomous, where the alternative being

autonomous does not provide for any changes in the mapping. For the purposes of this

paper we will only consider the autonomous system for the reason that for any non-

autonomous system, there is an equivalent autonomous system. A non-autonomous

system with an -dimensional state vector can be thought of as a set of autonomous

systems with -dimensional state vectors, with the results of the mappings from each

of the autonomous systems being multiplexed onto the state vector. However, if a

non-autonomous system is linear, its autonomous equivalent is likely to be non-linear.

This is not a problem, because the focus of this research is on non-linear systems. A

system also may have a number of control variables that determine its behavior.

However, this case will not be considered, as control variables are equivalent to

additional inputs.

 If the system is to be "observed" in any sort of way, there must be an output

from the system which is some function of the state variables. There technically need

not be any sort of output from the system for it to exist, but then again any such

system does not survive Occam's razor. In practical observation of systems, there is

much more information about the state variables and the mapping than is provided by

whatever outputs there are. In addition, the system may also have a set of inputs,

which a subset of the state variables is also a function of. Of course, when talking

about inputs and outputs, we do so in a context of looking at the system from the

viewpoint of another system. The choice of differentiating between two interacting

systems or considering it just one system is either arbitrary, or dependant on what we

wish to accomplish by looking at the system(s) in the first place. Really, one can

consider the entire universe to be one system, or consider it to be a very large number

of maximally simple subsystems. When we wish to consider a system to have an input

vector, we can write the recurrence relation as:

Texas Tech University, Aaron Lee, December 2011

5

(1.4)

where is the input vector. By using recursion, we can see that this is equivalent to

(1.5)

where is some other mapping. The discrete dynamical system is a recursive process

as shown in (1.4). At each transformation of the state vector, there may be a loss of

information about the original state. For example, a one dimensional state vector being

any real number loses its sign information if the state transition involves the squaring

of the number. New information can be added to the system if it has inputs (that aren't

just functions solely of the system anyways), but original state information is still at

risk of being lost over time. In general, complete information about is not directly

obtainable, so the observable output of the system is not , but a function of . This

is why it is unlikely that a mimic system will ever be able to predict the outputs of the

system at full accuracy. For any given input to the system there will be many possible

outputs. Even with more knowledge than just the inputs, such as previous inputs or a

subset of set variables, there will still likely be more than one possible output. This

means we are treating the outputs of the system as probability density functions, of

which we are finding their expected values. So in reality the system may very well be

completely deterministic, but in practice we will be thinking of it as non-deterministic.

When trying to create a model for any system, one must make a large number of

simplifications in order to reduce the complexity of the model. Usually, a system can

never be fully understood, and even if a full understanding was possible such a model

taking to account all that information would be impractically large. Therefore,

scientists and engineers tend to understand a small but important subset of the state

variables and their relationships, and label everything else as noise. When we say a

system has noise, what we are really saying is that the system has a number of

"random" inputs. Of course, most things we call random are actually accepted to be

completely deterministic, and according to Everett (1973) there is really is no such

Texas Tech University, Aaron Lee, December 2011

6

thing as random at all. However, it is still pragmatic to label many things as random

regardless of whether or not they are truly random or just randomish.

1.3 Fourier series of orthogonal functions

 As previously stated, a system is simply a recursive function. In order to

develop a mimic system, we must choose between one of the many ways of

representing the recursive function. The one chosen here is an orthogonal series

expansion. Each mimic output function is therefore expressed as a linear combination

of multivariate orthogonal functions. The set of functions that comprise the series is

called the basis. This method is similar to the familiar Fourier series of trigonometric

functions, except in this case the functions in the series will be neither trigonometric

nor one dimensional. However, the basic principle is the same. In this method, the

multivariate orthogonal functions comprising the series are constructed by multiplying

one-dimensional orthogonal functions together. Because of this we can take a well

known one dimensional basis and use it to form a multivariate basis of however many

dimensions desired. This is the method used by the mimic system.

 Any piecewise continuous function on the interval can be written as

an infinite series of weighted orthonormal functions if the basis spans , that is

if the orthonormal system is complete on (Walter, 1994). This is a

pointwise convergence for piecewise continuous functions.

(1.6)

The weights are a Cauchy sequence. A Cauchy sequence is any sequence where

you can pick any positive real number , and be guaranteed that there exists a certain

point in the sequence after which any two numbers will be no more than in distance

from each other (Eidelman, 2004). Loosely speaking, in a Cauchy sequence the

distance between numbers eventually goes to zero. Two functions are defined as

Texas Tech University, Aaron Lee, December 2011

7

orthogonal if , and is said to be orthonormal if . The inner

product of two functions is given by (1.7), and the more general formula is given in

(1.8).

 (1.7)

 (1.8)

An orthonormal system is complete if no non trivial function exists that is orthonormal

to all members of . That is if,

 (1.8)

A test that is used to determine the completeness of an orthonormal system is to check

to see if a set of functions that span the entire space satisfies Parseval's

equality:

(1.9)

(1.10)

The reason that (1.10) determines the ideal (Fourier) coefficients is the same reason

that taking the dot product between two vectors gives the scalar projection of one

vector onto the other. Except in this case the vectors are now real valued functions. A

particular set of functions that spans the entire is the set of all characteristic

functions of intervals (Walter, 1994). The reason is that any function can be

expressed as a linear combination of interval functions (given sufficiently

small intervals).

Texas Tech University, Aaron Lee, December 2011

8

(1.11)

The idea of using interval functions can be extended to more than one dimension as

well. For example, one can imagine a two-dimensional interval function that defines a

square bounded region in the plane. From this, we can realize that in order to form any

 -dimensional interval function we simply have to form a product between interval

functions in each of the dimensions.

(1.12)

From here, we can see that a linear combination of -dimensional interval functions

can define any function in , since they are able to span the entire space. It then

follows that we can create any -dimensional interval function by forming a product

between infinite series in each of the dimensions. Therefore, by forming a linear

combination between each of these products of series, any -dimensional function can

be realized.

(1.13)

By gathering like terms we get:

(1.14)

which is of the same form as (1.6).

 An orthogonal basis that fits the criteria of (1.8) and (1.9) are the Legendre

polynomials . The Legendre polynomials are obtained by orthogonalizing

 with respect to . A proof of orthogonality can found in (Jackson, 1941),

and a proof that a Legendre expansion converges to can be found in

Texas Tech University, Aaron Lee, December 2011

9

(Walter, 1994). A recurrence formula used to find Legendre polynomials is as

follows:

(1.15)

These polynomials are not normalized, so each must be multiplied by the factor

 .

The first six Legendre polynomials are shown in Table 1.1.

Table 1.1 First six Legendre polynomials

0

1

2

3

4

5

Texas Tech University, Aaron Lee, December 2011

10

CHAPTER II

MIMIC SYSTEM DEVELOPMENT

 The mimic system developed here takes a role of an observer. Being designed

to be part of a larger agent system that interacts with the environment, it observes the

inputs that are given to the environment by the agent and the outputs from the

environment that result.

Figure 2.1 System relationship diagram

The mimic has no control of the inputs to the environment, although the agent system

is certainly free to produce inputs to the environment that are conducive to mimic

learning. The purpose of the mimic system is to provide the agent with information

about the future. In a control system type situation, this would assist the control

system in maintaining system stability, preventing failure, etc. For an artificial

intelligence task it could involve motion control, or even predicting the next action of

an opponent. This is well suited for systems that are discrete in nature, but continuous

systems could be sampled and predicted as well.

Texas Tech University, Aaron Lee, December 2011

11

 Each of a system's inputs, outputs, and state variables can be represented as

real numbers. Sometimes systems are restricted to a finite number of states as in the

case of finite state machines, but a finite number of states can be represented by single

a real number. Generally speaking, if the number of possible states in a system is

countably infinite the state information can be represented as a single real number. In

practice however, the computer used to implement the mimic system has memory

constraints. For the case of a finite number of states, the simplest method of storing the

state information would be to use an unsigned integer type, although floating point

types could be used as well. If the system has one or more continuous state variables

(components of a state vector), floating point types provide more flexibility. The

mimic system is designed to take numbers in the range of -1 to 1 as inputs. This is for

a number of reasons. First of all, any computer used to run the mimic system is

already limited in the range of numbers it can represent, so linearly scaling the inputs

can easily change the domain to (-1,1). Also, limiting the range of the inputs and

outputs of the system prevents overflow errors. Another reason is that in practice, most

systems have natural boundaries for the inputs and outputs anyways.

 The mimic system finds the expected value of the system output, given a

number of current and past inputs and outputs. Because of this, it can be considered a

kind of multiple regression. However, this method differs from normal multiple

regression in a number of ways. First of all the usual method of determining

coefficients in regression analysis is to use the least squares method (Ott, 2010). The

method used here relies on incrementally reducing the error, which results in the

coefficients "drifting" toward optimum values. Standard regression analysis is not

designed to fit a function to an infinite number of samples. The mimic system is

designed to continually adapt, accepting an unlimited number of samples. Also, the

mimic system requires that the samples be sequential so that it can determine time

dependant relationships. Also in regression analysis the function is fit to a finite

sample set, usually with all samples being treated equally. For the mimic system, its

function is more strongly dependant on recent samples. Usually, regression analysis

Texas Tech University, Aaron Lee, December 2011

12

uses the least squares method to optimize the coefficients of a single polynomial.

Although the mimic output functions are able to be represented by large polynomials,

they are represented as linear combinations of orthogonal functions and the

optimization is on the weights of those functions. Perhaps the process most similar to

this is multiple time series analysis. The difference between the two is that the mimic

system developed here is designed to take inputs, and thus is designed to make a

hypothesis that is a function of the inputs as well.

2.1 Calculating Legendre polynomials

 Legendre polynomials were chosen as the basis of choice for a number of

reasons. Using trigonometric functions as the basis presented two significant issues.

The first is related to the problem of calculating the result of , which is an

irrational number. Depending on the hardware available, trigonometric functions are

calculated using power series, lookup tables, or CORDIC (Ercegovac, 2004). Using a

power series to represent a trigonometric function as a polynomial is obviously less

efficient then calculating orthogonal polynomials directly. Lookup tables require

access to cache memory, RAM, or maybe even storage memory. Using a CORDIC

algorithm on modern computers is generally slower than either of these previous two

methods, and requires many shifting and adding operations.

 Rather than using a brute force method of calculating the Legendre

polynomials, the algorithm takes advantage of the fact that the exponents of are

either entirely even or entirely odd. By calculating and storing the result, and by

changing the polynomials from the form

to

the total number of number of multiplications for a polynomial of degree is

 . In

order to expedite the calculation of Legendre polynomials during run time, all of the

Texas Tech University, Aaron Lee, December 2011

13

coefficients for the polynomials from zero up to a certain degree are pre-calculated by

using Eq. 15, and then stored in a table. The table is populated upon creation of a

mimic system object. Using this table, Legendre polynomials for each of the variates

are calculated. The product of these then gives the result for a normalized orthogonal

function in the multivariate series expansion.

2.2 Stochastic term search

 At the time of this writing, it is not possible to purchase a computer with an

infinite amount of memory. Therefore, is not possible to store an infinite number of

coefficients for representing an infinite series of Legendre polynomials. We address

this problem by limiting the total number of orthogonal terms for each output to some

number . This can only represent the original system to a certain degree of accuracy,

but if the terms are chosen carefully the accuracy of the mimic system can be

maximized for a given . Each output of the mimic system is treated as a separate

entity. That is, each output (a single valued function) consists of a linear combination

of orthogonal functions (called terms), and the outputs do not share terms. In other

words, instead of a single set of terms being chosen for all outputs, and the outputs

having their own set of weights for those terms, each output has its own set of terms

and corresponding weights. To reduce algorithmic complexity, the number of terms

for each output is T. There are advantages for both methods. Let's say that the total

amount of memory needed to describe a term (a description of which degrees

Legendre polynomials are to be used) is , the amount of memory needed to describe

a weight for a term is , and the total number of outputs of the mimic is . For the

outputs to share terms, the total amount of memory used will be

 .

(2.1)

For outputs having their own set of terms, the memory used will be

(2.2)

Texas Tech University, Aaron Lee, December 2011

14

At first glance it seems it would always be advantageous for the outputs to share

terms, however this doesn't take into account the accuracy lost when sharing terms

because the optimal set terms for each output may vary considerably. For the worst

case scenario where the outputs do not share terms, the outputs share no like terms.

Therefore, in order for the sharing scheme to have least the same amount of accuracy

for all outputs as the non-sharing scheme involves all outputs in the sharing scheme

having all terms for each output in the non-sharing scheme. This changes the amount

of memory used for the sharing scheme to

(2.3)

for this case. The optimal solution would actually be a combination of these two

methods, with some terms being shared and some non-shared, and would depend on

the values of all these variables as well as the characteristics of the system. However,

the method used by the mimic system is the more resource intensive and more

accurate method.

 Another consequence of limited memory is that it is impossible to calculate an

infinite number of degrees of Legendre polynomials. There is no attempt made to

optimize which degrees are used for a couple of reasons. This first is that the weights

of the terms are usually inversely proportional to the degree of the polynomial, and so

the lowest degree terms polynomials are far more likely to be useful that than the ones

with a very high degree. After all, the weights are a Cauchy sequence. The other

reason is that given this property it was felt that the additional complexity of searching

for optimal degrees would put an undue calculation burden on whatever machine was

to run the mimic system. It simply wouldn’t be warranted to do this given the much

larger amount of time it would take to attempt this.

 Another way of storing all of this information would be as one large

polynomial. If this was the case the information would be stored as an array of

coefficients. To update the mimic output function, one could use a method of

adding/subtracting from the large polynomial in units of orthogonal terms. In the

Texas Tech University, Aaron Lee, December 2011

15

extremely likely case that Legendre polynomials of both even and odd degree were

utilized for each variate, the number of coefficients that would have to be stored (and

number of memory elements used) is

(2.4)

where is the maximum degree of Legendre polynomial for a variate . If all of the

 were the same, this would become where is the number of variates.

This non-coincidentally is the same as the number of memory elements it would take

to describe the weights all of the possible terms for the same maximum Legendre

polynomial degree. The problem with trying to store all possible information up to a

certain polynomial degree is that the amount of memory required grows exponentially

with number of variates. In the end because storing as individual terms gives the

flexibility to ignore terms and thus save more memory, it was the preferred choice.

 An output of the mimic system will give the best representation of the

corresponding output of the original system if its T terms are those that have the

 largest magnitude of weights in the ideal infinite series. When a mimic object is first

instantiated the list of terms is randomly populated. This involves choosing a random

set of polynomial degrees. The weights are always initialized to zero. It is assumed

that the Legendre polynomials used most are the ones with lower degrees. Therefore,

each degree is assigned randomly with a ramped probability density

(2.5)

where is the maximum degree. After each iteration (after every sample received),

the weights of all the terms for each output are updated. Although the weights

continually change, each weight tends to drift toward a specific value. Because of this

the weights can be ranked according to contribution to the accuracy of the mimic

system after they have been updated a certain number of times. The mimic system

Texas Tech University, Aaron Lee, December 2011

16

begins with each output given a set of terms at random, so over time this set must

change in order for the mimic system to attain highest accuracy. This is accomplished

for each mimic output by periodically sorting the terms in order of the magnitudes of

their weights, and then replacing the lowest ranked k of them with k new random

terms. This is a stochastic search in the space of all possible terms for the best

weighted T terms. Unlike the initial random set, choosing the degrees of the new terms

is done with a flat probability distribution. When replacing the set worst terms with a

set of random terms, the random terms are checked to make sure they are not

duplicates of terms that are already in the term list. Duplicate terms would result in

wasted space. Two questions arise when using this technique: How many terms should

be replaced, and how often? The number of terms that continually get replaced affects

how fast the mimic system is able to increase in accuracy, and also the final amount of

accuracy it converges toward. If the mimic system only replaces one term at a time,

the search process for better terms will be very slow and so its accuracy will increase

more slowly. However, because only one term is being devoted to searching, it will

reach a higher final accuracy. The opposite would be true if an entire half of the terms

were devoted to searching. The optimal solution involves initially using a large

number of terms for searching, and gradually decreasing that number to allow for a

fast increase in accuracy, and high final accuracy.

 A discrete dynamical system may have any number of state variables. Ideally,

the mimic system would have perfect models describing these states. However,

because of the chaotic nature of nonlinear systems in general, even good models for

the state variables won't prevent the mimic's variables from eventually becoming

completely different from the actual state variables. In addition, models for how state

variables interact generally would have to be "guessed", and then tried to see if they

work. Attempting to guess models for state variables is in general futile because even

a guessed model that was perfect would take many system iterations before there was

any indication that it worked. All other guesses would quickly succumb to chaos

before they ever had a chance to prove that they were somewhat correct. Not only

Texas Tech University, Aaron Lee, December 2011

17

would the relationships of the outputs to the state variables and the relationships of

state variables to themselves have to be guessed, but the states themselves as well.

This adds even more difficulty, as very small differences in initial states can produce

very different results over time (Martelli, 1999). This extreme difficulty in identifying

states and state relationships in a system creates a need for a different technique. By

looking at (1.5), we can see that the output of a system is generally a function of past

inputs to the system. By including in the variate vector a number of past inputs and

past outputs of the system, we can take advantage of this additional information. The

term variate will refer to any variable that is a parameter to an output function of a

system. In the case of the mimic system, this refers to a member of the union of: the

set of all inputs, a subset of all past inputs, the set of all reference outputs, and a subset

of all past reference outputs. In the case of a reference system it is a member of the

union of: the set of all inputs, the set of all reference outputs, and the set of all

reference state variables.

2.3 Term weight adjustment

 The usual application of a Fourier series of orthogonal functions involves

finding the weights of the orthogonal functions by using (1.10). Because this involves

integration with the function to be approximated, this presents a problem for a number

of reasons. First of all, do we not know what the function is (and we will never

precisely know). Say for example we received 100 samples that gave a perfect fit

to . It would only take one sample that didn't fit to invalidate that model.

Because of the nature of the problem (taking samples of points) it is impossible to get

a sample of every point in , which is one of the two primary reasons a fully

accurate model for the original system is impossible. Generally the sample points are

not equidistributed over the variate domain even as the number of samples goes to

infinity, and because some regions of may not be in the domain at all, any sort of

summation approximation to integration isn't feasible. Even if methods were used to

try and compensate for this by flattening the distribution and filling in the gaps, this

Texas Tech University, Aaron Lee, December 2011

18

would require the entire variate domain be divided into regions with each region

assigned a value. This would end up being equivalent to trying to approximate the

function using a lookup table, and would be extremely memory intensive. Another

problem is that because of unknown factors in the system, for each possible input to

the system there are multiple possible outputs. This is the other of the two reasons the

system can never be fully accurately modeled, because the probability distributions

describing the outputs is once again a function defined at every point on the interval

 Instead of integrating to find the weights, a process of error reduction is used.

The orthogonal Legendre polynomials are used to approximate square integrable

functions on the interval . They span so they form a complete basis.

By using error reduction instead of integration, it doesn't matter that the Legendre

series is not orthogonal on the range of outputs, it only matters that it is complete on

that range. Because the Legendre series is complete on the interval , it is

complete on any range inside that. If the range of an output is not the entire

interval , how the function is defined outside of its range is irrelevant. The error

minimization process allows the function to be defined outside the range as whatever

results from reducing the error inside the range. In addition, because the process

minimizes the error with every new sample, the outputs in the ranges with higher

sample densities will end up with lower amounts of error. The weight of a term is

adjusted with every new sample by using the relation

(2.6)

where is a reference system output, is a corresponding mimic output, is the

orthonormal function of the term, and is a constant. , and are functions of the

variate vector.

 This intuitively makes sense, because the amount of change is proportional to

the value of the orthogonal function at that variate vector. If the value happens to be

zero, this indicates that the orthogonal term is not capable of contributing to the

reduction of error at that point. This process adjusts the weights of each term so that

Texas Tech University, Aaron Lee, December 2011

19

the error between the system output and the mimic output tends to decrease with each

iteration. The positive constant determines how much adjustment to the weights

occurs. If is very small, the mimic system will take a long time to reduce the error

between it and the original system. If it's too large, the mimic system may become

unstable. Instability happens when the amount of error tends to increase rather than

decrease. This error increases because under certain conditions, the mimic system can

overcompensate. The idea of the weight adjustment mechanism is to bring the output

of the mimic slightly closer to that of the original system for a given variate vector.

Because an output of a mimic system is given by

(2.7)

the total change in a mimic output for a given variate vector is given by

(2.8)

From here, a recurrence relation of the error can be derived.

(2.9)

Let's consider to be the sum of two functions, a mean value (the function we

wish to approximate) and a random variable with mean 0.

We will now designated the error .

Texas Tech University, Aaron Lee, December 2011

20

(2.10)

If is large enough in magnitude, the error can actually increase when the mimic is

given the same variate vector.

(2.11)

For any orthogonal function formed from the products of Legendre polynomials:

For these points,

(2.12)

where is the number of terms. If the orthogonal function these points would

be the corners of a square, and if it was in , it would be the corners of a cube. These

are the points where the most change occurs after weight adjustments, and where the

worst case scenario would happen if we were trying to prevent an average increase in

error. Our ultimate goal is to find a maximum which under all conditions, never

results in instability. As previously stated, the adjustments of weights cause a mimic

output to move its result in the direction of where the system output is, and moving

toward the system output may result in moving past the system output. The error tends

to increase whenever

(2.13)

Considering the worst case, we can say now that there can be no case (no series of

outputs or variates) in which the error will always tend to increase if

or

Texas Tech University, Aaron Lee, December 2011

21

The mimic system by default sets

, however can be changed to a value greater

than this by multiplying by an acceleration factor α. When α > 1, the error of the

mimic system changes more quickly. This can result in a much faster decrease in

error, instability in the mimic system, or alternating between the two. As will be

shown later, sometimes the mimic can show some initial instability, but will

eventually become stable after the weights adjust themselves.

 An issue with the error reduction method is the fact that every time the weights

are adjusted the mimic outputs change suddenly, especially in the corners of the vector

space where an output can change between -1 and 1 after one iteration. In the interest

in presenting a more reliable and accurate output to be presented as the expected value

of the reference output, the average is taken of the values of weights over time. The

measured mean is traditionally defined as an arithmetic mean.

However, because the mimic system is one that must continually accept new data

points from an infinitely large set of data, a modified moving average is more

appropriate.

(2.14)

Using this directly will unfortunately give for a small an that is on average more

erroneous than that of an arithmetic mean. To fix this, an averaging technique is used

that has a characteristic of changing from an arithmetic mean to a modified moving

average given increasing numbers of samples.

Texas Tech University, Aaron Lee, December 2011

22

(2.15)

In order to know these values, must be incremented with every new sample.

However this is not possible as this mimic system is designed to run ad infinitum, and

there is a finite amount of memory available. Because of this, every stops

incrementing its when it reaches a very large number. This does not cause any

sudden issues when this happens, as all functions that use change very little as

becomes large. When a new term is generated as part of the mimic's stochastic term

search, n is reset to zero.

2.4 Reference system generation

 In order to test and characterize the functionality of a mimic system in a timely

matter, a method of creating random reference systems (systems for mimicking) was

developed. This was necessary not only because of the large amounts of time it would

take to run experiments many different real world systems in real time, but because

also of the difficulty in creating an interface, and finding enough examples of

sufficient complexity. The amount of complexity in a system is proportional to the

amount of information required to describe it (Zgurovsky and Pankratova, 2007). By

varying the amount of information required to describe these reference systems,

systems different levels of complexity can be created. The method used to generate the

reference systems was designed to make them highly non-linear, and thus unlikely to

be able to be mimicked with other methods such as genetic programming or neural

networks. Additionally, it would have been easier to form these systems using

orthogonal series, but this would bias the types of systems being created into ones that

would be more easily solved by using orthogonal series. The technique that was used

was to define a set of reference vectors that describe what the next outputs and states

Texas Tech University, Aaron Lee, December 2011

23

of the system should be given the current inputs, outputs and states. Each of these

reference vectors is encoded as arrays of numbers, but can be thought of as a vector

existing in a vector field where the vector is dimensional, and the space is

 dimensional where is the number of inputs, is the number outputs, and is

the number of states. In order to be able to describe the behavior of the system at the

infinite number of points in the field, an interpolation method is employed.

Specifically, the vector at a point describing the outputs and states is determined

using the following:

(2.16)

 is the total number of points used to describe the reference system, and is a

reference vector at a point . This is basically a weighted average of vectors with the

weights inversely proportional to the square of the distance.

 The reference vectors are placed randomly in the space, and each of the vector

components are assigned random values in . The number of reference vectors

can be changed depending on the desired complexity of the reference system. In order

to maintain the same average degree of complexity for spaces of different dimensions,

the number of points must increase with increasing dimension. This is if the

complexity is gauged by counting the number of inflection points on plots of the

outputs if they were measured by travelling on random straight lines through the

space. Figure (below) shows two generated reference systems. These systems both

have two inputs and one output. The xy plane is the plane of the two inputs, and three

cross sections show slices through the z dimension, which is the output. The colors

shown give the next value of the output, where green = 1, and green =-1. The first

system has 16 reference points, and the second has 256.

Texas Tech University, Aaron Lee, December 2011

24

Figure 2.2 Examples of reference system generation

Texas Tech University, Aaron Lee, December 2011

25

CHAPTER III

RESULTS

 To perform tests on the mimic system, an iterative loop had to be created.

Figure 3.1 shows the processes in the loop.

Figure 3.1 Test iteration loop

The reference system begins by calculating the output for the input information stored.

The mimic system, which had already calculated its expected value for the output,

then adjusts itself to better approximate the system function. After a new set of inputs

are created and stored, the mimic system then calculates what the next expected output

is. A number of variables were manipulated to observe the effect of the mimic's

behavior. The naming of the variables is a follows:

 Number of inputs

 Number of outputs

 Number of past inputs

 Number of past outputs

 Number of terms

 Proportion of terms always used for searching

 Proportion of terms not always used for searching, initially used for searching

 Decay factor of extra searching terms

 Acceleration factor

Texas Tech University, Aaron Lee, December 2011

26

 In order for the reader to get a visual example of how a mimic system evolves

over time, a simple example of a well defined function was hard coded, and then

mimicked. Figure below demonstrates the approximation of the two-parameter, single

valued function

after many iterations. Black indicates -1, and green indicates +1.

Figure 3.2 Example of 2D function approximation

'A' shows the reference system function, while 'B' through 'F' show the mimic function

starting at 1000 iterations going up to 5000 iterations in increments of 1000. It is

shown that the mimic function begins to approximate the system fairly well after 5000

iterations. Even at a relatively low number of iterations, it quickly begins to look

Texas Tech University, Aaron Lee, December 2011

27

vaguely like the reference system. For this function, the domain of the output was the

entire interval (-1,1).

 The purpose in varying the number of points used to describe the generated

reference systems is to vary the amount of complexity. In order to demonstrate how

the characteristics of the mimic system change with the complexity of the reference

system, a test was run on 90 randomly generated systems to see which degrees of

Legendre polynomials were used the most. Reference systems were generated with

nine different numbers of points, . Ten systems of each were generated. A

number for every combination of degree d and number of points was calculated to

give a rough measure of how much each degree was used. Each term in the series

expansion consists of a weight, and a list of polynomial degrees. The amount (we'll

call a degree is used in a term equals the number of times it appears in the degree

list. If the weight of a term is and there are terms,

A plot of summed over the 10 systems as a function of degree and number of points

is shown in Figure 3.3, where black=0, and white=40.

Texas Tech University, Aaron Lee, December 2011

28

Figure 3.3 Polynomial degree use vs. number of reference points

As shown, the more complex the system the more the higher degrees of Legendre

polynomials are used. A similar plot was created to show the usage of the different

polynomial degrees of an individual reference system over time. The reference system

generated had 20 reference points, one input, one output (known state), and one

unknown state. Figure 3.4 shows how the degree usage of mimic system changed

over time for this system.

Texas Tech University, Aaron Lee, December 2011

29

Figure 3.4 Example of polynomial degree use over time

For this particular trial, the average error was plotted as a function of time as well.

This is shown in Figure 3.5.

Texas Tech University, Aaron Lee, December 2011

30

Figure 3.5 Example of average error over time

In order to show how the mimic system varies its behavior with the changing of its

control variables, another series of tests were conducted. For all of these tests, the

same set of 50 randomly generated systems was used. These systems varied in their

complexity by varying the number of reference points used to define them. The

number of reference points was a random number between 1 and 256. All of the 50

reference systems had one input, one output (known state), and one unknown state. All

of the results shown for average error are the averages of the errors of all 50 systems.

The systems were not saved in memory. Each system was represented by a single

number which was used to seed the random number generator. Because the pseudo-

random number generator is actually deterministic, each system was able to be

recreated by simply seeding the random number generator with its seed number before

the creation process. The inputs given to the system were also pseudo-randomly

generated. The accuracy of the mimic system is ultimately limited by the number of

terms. As the number of terms in the series expansion increases, the additional benefit

of adding more terms decreases. Figure 3.6 shows the graph of an experiment where

each system ran for 10000 iterations.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

av
g.

 a
b

so
lu

te
 e

rr
o

r

log2(iterations)

Texas Tech University, Aaron Lee, December 2011

31

Figure 3.6 Number of terms vs. mimic error

 The acceleration factor when chosen carefully can also improve the speed at

which the mimic system reduces its error. Shown in Figure 3.7 are the results from

using acceleration factors from 1 to 20 on trials of 100 iterations. As shown, there is a

point at about where the error reaches an average minimum. The error to the

left of the point increases because the term weight adjustment is simply less, and so

the mimic does not adjust as quickly. The error increasing to the right is explained by

the weights being on average adjusted too much.

0

0.05

0.1

0.15

0.2

0.25

10

20

30

40

50

60

70

80

90

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

A
ve

ra
ge

 a
b

so
lu

te
 e

rr
o

r

Number of terms

 = 1, = 1, = 0, = 0, = .01, 𝑒 = 0, 𝑒 = 0, = 1

Texas Tech University, Aaron Lee, December 2011

32

Figure 3.7 Acceleration factor vs. mimic error at 100 iterations

 A similar experiment was conducted with changing the acceleration factor, but

this time with the number of iterations being 1000. The global minimum is now at a

smaller because the term weights are now closer to being optimal. If the term

weights were optimal, this graph would be strictly increasing because any adjustments

in weight should only increase the average error. These results are shown in Figure

3.8.

0.205

0.21

0.215

0.22

0.225

0.23

0.235

0.24

0.245

0.25

0.255

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

A
vg

 a
b

so
lu

te
 e

rr
o

r

Acceleration factor

 = 1, = 1, = 0, = 0, = 256, = .025, 𝑒 = 0, 𝑒 = 0

Texas Tech University, Aaron Lee, December 2011

33

Figure 3.8 Acceleration factor vs. mimic error at 1000 iterations

0

0.05

0.1

0.15

0.2

0.25

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

A
vg

 a
b

so
lu

te
 e

rr
o

r

Acceleration factor

 = 1, = 1, = 0, = 0, = 256, = .025, 𝑒 = 0, 𝑒 = 0

Texas Tech University, Aaron Lee, December 2011

34

CHAPTER IV

CONCLUSIONS AND FUTURE RESEARCH

 In the pursuit of writing more efficient code, a significant improvement could

be made in reducing the amount of memory used for storing term information. Usually

a data type in modern computers is either 32 or 64 bits long. This number of bits is

significantly more than is necessary for storing a positive integer representing a

Legendre polynomial's degree. If information regarding multiple polynomials' degrees

terms and be represented in a single memory slot, a significant memory savings can be

achieved. If the amount of memory used to represent a polynomial degree is reduced

by a factor of , then the amount of memory needed to describe a normalized

orthogonal function is also reduced by a factor of . This paves the way for more

terms, and more accuracy. There would however be a small speed penalty because of

additional processing.

 Sometimes systems are subject to sudden, long term changes in behavior.

These occurrences would cause the average error between it and the mimic to

suddenly jump before the mimic gradually adapts. It may be possible in the future to

include a mechanism that detects these sudden jumps, and responds by making the

mimic more aggressive in trying to minimize the error. The assumption would be that

the system has undergone a major change, and significant changes need to be made to

the mimic. The response may include briefly increasing the acceleration factor and the

number of terms devoted to searching for better terms.

 As previously stated, the mimic system gives an expected value of the next

output of the reference system or environment. If we consider the output of the

environment to be a random variable, then we expect it to have a probability

distribution. For many distributions, especially ones that are bimodal, giving an

expected value is a very poor estimator of what the next value will be. Figure 4.1

Texas Tech University, Aaron Lee, December 2011

35

shows two examples of one-dimensional probability distributions, one where the

expected value is a good estimator, and one where it is a poor estimator.

Figure 4.1 Examples of good and poor estimation

 For some applications the expected value is always sufficient, and for all

applications the expected value is always better than nothing. But it is the case where

the expected value is a poor estimator that provides motivation for attempting to

approximate the entire probability distribution. Being able to do this is particularly

helpful when trying to predict the future multiple steps ahead. This type of situation

can be considered to be a Partially Observable Markov Decision Process. Taking this

next step would go a long way toward making the mimic system more capable in

advanced artificial intelligence problems.

P
(x

)
"Good"

x

P
(x

)

"Poor"

x

Texas Tech University, Aaron Lee, December 2011

36

BIBLIOGRAPHY

Eidelman, Y., Milman, and Tsolomitis, Functional analysis. An introduction.

 Graduate Studies in Mathematics, 66. American Mathematical Society,

 Providence, RI, 2004.

Ercegovac, M., Lang, T., Digital Arithmetic. Elsevier, San Francisco, CA, 2004.

Everett, H., III, 1973, “The Theory of The Universal Wavefunction ”, in “The Many–

 Worlds Interpretation of Quantum Mechanics” edited by B. DeWitt and N.

 Graham (Princeton University Press).

Hruz, B., and Zhou, M.C., Modeling and control of discrete event dynamic systems,

 Springer, London, UK, 2007.

Jackson, D., Fourier series and orthogonal polynomials, The Mathematical

 Association of America, 1941.

Martelli, M., Introduction to discrete dynamical systems and chaos, John Wiley &

 Sons, Inc., New York, 1999.

Ott, L., An introduction to statistical methods and data analysis. PWS-Kent

 Publishing Company, Boston, MA, third edition, 1988.

Walter, G. G., Wavelets and other orthogonal systems with applications, CRC, New

 York, 1994.

Zgurovsky, M. Z., Pankratova, N. D., System analysis: Theory and applications.

 Springer-Verlag. Berlin-Heidelberg, 2007

