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Abstract

Mobile robots deployed in real-world domains fre-
quently find it difficult to process all sensor inputs, or
to operate without human input and domain knowledge.
At the same time, complex domains make it difficult
to provide robots all relevant domain knowledge in ad-
vance, and humans are unlikely to have the time and
expertise to provide elaborate and accurate feedback.
This paper presents an integrated framework that cre-
ates novel opportunities for addressing these learning,
adaptation and collaboration challenges associated with
human-robot collaboration. The framework consists of
hierarchical planning, bootstrap learning and online re-
inforcement learning algorithms that inform and guide
each other. As a result, robots are able to make best
use of sensor inputs, soliciting high-level feedback from
non-expert humans when such feedback is necessary
and available. All algorithms are evaluated in simula-
tion and on wheeled robots in dynamic indoor domains.

1 Introduction
As we move towards deploying mobile robots in our homes,
factories and other complex real-world domains where they
have to collaborate with humans, we face formidable chal-
lenges such as autonomous operation, safety, engagement
and interaction protocol design (Goodrich and Schultz 2007;
Tapus, Mataric, and Scassellati 2007; Young et al. 2011).
This paper focuses on autonomy in human-robot collabora-
tion using sensor inputs and high-level feedback from non-
expert humans. Real-world domains characterized by par-
tial observability, non-determinism and unforeseen changes
make it difficult for robots to operate without human feed-
back or domain knowledge. At the same time, robots cannot
be equipped with all relevant domain knowledge in advance.
Furthermore, humans are unlikely to have the time and ex-
pertise to interpret raw sensor inputs and provide elabo-
rate and accurate feedback in complex domains. Many algo-
rithms have been developed for robots to learn from sensor
inputs or human training, and recent research has enabled
CoBots and agents to use human feedback when needed
or available (Rosenthal and Veloso 2012; Knox and Stone
2012). However, existing algorithms rely substantially on

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

accurate domain knowledge or fail to model the unreliability
of human input, limiting true autonomy to a small subset of
(robot) capabilities in simulated or real-world domains. The
objective thus is to answer the following questions:
• How to best enable robots to adapt learning, sensing and

processing to different scenarios and domains?
• How to best enable robots to seek high-level feedback

from non-experts and merge it with information extracted
from sensor inputs?

While sophisticated algorithms have been developed for
these learning, adaptation and collaboration challenges, the
integration of these challenges for human-robot collabora-
tion poses formidable open problems even as it presents
novel opportunities to address the individual challenges.
The framework described in this paper creates and exploits
such opportunities by jointly addressing the associated chal-
lenges. The framework includes the following:
• Hierarchical Planning: algorithms integrate knowl-

edge representation, non-monotonic logical inference and
decision-theoretic planning, enabling robots to automati-
cally adapt learning, sensing and information processing
to the task at hand (Zhang, Sridharan, and Bao 2012).

• Bootstrap Learning: algorithms enable robots to use
sensor inputs to autonomously learn models of domain
objects and events, using the learned models to adapt to
unforeseen changes (Li, Sridharan, and Meador 2013).

• Augmented Reinforcement Learning: algorithms en-
able robots and agents to merge unreliable human feed-
back with the information extracted from sensor in-
puts (Sridharan 2011).

These algorithms inform and guide each other, e.g., learning
helps automate planning, while planning constrains learn-
ing to objects and events relevant to the task at hand. As
a result, robots fully exploit relevant sensor inputs, solicit-
ing high-level feedback from non-experts based on need and
availability. This paper describes the framework, and illus-
trates the integration of learning and planning in the context
of mobile robots using visual inputs and simplistic verbal
cues to localize objects in indoor domains.

2 Related Work
The need for an integrated framework is established by dis-
cussing a representative set of related algorithms.



Sophisticated algorithms have been developed for seg-
mentation, object recognition and learning of object models
using visual cues and interactive feedback (Mikolajczyk and
Schmid 2004; Parikh and Grauman 2011). These algorithms
are used in conjunction with temporal cues, range data and
textual tags for scene and activity understanding (Lei, Ren,
and Fox 2012; Siddiquie and Gupta 2010). Similarly, algo-
rithms for speech understanding have enabled robots to use
verbal cues from humans in applications such as reconnais-
sance (Cantrell et al. 2010). In parallel, the constraints of
classical planning algorithms have been relaxed to plan a se-
quence of actions in multiagent domains (Brenner and Nebel
2009). A non-monotonic logic programming paradigm such
as answer set programming is ideal for common sense rea-
soning (Gelfond 2008; Chen et al. 2010), but it is not well-
suited for probabilistic modeling of uncertainty, e.g., in sens-
ing and navigation. On the other hand, probabilistic planning
algorithms have helped deploy robots and agents in assistive
scenarios and domains such as health care (Hoey et al. 2010;
Rosenthal and Veloso 2012), but they make it difficult to
represent and reason with common sense knowledge. Algo-
rithms have also been developed for combining logical in-
ference and probabilistic reasoning (Gobelbecker, Gretton,
and Dearden 2011; Gogate and Domingos 2011; Richard-
son and Domingos 2006). However, revising domain knowl-
edge using unreliable inputs, adaptation to unforeseen do-
main changes, and exploiting complementary properties of
logical inference (e.g., default reasoning) and probabilistic
planning remain open problems.

These learning and planning algorithms are used in con-
junction with cognitive architectures (Hawes et al. 2010;
CogX 2011) to bind information from sensor inputs, in-
tegrate cognitive models, and build spatial representations
suitable for tasks such as reconnaissance (Cantrell et al.
2010). There is considerable focus on autonomous oper-
ation of socially assistive robots (Juan Fasola and Maja
Mataric 2012), and on enabling robots to learn from demon-
strations of domain experts (Cakmak and Thomaz 2012;
Zang et al. 2010). Recent research is also enabling robots
and agents to use human feedback when it is available or
necessary (Rosenthal and Veloso 2012; Knox and Stone
2012). However, existing algorithms require accurate prior
knowledge of specific task and domain, and do not fully ac-
count for the unreliability of human expertise and feedback,
limiting true autonomy to a small subset of robot capabili-
ties. Thus, adaptive sensor input processing and optimal use
of unreliable feedback from non-expert human participants
continue to be challenges to human-robot collaboration.

The integrated framework described in this paper seeks
to exploit the dependencies between learning, adaptation
and collaboration, creating novel opportunities to address
the above-mentioned challenges. As a result, robots operate
autonomously when possible, acquiring and using feedback
from non-experts based on need and availability.

3 Integrated Framework
Figure 1 in an overview of the framework that integrates:
(a) Hierarchical planning for acquiring and revising domain
knowledge, combining non-monotonic logical inference and

probabilistic planning to automatically adapt learning, sens-
ing and processing to the task at hand; (b) Bootstrap learn-
ing for autonomously learning models of domain objects and
events using local, global, temporal and contextual cues; and
(c) Reinforcement learning for online merging of unreliable
high-level feedback from non-expert humans with the infor-
mation extracted from sensor inputs.

Figure 1: The framework exploits dependencies between
learning, adaptation and collaboration to achieve autonomy
in real-world human-robot collaboration.

These algorithms and their dependencies are described
below, and the integration of learning and planning is illus-
trated in the context of mobile robots localizing (i.e., com-
puting locations of) target objects in indoor domains.

3.1 Hierarchical Planning
Figure 2 shows the control loop of hierarchical planning. An-
swer Set Programming (ASP), a non-monotonic logic pro-
gramming paradigm is used for knowledge representation
and logical inference. An ASP program is a collection of
statements describing domain objects and relations between
them (Gelfond 2008). An answer set is a set of ground lit-
erals that represent beliefs of an agent associated with the
program. Program consequences are statements that are true
in all such belief sets. ASP readily supports default reason-
ing and includes concepts such as default negation and epis-
temic disjunction, e.g., unlike “¬ a”, “not a” implies that
“a is not believed to be true” and not that “a is believed to
be false”; and “p or ¬p” is not a tautology. ASP is thus
well suited for common sense reasoning and provides the
appealing capability of non-monotonic reasoning—adding
a new fact can reduce the set of (inferred) consequences.
The Knowledge Base (KB) in ASP contains (common sense)
rules and domain facts. Currently, rules are hand-coded and
facts are learned incrementally from sensor inputs, human
feedback and repositories—future work will investigate the
incremental creation of rules. For any specific query or task,
reasoning in the KB results in answer sets that represent cur-
rent beliefs relevant to the query or task. An added advantage
is that robots can acquire and store knowledge not directly
relevant to the current task, which is typically a challenge in
probabilistic planning schemes.

The uncertainty in sensing and navigation is modeled us-
ing hierarchical partially observable Markov decision pro-
cesses (POMDPs). Beliefs are represented by probability



Figure 2: Hierarchical planning integrates knowledge repre-
sentation, non-monotonic logical inference and probabilistic
planning for human-robot collaboration.

distributions over the underlying states that are not observ-
able. Our novel hierarchical decomposition includes convo-
lutional policies, adaptive observation functions and learned
(domain) models, enabling robots to reliably, efficiently
and automatically create POMDP models, propagate beliefs,
collaborate with teammates, and tailor sensing and process-
ing to the task at hand (Zhang and Sridharan 2012).

For a specific task, answer sets are converted to (prob-
abilistic) bias distributions using a psychophysics-inspired
strategy that models object co-occurrence relationships.
These distributions are merged with POMDP belief distri-
butions and the learned POMDP policies are used to se-
lect actions at different levels of the hierarchy, i.e., to con-
trol movement, processing (e.g., analyzing images for learn-
ing and object recognition) and acquisition of human feed-
back. Robots obtain observations from sensors and human
feedback; observations made with high certainty update the
KB, while other observations update POMDP distributions.
Robots solicit feedback when a human is available nearby
and feedback is needed, e.g., if an object’s location is known
with considerable certainty, soliciting help to locate the ob-
ject is not of much use. Robots visually identify humans and
determine the need for feedback based on entropy of be-
lief distributions. An instance of this hierarchical planning
approach has enabled robots to collaborate with humans in
complex indoor domains, planning actions to maximize in-
formation gain (Zhang, Sridharan, and Bao 2012).

3.2 Bootstrap Learning
Models of relevant domain objects and events are required
to automate planning. Towards this objective, the framework
includes bootstrap learning algorithms that enable robots to
autonomously, incrementally and simultaneously: (a) learn
probabilistic models of objects using visual cues; (b) use
learned object models to learn models of visual features that
characterize these objects; and (c) use feature models and
object models to detect and adapt to unforeseen changes.

Figure 3 is an illustrative example of a model used to char-
acterize domain objects. Since robots simultaneously learn
the domain map and localize themselves in the map, ob-
jects that can move are considered to be interesting. Learn-
ing is triggered by motion cues based on the observation that
characteristic features of an object have similar relative mo-

Figure 3: Learned object models use contextual and
appearance-based cues to characterize objects.

tion between consecutive images. Robots track local gradi-
ent features in short image sequences, identifying salient re-
gions of interest (ROIs) corresponding to moving objects by
clustering features with similar relative motion. Object mod-
els are then learned autonomously and incrementally using
appearance-based and contextual visual features extracted
from these ROIs. In Figure 3, object models consist of: rela-
tive spatial arrangement of gradient features; graphical mod-
els of neighborhoods of gradient features; parts-based mod-
els of image segments; color distributions; and probabilistic
mixture models of local context, thus fully exploiting local,
global, temporal and contextual cues. Robots use these ob-
ject models in energy minimization algorithms and proba-
bilistic generative models of information fusion, recognizing
objects in novel scenes. The learned models are also used
to incrementally learn models of the corresponding visual
features (e.g., color and gradients). Robots track changes in
these feature distributions to detect and adapt to changes in
object configurations and environmental factors.

Robots using this bootstrap learning approach are able to
reliably and efficiently learn and recognize objects in indoor
(and outdoor) domains (Li, Sridharan, and Meador 2013).
Since it is typically not practical to learn models of all ob-
jects using all image features, planning and human feedback
are used to constrain learning to relevant objects and identify
(most) informative features to characterize objects.

3.3 Reinforcement Learning
Robots with learning and planning capabilities can use hu-
man feedback to speed up learning, resolve ambiguities and
revise domain knowledge. However, humans may not have
the time and expertise to provide elaborate and accurate
feedback in complex domains. The integrated framework in-
cludes augmented reinforcement learning (ARL) algorithms
to merge unreliable feedback from non-experts with the in-
formation extracted from sensor inputs.

The ARL approach augments the traditional reinforce-
ment learning formulation as shown in Figure 4. Integrat-
ing human feedback with environmental feedback obtained
from sensors (H and R respectively in Figure 4) is a chal-
lenge because these feedback signals have different formats
and are associated with changing levels of uncertainty over
time. Unlike sensor inputs, human feedback can be a func-



tion of past (and even future) states and actions. Further-
more, robots may have to adapt to different humans and
changes in human behavior over time. Unlike existing algo-
rithms that assume human feedback to be accurate or model
the uncertainty heuristically (Knox and Stone 2012), the
ARL approach bootstraps off the two feedback signals to
revise their relative contributions to the overall action pol-
icy. This strategy is motivated by the observation that many
domains provide robots and humans shared access to per-
formance measures such as task completion time and ac-
curacy. The idea is to use these measures to incrementally
and automatically revise the relative trust in the feedback
mechanisms based on their relative ability to improve the
robot’s performance. The overall action policy in the ARL
approach uses functions to merge R and H, revising func-
tion parameters continuously to optimize performance with
the action policy. Furthermore, studies of human response
times are used to learn a function that assigns the credit of
human feedback to past states and actions.

Figure 4: Online augmented reinforcement learning merges
human feedback with environmental feedback.

Instances of the ARL approach have helped make best
use of high-level human feedback in complex simulated do-
mains with one or more agents (Sridharan 2011) and in
adaptive interactions with mobile robots. However, an RL
formulation typically requires knowledge of states and an
estimate of transition and reward functions. The integrated
framework will relax these limitations, defining: (a) states
based on belief (and knowledge) states from planning; (b)
rewards based on expected information gain; and (c) tran-
sition functions based on bootstrap-learned object models.
This integration of ARL algorithm with learning and plan-
ning is work in progress but initial results are promising.

3.4 Integrating Learning and Planning
The integration of learning and planning is illustrated in the
context of robots locating target objects in indoor domains.
All algorithms were implemented using the Robot Operating
System (ROS) (Quigley et al. 2009).

Figure 5 presents a subset of the architecture, with the vi-
sual bootstrap learning and hierarchical planning algorithms
placed within the vs vision node and vs planner node re-
spectively. The vs vision node processes input images to
provide the ID, relative distance and relative bearing of any
detected object (along with a measure of certainty) to the
vs planner node. The vs planner node, in turn, directs vi-
sual information processing for object recognition and learn-

Figure 5: ROS used for integrating different components.
Interaction between hierarchical planning, visual bootstrap
learning and control modules is illustrated.

ing of object models. Belief updates occur (in planning)
when a robot arrives at a desired location and processes im-
ages of the scene, or processes images during navigation
to a desired location. The planner node may also send co-
ordinates of a relevant location to the movement control
node move base or direct the robot to solicit human input.
The move base node receives the current domain map from
map server, laser range information from hokuyo node, and
navigation goals (if any, e.g., from humans) through nav-
igation goals, in addition to pose and odometry informa-
tion from amcl and (platform-specific) erratic base driver
respectively. The amcl node performs localization to pro-
vide the pose estimate. The move base node finds a path to
the desired location and provides linear and angular velocity
commands to the robot’s driver. Additional nodes are created
when required, e.g., for instances of other algorithms.

4 Experimental Results
This section summarizes a subset of experimental trials con-
ducted to evaluate the algorithms described above.

The bootstrap learning of object models was evaluated
using ≈ 1400 images, including ≈ 700 images (captured
by robots) of objects in motion, and images from the Pas-
cal VOC2006 benchmark dataset. The robot autonomously
learned 30 different object models (i.e., subcategories) for
objects in eight categories. To simulate challenging scenar-
ios, each object model was learned using ≈ 3− 5 images.
Test images consist of short sequences of objects in motion
and images of objects in indoor and outdoor scenes. Mul-
tiple trials of learning and recognition were performed. Ta-
ble 1 reports recognition accuracy averaged over subcate-
gories (e.g., different “cars”) in each category. Correct clas-
sification implies that test image objects are matched to the
correct subcategory. Robots processed 3− 5 frames/second
to learn models and recognize objects in novel scenes. The
accuracy is high (≈ 90%) despite the small number of im-
ages used for learning. Errors typically correspond to an in-
sufficient number of test image features being matched with
learned object models due to motion blur or a substantial dif-
ference in scale or viewpoint—incremental revision of ob-
ject models eliminates some of these errors.

Hierarchical planning is evaluated on robots localizing
objects in simulation and real-world domains. Domains with



Box Car Human Robot Book Airplane Bus Motorbike
Box 0.958 0 0.017 0.025 0 0 0 0
Car 0.010 0.927 0 0.021 0 0 0 0.042

Human 0.080 0.024 0.820 0.060 0.016 0 0 0
Robot 0.027 0 0.042 0.899 0.027 0 0 0.005
Book 0.016 0 0 0.042 0.942 0 0 0

Airplane 0.029 0.051 0 0.023 0.009 0.888 0 0
Bus 0 0.072 0 0 0 0 0.856 0.072

Motorbike 0 0.073 0 0.010 0.016 0 0.062 0.839

Table 1: Bootstrap learning of object models: accuracy ∈ [0,1] averaged over subcategories in each category.

(a) ASP+POMDP. (b) Learned domain map.

Figure 6: (a) Combining ASP and POMDPs provides high accuracy while significantly reducing the target localization time—
trusting ASP beliefs too much has a detrimental effect on accuracy; (b) Learned domain map with offices, labs and corridors.

multiple rooms and objects were simulated and discretized
into grids. Robots starting at random locations localized ran-
domly selected targets; information about some other ob-
jects was provided as prior knowledge. Each point in Fig-
ure 6(a) is the average of 5000 simulated trials—x-axis rep-
resents level of relative trust in ASP-based beliefs. When
ASP-based beliefs are not considered and only POMDP be-
liefs are used, accuracy is high but robots travel a significant
distance (and spend considerable time) to localize targets.
As ASP-based beliefs are included, distance traveled to lo-
calize targets decreases, and performance is stable over a
range of trust factors. When ASP-based beliefs are trusted
much more than POMDP beliefs, accuracy starts decreas-
ing. Logical and probabilistic inference are thus equally
important for reliable and efficient target localization. Re-
sults (not shown) also indicate that robots are able to solicit
high-level human feedback based on need and availability—
humans provide “yes/no” feedback or choose from multiple
options regarding accessibility of rooms and likely object
locations (Zhang, Sridharan, and Bao 2012).

The integration of learning and planning was evaluated
on mobile robots in real-world domains, e.g., Figure 6(b) is
the learned map of an entire floor in our department build-
ing with research labs, faculty offices, conference rooms and
a kitchen. In 50 trials, robots autonomously revise domain
map and object models, and (similar to simulated experi-
ments) make best use of sensor inputs, domain knowledge
and human feedback to reliably and efficiently localize tar-
gets. A video can be viewed online1.

Figure 7 shows the performance of ARL in the 3vs2 sim-
ulated keepaway (soccer) benchmark domain (Stone, Sut-
ton, and Kuhlmann 2005), where three keepers maximize

1http://www.cs.ttu.edu/∼smohan/Movies/
Planning/aspPomdp.mp4

Figure 7: ARL makes best use of human and environmental
feedback in 3vs2 keepaway—using learned gamma distribu-
tion for credit assignment increases episode length.

episode length by keeping the ball from two takers. Human
and environmental feedbacks are merged by a linear func-
tion (i.e., weighted average) whose parameters are revised
incrementally by bootstrap learning. Humans provide posi-
tive or negative reinforcement (e.g., “yes/no” feedback) no
more than two times an episode, and one in every ten inputs
is intentionally incorrect. ARL results in significantly longer
episodes than the baseline Sarsa(λ ) RL algorithm. Using
a gamma function for credit assignment further increases
episode length. ARL also results in longer episodes than us-
ing just human feedback or other approaches for merging
human and environmental feedbacks (Sridharan 2011).

5 Conclusions
This paper described an integrated framework that exploits
dependencies between the learning, adaptation and collab-
oration challenges associated with human-robot collabora-
tion, enabling robots to make best use of sensor inputs and
high-level feedback from non-expert humans. Experimen-
tal results have been summarized for individual compo-



nents and the integration of learning and planning. Future
work will fully integrate ARL with learning and planning
on robots. We are also integrating another component in this
framework to learn multimodal associative models of ob-
jects and scenes, enabling robots to pose appropriate high-
level verbal queries for human feedback. The ultimate goal
is to enable widespread deployment of robots that can col-
laborate with humans in complex real-world domains.
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