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Abstract

Robots collaborating with humans need to represent
knowledge, reason, and learn, at the sensorimotor level
and the cognitive level. This paper summarizes the ca-
pabilities of an architecture that combines the comple-
mentary strengths of declarative programming, proba-
bilistic graphical models, and reinforcement learning, to
represent, reason with, and learn from, qualitative and
quantitative descriptions of incomplete domain knowl-
edge and uncertainty. Representation and reasoning is
based on two tightly-coupled domain representations at
different resolutions. For any given task, the coarse-
resolution symbolic domain representation is translated
to an Answer Set Prolog program, which is solved to
provide a tentative plan of abstract actions, and to ex-
plain unexpected outcomes. Each abstract action is
implemented by translating the relevant subset of the
corresponding fine-resolution probabilistic representa-
tion to a partially observable Markov decision process
(POMDP). Any high probability beliefs, obtained by
the execution of actions based on the POMDP policy,
update the coarse-resolution representation. When in-
complete knowledge of the rules governing the domain
dynamics results in plan execution not achieving the
desired goal, the coarse-resolution and fine-resolution
representations are used to formulate the task of incre-
mentally and interactively discovering these rules as a
reinforcement learning problem. These capabilities are
illustrated in the context of a mobile robot deployed in
an indoor office domain.

1 Introduction
Consider a robot assisting humans by locating and moving
specific objects to specific places in an office with multi-
ple rooms. While it is difficult for such a robot to oper-
ate without considerable domain knowledge, it is also diffi-
cult for humans to provide complete domain knowledge or
elaborate feedback. The robot may be equipped with some
commonsense knowledge, e.g., “books are usually in the li-
brary”, and some exceptions to this knowledge that may be
known or unknown to the robot, e.g., “cookbooks are in the
kitchen”, and “manuals are in the laboratory”. In addition,
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the robot’s actions are non-deterministic, and any informa-
tion extracted by processing the data from sensors mounted
on the robot, provides a partial and unreliable domain de-
scription. To assist in such domains, the robot thus has to
represent knowledge, reason, and learn, at both the sensori-
motor level and the cognitive level. This objective maps to
some fundamental challenges in knowledge representation,
reasoning, and learning. For instance, the robot has to en-
code and reason with commonsense knowledge such that the
semantics are readily accessible to humans, while also quan-
titatively modeling the uncertainty in sensing and actuation
to support reliable operation. Furthermore, for efficient op-
eration, the robot has to tailor sensing and actuation to tasks
at hand, incrementally and interactively revising the existing
knowledge in response to unexpected changes.

As a step towards addressing the challenges described
above, the architecture described in this paper combines the
knowledge representation and non-monotonic logical rea-
soning capabilities of declarative programming, with the
uncertainty modeling capabilities of probabilistic graphical
models, and the incremental learning capability of reinforce-
ment learning (RL). Key features of this architecture are:
• An action language is used for describing a coarse-

resolution and a fine-resolution transition diagram for the
target domain. The fine-resolution diagram is defined as a
refinement of the coarse-resolution diagram. The coarse-
resolution domain representation also includes a history
with initial-state default knowledge.

• For any given goal, non-monotonic logical reasoning with
the coarse-resolution representation provides a tentative
plan of abstract actions. Each abstract action is imple-
mented probabilistically based on the fine-resolution rep-
resentation, with the corresponding action outcomes re-
vising the coarse-resolution representation.

• For any abstract action, tight coupling between the two di-
agrams enables the robot to probabilistically represent just
the relevant subset of the fine-resolution diagram, and use
this probabilistic diagram to plan and execute a sequence
of concrete actions to implement the abstract action.

• The current beliefs and the domain representations are
used to provide a reinforcement learning formulation of
the task of incrementally discovering previously unknown
rules governing domain dynamics, using these discovered
rules for subsequent reasoning.
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In our architecture, we translate the coarse-resolution rep-
resentation to an Answer Set Prolog (ASP) program, and
use the probabilistic version of the relevant subset of the
fine-resolution representation to construct a partially observ-
able Markov decision process (POMDP). The architecture
thus supports reasoning with violation of defaults, noisy
observations and unreliable actions in large, complex do-
mains. Subsets of these capabilities have been reported in
our previous papers (Colaco and Sridharan 2015; Zhang,
Sridharan, and Wyatt 2015; Sridharan and Rainge 2014;
Zhang et al. 2014). Here, we summarize the technical con-
tributions, and the result of experimental trials in simulation
and on a mobile robot moving objects to specific places in
an office domain.

2 Related Work
Knowledge representation, planning and explanation gener-
ation are well-researched areas in human-robot collabora-
tion, and in artificial intelligence. Logic-based representa-
tions and probabilistic graphical models have been used to
control sensing, navigation and interaction for robots and
agents (Bai, Hsu, and Lee 2014; Galindo et al. 2008). For-
mulations based on probabilistic representations (by them-
selves) make it difficult to perform commonsense reasoning,
whereas classical planning algorithms and logic program-
ming tend to require considerable prior knowledge of the
domain and the agent’s capabilities, and make it difficult to
merge new, unreliable information with an existing knowl-
edge base. For instance, theories of reasoning about action
and change, and the non-monotonic logical reasoning ability
of ASP (Gelfond and Kahl 2014) have been used by an in-
ternational research community for reasoning by simulated
robot housekeepers (Erdem, Aker, and Patoglu 2012), nat-
ural language human-robot interaction (Chen et al. 2012),
control of unmanned aerial vehicles (Balduccini, Regli, and
Nguyen 2014), and coordination of robot teams (Saribatur,
Erdem, and Patoglu 2014). However, ASP does not support
probabilistic representation of uncertainty, whereas a lot of
information extracted from sensors and actuators is repre-
sented probabilistically.

Researchers have designed architectures that combine de-
terministic and probabilistic algorithms for task and mo-
tion planning (Kaelbling and Lozano-Perez 2013), couple
declarative programming and continuous-time planners for
path planning in robot teams (Saribatur, Erdem, and Patoglu
2014), or combine a probabilistic extension of ASP with
POMDPs for human-robot dialog (Zhang and Stone 2015).
Recent work used a three-layered organization of knowledge
(instance, default and diagnostic), and a three-layered archi-
tecture (competence, belief, and deliberative layers), which
combines first-order logic and probabilistic reasoning for
open world planning on robots (Hanheide et al. 2015). Some
popular formulations that combine logical and probabilistic
reasoning include Markov logic network (Richardson and
Domingos 2006), Bayesian logic (Milch et al. 2006), and
probabilistic extensions to ASP (Baral, Gelfond, and Rush-
ton 2009; Lee and Wang 2015). However, algorithms based
on first-order logic do not provide the desired expressive-
ness, e.g., it is not always possible to express degrees of
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Figure 1: Architecture integrates the complementary
strengths of declarative programming, probabilistic graph-
ical models, and reinforcement learning, for knowledge rep-
resentation, reasoning, and learning, with qualitative and
quantitative descriptions of knowledge and uncertainty.

belief quantitatively. Algorithms based on logic program-
ming do not support one or more of the desired capabilities
such as incremental revision of (probabilistic) information;
reasoning as in causal Bayesian networks; and reasoning
with large probabilistic components. As a step towards ad-
dressing these limitations, we have developed architectures
that couple declarative programming, probabilistic graphical
models, and reinforcement learning (Sridharan et al. 2015;
Sridharan and Rainge 2014; Zhang, Sridharan, and Wyatt
2015). Here, we describe the overall architecture, and il-
lustrate its capabilities in the context of a robot finding and
moving objects in an office domain.

3 Architecture Description
Figure 1 is a block diagram of the components of our archi-
tecture. We illustrate the components using the following
running example.

Office Domain: Consider a robot that is assigned the goal
of moving specific objects to specific places in an office do-
main. The domain under consideration contains:

• The sorts: place, thing, robot, and ob ject, with ob ject
and robot being subsorts of thing. Sorts textbook, printer
and kitchenware, are subsorts of the sort ob ject. We also
have sorts for object attributes color, shape, and size.

• Four specific places: o f f ice, main library, aux library,
and kitchen. We assume that these places are accessible
from each other without the need to navigate any corri-
dors, and that doors between these places are open.

• An instance of sort robot, called rob1. Also, a number of
instances of subsorts of the sort ob ject in specific places.

In this domain, coarse-resolution reasoning considers the lo-
cation of objects in places, while fine-resolution reasoning
considers the location of objects in specific grid cells in these
places, and reinforcement learning can be used to identify
previously unknown rules about object configurations.
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Action Language: The transition diagrams of our architec-
ture’s coarse-resolution and fine-resolution domain repre-
sentations are described in an action language AL (Gelfond
and Kahl 2014). AL has a sorted signature containing three
sorts: statics (domain properties whose truth values cannot
be changed by actions), f luents (domain properties whose
values can be changed by actions) and actions (elementary
actions that can be executed in parallel). AL allows three
types of statements: causal laws, state constraints and exe-
cutability conditions.

3.1 Coarse-Resolution Planning and Diagnosis

The coarse-resolution domain representation has a system
description DH and histories with defaults H . DH con-
sists of a sorted signature (ΣH ) that defines the names of
objects, functions, and predicates available for use, and
axioms to describe the coarse-resolution transition dia-
gram τH . Examples of sorts in the example domain are
place, thing, and robot. The fluents and actions are de-
fined in terms of their arguments, e.g., in our domain,
loc(thing, place) and in hand(robot,ob ject) are some iner-
tial fluents1, and move(robot, place), grasp(robot,ob ject),
putdown(robot,ob ject), and put(ob ject,ob ject) are some
actions. Examples of axioms include causal laws such as:

move(R,Pl) causes loc(R,Pl)
grasp(R,Ob) causes in hand(R,Ob)

state constraints such as:

¬loc(Ob,Pl1) if loc(R,Pl2), Pl1 6= Pl2
loc(Ob,Pl) if loc(R,Pl), in hand(R,Ob)

and executability conditions such as:

impossible move(R,Pl) if loc(R,Pl)
impossible grasp(R,Ob) if loc(R,Pl1), loc(Ob,Pl2),

Pl1 6= Pl2
impossible grasp(R,Ob) if in hand(R,Ob)

The recorded history of a dynamic domain is usually a
record of (a) fluents observed to be true at a time step
obs( f luent,boolean,step), and (b) the occurrence of an ac-
tion at a time step hpd(action,step). Our architecture ex-
pands on this view by allowing histories to contain (priori-
tized) defaults describing the values of fluents in their initial
states. For instance, the default “textbooks are typically in
the main library. If a textbook is not there, it is in the aux-
iliary library. If the textbook is not there either, it is in the

1Inertial fluents obey the laws of inertia and can be changed
directly by actions, while defined fluents are not subject to inertia
axioms and cannot be changed directly by an action.

office” can be represented elegantly as:

initial default loc(X ,main library) if textbook(X)

initial default loc(X ,aux library) if textbook(X),

¬loc(X ,main library)
initial default loc(X ,o f f ice) if textbook(X),

¬loc(X ,main library),
¬loc(X ,aux library)

This coarse-resolution domain representation is transformed
into a program Π(DH ,H ) in CR-Prolog that incorporates
consistency restoring (CR) rules in ASP (Gelfond and Kahl
2014). ASP is based on stable model semantics and non-
monotonic logics, and includes default negation and epis-
temic disjunction, e.g., unlike ¬a that states a is believed
to be false, not a only implies that a is not believed to be
true, and unlike “p ∨ ¬p” in propositional logic, “p or ¬p”
is not a tautology. ASP can represent recursive definitions,
defaults, causal relations, and constructs that are difficult to
express in classical logic formalisms. The ground literals
in an answer set obtained by solving Π represent beliefs
of an agent associated with Π; statements that hold in all
such answer sets are program consequences. Algorithms for
computing the entailment of CR-Prolog programs, and for
planning and diagnostics, reduce these tasks to computing
answer sets of CR-Prolog programs. Π consists of causal
laws of DH , inertia axioms, closed world assumption for de-
fined fluents, reality checks, and records of observations, ac-
tions, and defaults, from H . Every default is turned into an
ASP rule and a CR rule that allows the robot to assume, un-
der exceptional circumstances, that the default’s conclusion
is false, so as to restore program consistency—see (Sridha-
ran et al. 2015; Zhang et al. 2014) for formal definitions of
states, entailment, and models for consistent inference.

In addition to planning, the architecture supports reason-
ing about exogenous actions to explain the unexpected (ob-
served) outcomes of actions (Balduccini and Gelfond 2003).
For instance, to reason about a door between two rooms be-
ing locked unexpectedly (e.g., by a human), we introduce
exogenous action locked(door) and add the axioms:

is open(D) ← open(R,D), ¬ab(D)

ab(D) ← locked(D)

where a door is considered abnormal, i.e., ab(D), if it has
been locked, say by a human. Actions and suitable axioms
are included for other situations in a similar manner. We also
introduce an explanation generation rule and a new relation
expl as follows:

occurs(A, I) | ¬ occurs(A, I) ← exogenous action(A)
I < n

expl(A, I) ← action(exogenous,A),
occurs(A, I), not hpd(A, I)

where expl holds if an exogenous action is hypothesized but
there is no matching record in the history. We also include
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awareness axioms and reality check axioms:

% awareness axiom
holds(F,0) or ¬ holds(F,0) ← f luent(basic,F)

occurs(A, I) ← hpd(A, I)
% reality checks
← obs( f luent, true, I), ¬ holds( f luent, I)
← obs( f luent, f alse, I), holds( f luent, I)

The awareness axioms guarantee that an inertial fluent’s
value is always known, and that reasoning takes into account
actions that actually happened. The reality check axioms
cause a contradiction when observations do not match ex-
pectations, and the explanation for such unexpected symp-
toms can be reduced to finding (and extracting suitable
statements from) the answer set of the corresponding pro-
gram (Gelfond and Kahl 2014). The new knowledge is in-
cluded in the ASP program and used for subsequent infer-
ence. This approach provides all explanations of an unex-
pected symptom. The other option is to use a CR rule instead
of the explanation generation rule:

occurs(A, I) +← exogenous action(A), I < n

where the robot is allowed to assume the occurrence of an
exogenous action, under exceptional circumstances, to re-
store consistency. A partial ordering is defined over sets of
CR rules, based on the cardinality of sets, and the set with
the smallest cardinality is considered to be the minimal ex-
planation. The architecture also includes a similar approach
(with CR rules) to reason about partial scene descriptions,
e.g., properties of objects and events, extracted from sensor
inputs such as camera images. Given ideal descriptions of
domain objects, and partial descriptions extracted from sen-
sor input, candidate explanations are sets of CR rules that
can be triggered to explain the descriptions, the set with low-
est cardinality is the minimal explanation—see (Colaco and
Sridharan 2015) for more details.

3.2 Fine-Resolution Probabilistic Planning
For any given goal, the answer set obtained by inference in
the CR Prolog program (of the coarse-resolution represen-
tation) includes a sequence of abstract actions. Each such
action aH in state σ of τH is executed by reasoning proba-
bilistically at a finer resolution. The fine-resolution reason-
ing includes three steps:

1. Define the fine-resolution version of the coarse-resolution
transition diagram.

2. Identify and randomize (i.e., represent probabilistically)
the subset of the fine-resolution transition diagram that is
relevant to the execution of aH .

3. Construct a POMDP from the randomized subset of the
diagram, solve POMDP to obtain a policy, and use policy
to execute a sequence of concrete actions.

The fine-resolution system description DL has a sorted
signature ΣL and axioms that describe transition diagram
τL. Unlike the coarse-resolution representation, the fine-
resolution representation implicitly includes a history of

observations and actions—the current state is assumed to
be the result of all information obtained in previous time
steps. ΣL inherits the sorts, fluents, actions, and ax-
ioms from the coarse resolution signature and introduces
new ones (or revised versions) that are viewed as compo-
nents of their coarse-resolution counterparts. For instance,
sorts room and cell are subsorts of place, while new flu-
ent loc(thing,cell) represents the cell location of things
in the domain. Since action execution is considered to
be non-deterministic in the fine-resolution representation,
we introduce new fluents to keep track of observations,
e.g., observed( f luent,value,outcome), where outcomes =
{true, f alse,undet}, keeps track of the observed values of
specific fluents. New actions are also introduced, e.g.,
test(robot, f luent,value) is used to test a fluent for a specific
value. In addition, we define new statics to describe relations
between the new sorts, and new axioms that describe the
relations between the coarse-resolution elements and their
fine-resolution counterparts. We specify a sequence of steps
that defines the fine-resolution transition diagram as a re-
finement of the coarse-resolution diagram, and show that for
every state transition 〈σ ,a,σ ′〉 in the coarse-resolution di-
agram, there is a path in the fine-resolution diagram from
state s compatible with σ , to some state compatible with σ ′.

The certainty of the robot’s observations and the effects
of the actions executed are only known with some degree of
probability. We model this uncertainty by associating prob-
abilities with the state transitions and observations in the
fine-resolution diagram. Since the fine-resolution states are
only partially observable, reasoning uses belief states, prob-
ability distributions over the set of states. Reasoning over
this probabilistic fine-resolution transition diagram becomes
computationally intractable even for very simple problems.
To execute any given abstract action aH in state σ of τH ,
the architecture therefore identifies the relevant sorts, flu-
ents and axioms in the coarse-resolution diagram, and thus
identifies the subset of the fine-resolution transition diagram
that needs to be represented probabilistically.

The probabilistic version of the subset of the fine-
resolution transition diagram relevant to the execution of
aH is used to construct a POMDP defined by the tuple
〈S,A,Z,T,O,R〉 for a specific goal state. The first three el-
ements are the set of states, set of actions, and the set of
values of observable fluents. The next two elements are
the transition function T : S×A×S′→ [0,1], which defines
the probabilistic state transitions, and the observation func-
tion O : S× A× Z → [0,1], which defines the probability
of observing the values of observable fluents by executing
knowledge producing actions in specific states—the resul-
tant state is not considered because knowledge-producing
actions do not change the state. Functions T and O (com-
puted offline or learned online) describe a probabilistic tran-
sition diagram over the belief state. The reward specification
R : S×A×S′→ℜ is used to encode the relative cost or utility
of taking specific actions in specific states, based on the goal
state that is to be achieved. Planning involves computing a
policy π : bt → at+1 that maximizes the cumulative reward
over a planning horizon to map belief states to actions. The
POMDP tuple is constructed using appropriate data struc-
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tures such that existing (approximate) POMDP solvers can
be used to obtain the policy. Plan execution uses the pol-
icy to repeatedly choose an action in the current belief state,
and updates the belief state (through Bayesian update) after
executing that action and receiving an observation:

bt+1(st+1) ∝ O(st+1,at+1,ot+1)∑
s

T (s,at+1,st+1) ·bt(s)

Eventually either the probability of one of the states exceeds
a threshold (e.g., 0.9), or the robot identifies with high prob-
ability that the current task, i.e., current coarse action aH ,
cannot be executed. The corresponding action outcomes are
added as observation statements to the history in the coarse-
resolution description.

Constructing and solving a POMDP can become compu-
tationally intractable as the state space grows, e.g., rooms
with many cells connected to many other rooms, even with
state of the art approximate POMDP solvers. To address this
problem, we have explored reasoning in ASP at a finer reso-
lution (e.g., areas in places instead of places), with selective
grounding of the variables. Probabilistic reasoning then re-
duces to simple Bayesian belief updates over the relevant
subset of the domain. We observed that the choice of reso-
lution for symbolic and probabilistic reasoning presents an
interesting trade-off between representational elegance, ac-
curacy of decision making, and computational efficiency—
see (Colaco and Sridharan 2015) for more details.

3.3 Reinforcement Learning
The robot uses the tightly-coupled coarse-resolution and
fine-resolution representations (described above) to reason
about the information extracted from sensor inputs, and to
acquire new information about changes in object positions
and configurations. The robot still has to augment existing
knowledge and respond to domain changes. Consider the
task of stacking books in the main library in our illustrative
domain, and assume that the rule: “larger books cannot be
stacked on smaller books” is not known to the robot. Gen-
erating and executing plans that do not take this rule into
account will result in the robot failing to accomplish the de-
sired objective of stacking the books. Our architecture sup-
ports incremental discovery of such (previously) unknown
rules, and revision of existing rules, governing domain dy-
namics, by integrating reinforcement learning (RL) with the
domain representations—Figure 2 shows the control loop.

When plan execution repeatedly fails to achieve the de-
sired objective, it is hypothesized that this outcome may
be due to previously unknown rules governing domain dy-
namics. The current beliefs of the robot, and the coarse-
resolution and fine-resolution domain representations, are
used to formulate the task of incrementally learning the pre-
viously unknown domain rules as an RL problem. For in-
stance, axioms in the CR-Prolog program corresponding to
the coarse-resolution representation eliminates impossible
states, actions and state transitions in the RL formulation.
The state transition function is based on the corresponding
entries in the coarse-resolution and fine-resolution system
descriptions. The reward specification is based on global ob-
jectives and supports the use of simple high-level feedback,

RL formulation

Rule discovery

Domain representations

Answer sets

ASP rules

Policy

Figure 2: The closed loop of knowledge representation and
reinforcement learning enables discovery of new rules and
their use in subsequent inference.

e.g., positive/negative or “yes/no” reinforcement, which can
be provided even by non-expert human participants. This
formulation is used to set up exploration and exploitation tri-
als in which the robot incrementally learns the relative value
of specific state-action pairs, i.e., the Q-value function. At
each step, state is estimated using the fine-resolution repre-
sentation and the corresponding (POMDP) belief state. The
Q-value functions are input to an algorithm that flags actions
that are repeatedly unsuccessful as being actions that should
not occur. Based on the assumption that such repeatedly
unsuccessful actions should not (and cannot) be executed,
individual CR-Prolog rules are created to prevent the exe-
cution of specific actions under specific conditions. These
rules may (a) conflict with existing rules; or (b) include spe-
cific instances of more general rules. Conflicts with existing
rules can be identified as inconsistencies in the answer set
of the corresponding CR-Prolog program. Specific rule in-
stances may be combined by rule regression to obtain more
general rules, e.g., rules about not placing smaller objects of
specific colors on larger objects may be combined to only
consider the object sizes. The program with the new (or re-
vised) rules is used in subsequent inference for planning or
diagnosis—see (Sridharan and Rainge 2014) for details.

4 Experimental Results
This section summarizes some experimental results in sim-
ulation and on physical robots to demonstrate the capa-
bilities of the architecture—for more information, please
see (Colaco and Sridharan 2015; Sridharan et al. 2015;
Sridharan and Rainge 2014; Zhang et al. 2014). The sim-
ulator uses models that represent objects using probabilis-
tic functions of features extracted from images, and mod-
els that reflect the robot’s motion. The robot also collects
data (e.g., computational time of different algorithms) in an
initial training phase to define the probabilistic components
of the fine-resolution domain representation (Zhang, Sridha-
ran, and Washington 2013).

First, consider an execution scenario in which the robot is
in the o f f ice, and it is assigned the goal of moving a spe-
cific textbook tbk to the o f f ice. Based on default knowledge
(about the location of textbooks) in the coarse-resolution
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Figure 3: With a limit on the policy computation time,
PA significantly increases accuracy in comparison with just
POMDPs as the number of cells increases (Zhang et al.
2014).

representation, the robot creates a plan of abstract actions:

move(rob1,main library)
grasp(rob1, tbk)
move(rob1,o f f ice)
putdown(rob1, tbk)

where the robot rob1 will have to search for tbk in the
main library before grasping it. Each action is executed
probabilistically by constructing and solving the corre-
sponding POMDP, as described above.

Next, consider the comparison of the proposed architec-
ture (henceforth “PA”) with just using POMDPs (“POMDP-
1”) in simulation trials. In these trials, the objective of the
robot was to move specific objects (with unknown locations)
to specific places in the domain. Note that POMDP-1 in-
cludes a hierarchical decomposition to make the task of solv-
ing the POMDPs computationally tractable (Zhang, Sridha-
ran, and Washington 2013). The POMDP solver is given a
fixed amount of time to compute action policies. An object’s
location in a cell is assumed to be known with certainty if
the probabilistic belief (of the object’s existence in the cell)
exceeds a threshold (0.85).

The robot’s ability to successfully complete the task is
shown in Figure 3 as a function of the number of cells in the
domain; each data point is the average of 1000 trials, and
each room is set to have four cells. As the number of cells
(i.e., domain size) increases, it becomes computationally
difficult to generate good POMDP action policies which,
in conjunction with incorrect observations significantly im-
pacts the ability to complete the trials. PA focuses the robot’s
attention on relevant rooms and cells to improve computa-
tional efficiency while still maintaining high accuracy—for
larger domains, there is a drop in accuracy but the impact is
much less pronounced.

The time taken by PA to generate a plan was also com-
puted as a function of the domain size (characterized as
the number of rooms and objects)—these results are sum-
marized in Figure 4. PA generates appropriate plans for
domains with a large number of rooms and objects. Us-
ing only the knowledge relevant to the goal significantly re-
duces the planning time in comparison with using all the
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Figure 4: Planning time with PA scales well to larger number
of rooms and objects (Zhang et al. 2014).

domain knowledge available. This relevant subset of the do-
main knowledge can be automatically selected using the re-
lations in the coarse-resolution system description. We also
compared PA with POMDP-1 on a wheeled robot deployed
on multiple floors of an office building. POMDP-1 takes
1.64 as much time as PA to move specific objects to spe-
cific places; this 39% reduction in execution time is statis-
tically significant. Furthermore, we instantiated and evalu-
ated our architecture in a different domain, e.g., of a robot
waiter assisting in seating people and delivering orders in a
restaurant. Results indicated that a purely probabilistic ap-
proach takes twice as much time as PA to locate and move
objects to specific places. Videos of experimental trials can
be viewed online: http://youtu.be/8zL4R8te6wg,
https://vimeo.com/136990534

Finally, to evaluate the robot’s ability to discover previ-
ously unknown rules, we designed multiple simulated trials
in which the robot had to arrange objects in specific con-
figurations. Some rules were intentionally hidden from the
robot, resulting in failure when certain intermediate config-
urations were reached. Rewards were provided by the sim-
ulator based on the success or failure of the plan. The robot
successfully identified actions that could not be executed,
and added suitable rules to the coarse-resolution system de-
scription. For instance, in the example where the robot had
to stack books, it discovered the rule about not stacking big-
ger books on smaller ones, which was encoded as:

impossible put(B1,B2) if bigger(B1,B2), textbook(B1),

textbook(B2).

Including such newly discovered rules in the CR-Prolog pro-
gram enables the robot to generate and successfully execute
plans to achieve the desired configuration.

5 Conclusions
This paper described an architecture for knowledge repre-
sentation, reasoning, and learning, in robotics, which com-
bines the complementary strengths of declarative program-
ming, probabilistic graphical models, and reinforcement
learning (RL). Tentative plans created by reasoning with
commonsense knowledge in the coarse-resolution represen-
tation are implemented in the fine-resolution using proba-
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bilistic algorithms, adding relevant statements to the coarse-
resolution history. Current beliefs and domain representa-
tions are used to formulate incremental and interactive learn-
ing of previously unknown domain rules as an RL problem.
Experimental results indicate that the architecture supports
reasoning and learning at the sensorimotor level and the
cognitive level, and scales well to large, complex domains.
These capabilities are very important for robots collaborat-
ing with humans in complex application domains. Future
work on the architecture will investigate: (a) tighter cou-
pling of the logical and probabilistic reasoning components
; (b) relational representation for rule learning and general-
ization of discovered rules; and (c) extensive experimental
on robots collaborating with humans in different application
domains.
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