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Introduction

Key challenges to widespread deployment of mobile robots
to interact with humans in real-world domains include the
ability to: (a) robustly represent and revise domain knowl-
edge; (b) autonomously adapt sensing and processing to the
task at hand; and (c) learn from unreliable high-level human
feedback. Partially observable Markov decision processes
(POMDPs) have been used to plan sensing and navigation
in different application domains. It is however a challenge
to include common sense knowledge obtained from sen-
sory or human inputs in POMDPs. In addition, information
extracted from sensory and human inputs may have vary-
ing levels of relevance to current and future tasks. On the
other hand, although a non-monotonic logic programming
paradigm such as Answer Set Programming (ASP) is well-
suited for common sense reasoning, it is unable to model
the uncertainty in real-world sensing and navigation (Gel-
fond 2008). This paper presents a hybrid framework that
integrates ASP, hierarchical POMDPs (Zhang and Sridha-
ran 2012) and psychophysics principles to address the chal-
lenges stated above. Experimental results in simulation and
on mobile robots deployed in indoor domains show that the
framework results in reliable and efficient operation.

Algorithms

Figure 1 presents an overview of the hybrid framework that
is described below in the context of active target localiza-
tion, i.e., a mobile robot localizing target objects in indoor
domains by planning an appropriate sequence of actions for
visual sensing, information processing and interaction (with
humans). The Knowledge Base (KB) in ASP contains causal
rules and facts about the domain. For any specific query (or
task), reasoning in the KB results in an answer set contain-
ing a set of grounded literals. The uncertainty in sensing and
actuation is modeled by the POMDP using belief distribu-
tions that represent the probability of target occurrence in
different regions in the domain. The answer sets from ASP
help initialize the POMDP belief or revise the existing belief
distribution based on acquired knowledge. The robot makes
observations using sensors that are activated by action ex-
ecution (e.g., visual sensing or processing algorithms) and
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passive sensors that are always in operation (e.g., range find-
ers). Observations made (by the robot) with high certainty
update the KB, while the remaining only update the POMDP
belief distributions. Human feedback is considered a valu-
able resource that the robot uses when available and needed.
The need for human input is modeled based on the entropy
of the POMDP belief distributions.

Figure 1: Overview of the hybrid framework.

The probabilistic planning algorithm is based on our prior
work on hierarchical POMDPs (Zhang and Sridharan 2012).
A high-level POMDP plans the sequence of scenes to an-
alyze (to locate the target) while the lower-level POMDPs
choose a sequence of visual processing algorithms to apply
on a sequence of images of a chosen scene. The overall hier-
archy of POMDPs enables mobile robots to efficiently and
accurately localize target objects in indoor environments.

ASP is used for knowledge representation and logical
reasoning—domain knowledge is extracted automatically
from online repositories (and human inputs) and revised
over time. For the illustrative example of a robot localizing
targets in indoor domains, the semantic (2D) description has
the following elements: room/1, a space bounded by walls
and doors that can be occupied by the robot and objects;
object/1, a visually identifiable element in a room; and
category, a set of objects or sub-categories. The tree of ob-
ject categories is generated automatically from information
in the KB—Figure 2 is an example for office electronics.
Categories with objects as children are primary categories.

The following predicates represent relations between the
elements: (1) is(X,C) implies that C is an ancestor of X,
where X is an object or a category and C is a category, e.g.,



Figure 2: An illustration of object categories.

is(tv, electronics); (2) observed(O,R,S) is
used to create a fact when object O is observed in room R

at timestep S; (3) located(C,R,S) implies that objects
of category C can be (inferred) in room R at timestep S; and
(4) location(R,X,Y) states that the coordinates of the
center of room R (in a learned domain map) are (X,Y),
where X and Y are natural numbers.

The following rules are used for reasoning in this do-
main1: (1) if object O is of category C and the robot observes
O in room R, then it is believed that objects of category C can
be in R; (2) if objects of category C can be in room R, then
objects of the parent category of C (and all ancestor cate-
gories of C) can be in room R; and (3) an object retains its
location (i.e., it exists in a room) until it is known to be in
some other location (rule of inertia).

located(C,R,S) :- observed(O,R,S), is(O,C).

located(C1,R,S) :- located(C2,R,S), is(C2,C1).

observed(O,R1,S+1) :- observed(O,R1,S),

not observed(O,R2,S+1), R1 != R2.

The hybrid framework also includes a strategy based on
Fechner’s law2 to transform the answer set of ASP into
a distribution of the same form as the POMDP belief.
This strategy captures object co-occurrence properties in the
KB—full details are not described due to space constraints.
This ASP-based belief distribution is then merged with the
POMDP belief distribution, using weights to capture the rel-
ative trust associated with the two different belief distribu-
tions. Consider, for instance, the task of locating a printer,
shown as yellow triangle in Figure 2. If ASP and POMDPs
are trusted equally, the initial POMDP belief distribution
(uniform in the absence of knowledge) would be revised to
[0.3195,0.2931,0.1250,0.2625], implying that the target is
most likely to exist in room1.

Experiments

As conducting many trials on physical robots is a challenge,
a simulated domain was designed to extensively test the
framework. Learned object (and error) models were used to
simulate realistic motion and perception. The simulation do-
main has four rooms connected by a surrounding hallway in

1Variable definitions: #domain step(S). #domain

object(O). #domain category(C;C1;C2). and
#domain room(R1;R2).

2Fechner’s law, introduced in 1860, is the basis of modern Psy-
chophysics. It states that subjective sensation is proportional to log-
arithm of stimulus intensity.

a 15× 15 grid. There are 50 objects in 10 different primary
categories. Each data point in the results described below
is the average of performance over 5000 simulated trials. In
each trial, the robot’s initial position is chosen randomly and
one or more objects are randomly selected as target objects,
whose locations are hence unknown to the robot. Figure 3
summarizes the experimental results, with the x-axis depict-
ing the extent to which ASP-based beliefs are trusted. When
ASP-based beliefs are not included (0 on the x-axis), the ac-
curacy is high (≈ 0.95) but the robot travels a significant dis-
tance to locate the targets. As the robot starts considering the
ASP-based beliefs, there is a marked decrease in the distance
traveled—this performance is consistent over a wide range
of trust factors. When ASP-based beliefs are trusted signif-
icantly more than POMDP-based beliefs, target localization
accuracy drops. This decrease in accuracy is partially due to
errors in initial knowledge about categories. In addition, the
evidence from “related” objects can sometimes overwhelm
other facts, e.g., when the scanner in room2 in Figure 2
is the target, room1 has the highest initial belief based on
the answer set. It is a challenge for the robot to recover from
these situations, especially when there are false positive tar-
get sightings. Similar target localization performance is ob-
served on physical robots in an office domain. Using lim-
ited human feedback further improves performance—these
results are not shown due to space limitations.
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Figure 3: Performance of ASP+POMDP.

Conclusion
This paper described a novel hybrid framework that inte-
grates ASP and POMDPs to enable a mobile robot to rep-
resent and reason with domain knowledge, automatically
adapt sensing and information processing to the task at hand,
merge logical facts with probabilistic beliefs, and use the
information extracted from sensory cues and high-level hu-
man inputs to revise the knowledge base. The framework is
evaluated in the context of visual target localization—results
show that the robot is able to operate reliably and efficiently.
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