
Back to the Future: Toward a Hybrid Architecture for Ad Hoc Teamwork

Hasra Dodampegama, Mohan Sridharan
Intelligent Robotics Lab, School of Computer Science, University of Birmingham, UK

hhd968@student.bham.ac.uk, m.sridharan@bham.ac.uk

Abstract

State of the art methods for ad hoc teamwork, i.e., for collab-
oration without prior coordination, often use a long history
of prior observations to model the behavior of other agents
(or agent types) and to determine the ad hoc agent’s behav-
ior. In many practical domains, it is difficult to obtain large
training datasets, and it is necessary to quickly revise the ex-
isting models to account for changes in team composition or
the domain. Our architecture builds on the principles of step-
wise refinement and ecological rationality to enable an ad hoc
agent to perform non-monotonic logical reasoning with prior
commonsense domain knowledge and models learned rapidly
from limited examples to predict the behavior of other agents.
In the simulated multiagent collaboration domain Fort Attack,
we experimentally demonstrate that our architecture enables
an ad hoc agent to adapt to changes in the behavior of other
agents, and provides enhanced transparency and better per-
formance than a state of the art data-driven baseline.

1 Introduction
Ad hoc teamwork (AHT) refers to the problem of en-
abling an agent to cooperate with others on the fly (Stone
et al. 2010). Figure 1 shows motivating scenarios from Fort
Attack, a simulated benchmark for multiagent collabora-
tion (Deka and Sycara 2020). Three guards (in green) are
trying to protect a fort from three attackers (in red). An
episode ends when all members of a team are killed, an at-
tacker reaches the fort, or guards protect the fort for a suf-
ficient time period. Each agent can move in a particular di-
rection with a particular velocity, or shoot over a particular
range. Each agent is aware of the world state (e.g., location,
status of each agent) at each step, but the agents have not
worked with each other before and do not communicate with
each other. This example is representative of many prac-
tical multiagent collaboration scenarios (e.g., disaster res-
cue), and poses knowledge representation, reasoning, and
learning challenges. An ad hoc agent, e.g., “1” in Figure 1,
has to reason with prior commonsense domain knowledge
(e.g., some domain and agent attributes, axioms govern-
ing change) and uncertainty, adaptinf its action choices to
changes in the domain or in the behavior of other agents.
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Figure 1: Screenshots from the fort attack environment.

There has been considerable research in AHT (Mirsky
et al. 2022). Initial methods had the ad hoc agent choose
from and execute encoded protocols for collaboration based
on the current state. State of the art methods include a data-
driven component; they learn probabilistic or deep network
models and policies from a history of experiences to esti-
mate the behavior of other agents (or agent “types”) and to
compute the ad hoc agent’s actions. These methods do not
fully leverage the available domain knowledge. Unlike ex-
isting work, our architecture draws on research in cognitive
systems, moves beyond just data-driven optimization, and
builds on the principles of step-wise refinement (Sridharan
et al. 2019) and ecological rationality (Gigerenzer 2016) to:
• Support non-monotonic logical reasoning with prior

commonsense domain knowledge, enabling an ad hoc
agent to plan and execute actions to achieve desired
goals, and provide relational descriptions of its decisions;

• Use reasoning to guide learning and revision of simple
anticipatory models that satisfactorily mimic the behav-
ior of other agents from limited examples; and

• Use an algorithmic model of heuristic methods to iden-
tify attributes and heuristic methods that support reliable
and efficient reasoning and learning.

In the Fort Attack domain, we demonstrate that our architec-
ture supports reliable, efficient, and transparent reasoning,
learning, and adaption, and better performance than a state
of the art data-driven baseline.

2 Related Work
Research in AHT has existed under different names for at
least 15 years (Mirsky et al. 2022). Early work encoded spe-



cific protocols (or plays) for different scenarios and enabled
an agent to choose (or plan) a sequence of protocols based
on the current state (Bowling and McCracken 2005). Other
work has used sampling-based methods such as Upper Con-
fidence bounds for Trees (UCT) for determining the ad hoc
agent’s action selection policy (Barrett et al. 2013). UCT has
been combined with biased adaptive play to provide an on-
line planning algorithm for ad hoc teamwork (Wu, Zilber-
stein, and Chen 2011), and researchers have explored us-
ing Value Iteration or UCT depending on the state observa-
tions (Barrett, Stone, and Kraus 2011). Much of the current
(and recent) research has formulated AHT as a probabilistic
sequential decision-making problem, assuming an underly-
ing Markov decision process (MDP) or a partially observ-
able MDP (POMDP) (Barrett et al. 2017; Chen et al. 2020;
Santos et al. 2021; Rahman et al. 2021). This has included
learning different policies for different teammate types and
choosing a policy based on the teammate types seen during
execution (Barrett et al. 2017). Later work has used recur-
rent neural networks to avoid switching between policies for
different teammate types (Chen et al. 2020).

A key component of state of the art AHT methods learns
to predict the behaviors of other agents using probabilis-
tic or deep neural network methods and a long history of
prior interactions with similar agents or agent types (Bar-
rett, Stone, and Kraus 2011; Barrett et al. 2017; Rahman
et al. 2021). The predictions of other agents’ actions are
then used to optimize the ad hoc agent’s actions. Differ-
ent ideas have been introduced to make this learning more
tractable. For example, recent work used sequential and hier-
archical variational auto-encoders to model the beliefs over
other agents, and meta-learned approximate belief inference
and Bayes-optimal behavior for a given prior (Zintgraf et al.
2021). Learned policy methods have been combined with
predictive models to account for the behavior of chang-
ing agents (Santos et al. 2021), and a Convolutional Neu-
ral Network-based change point detection method has been
developed to adapt to changing teammate types (Ravula,
Alkoby, and Stone 2019). Other work has used the observa-
tion of current teammates and learned teammate models to
learn a new model (Barrett et al. 2017). Despite these inno-
vative ideas, learning these predictive models requires sub-
stantial time, computation, and training examples, and the
internal mechanisms governing the decisions of these meth-
ods are difficult to understand.

In a departure from existing work, our AHT architec-
ture combines knowledge-based and data-driven reasoning
and learning to enable the ad hoc agent to adapt to differ-
ent agent behaviors and team compositions, and to provide
transparency in decision making, as described below.

3 Architecture for Ad Hoc Teamwork
Figure 2 is an overview of our architecture. The ad hoc agent
performs non-monotonic logical reasoning with prior com-
monsense domain knowledge and models of other agents’
behaviors learned incrementally from limited examples, us-
ing heuristic methods to guide reasoning and learning. These
components are described using the following example.

Figure 2: Architecture combining knowledge-based and
data-driven heuristic reasoning and learning.

Example Domain 1 [Fort Attack (FA) Domain]
Consider a scenario with three guards protecting a fort from
three attackers (Figure 1). One of the guards is the ad
hoc agent that can adapt to changes in the team and do-
main. Prior commonsense domain knowledge includes re-
lational descriptions of some domain attributes (e.g, loca-
tion of agents), agent attributes (e.g., shooting capability and
range), default statements (e.g., attackers typically spread
and approach the fort), and axioms governing change such
as: (a) an agent can only shoot others within its shooting
range; and (b) an agent can only move to a location nearby.
The ad hoc agent also builds and reasons with predictive
models of other agents’ behavior (i.e., action choices in spe-
cific states). The knowledge and models may need to be re-
vised, e.g., an agent’s behavior may change over time.

3.1 Knowledge Representation and Reasoning
In our architecture, any domain’s transition diagram is de-
scribed in an extension of the action languageALd (Gelfond
and Inclezan 2013) that supports non-Boolean fluents and
non-deterministic causal laws (Sridharan et al. 2019). Action
languages are formal models of parts of natural language
for describing transition diagrams of dynamic systems.ALd

has a sorted signature with actions, statics, i.e., domain at-
tributes whose values cannot be changed by actions, and
fluents, i.e., attributes whose values can be changed by ac-
tions. Basic/inertial fluents obey laws of inertia and can be
changed by actions, whereas defined fluents do not obey
laws of inertia and are not changed directly by actions.ALd

supports three types of statements: causal law, state con-
straint and executablility condition (examples below).

Knowledge Representation: Any domain’s representation



comprises a system description DC , a collection of state-
ments of ALd, and history HC . DC has a sorted sig-
nature ΣC and axioms describing the domain’s transition
diagram. ΣC defines the basic sorts, and describes the
domain attributes (statics, fluents) and actions in terms
of the sorts of their arguments. Basic sorts of FA do-
main such as ah agent (ad hoc agent), ext agent (ex-
ternal agent), agent, guard, attacker, dir, x val, y val,
and step, are arranged hierarchically, e.g., ah agent and
ext agent are subsorts of agent. Statics include relations
next to(x val, y val, x val, y val) that encode the relative
arrangement of places. Domain fluents include relations:

in(ah agent, x val, y val), face(ah agent, dir),

shot(agent), agent in(ext agent, x val, y val),

agent face(ext agent, dir), agent shot(ext agent)

which encode the location, orientation, and status of the ad
hoc agent and other agents; the last three are defined fluents.
Also, actions of the FA domain include:

move(ah agent, x val, y val), rotate(ah agent, dir),

shoot(agent, agent), agent move(ext agent, x val, y val)

agent rotate(ext agent, dir)

which encode an agent’s ability to move, rotate, and
shoot, and to mentally simulate exogenous actions by other
agents. ΣC also includes relations holds(fluent, step) and
occurs(action, step) to imply that a fluent is true and an ac-
tion is part of a plan (respectively) at a time step. Given this
ΣC , axioms encoding the dynamics include:

move(R,X, Y ) causes in(R,X, Y )

¬in(R,X1, Y 1) if in(R,X2, Y 2), X1 ̸= X2, Y 1 ̸= Y 2

impossible shoot(R,A) if agent shot(A)

which encode the outcome of the move action (causal law),
state that an agent can only be in one location at a time (con-
straint), and prevent the consideration of an action whose
outcome has been accomplished (executability condition).

The history HC of a dynamic domain is usually a record
of observations, i.e., obs(fluent, boolean, step), and action
executions, i.e., hpd(action, step) at specific time steps. We
also include default statements describing the typical values
of fluents in the initial state, e.g., it is initially believed that
attackers spread and attack, and cannot shoot.

initial default spread attack(X) if attacker(X)

initial default ¬shoot(X, ah agent) if attacker(X)

This representation does not assign numerical values to de-
grees of belief in these defaults, but supports elegant reason-
ing with defaults and any specific exceptions.

Reasoning: To reason with knowledge, the ad hoc agent
translates the ALd description to program Π(DC ,HC) in
CR-Prolog, a variant of Answer Set Prolog (ASP) (Geb-
ser et al. 2012) that supports consistency restoring (CR)
rules (Balduccini and Gelfond 2003). ASP is based on stable
model semantics, represents constructs difficult to express
in classical logic formalisms, and encodes default negation

and epistemic disjunction, i.e., unlike “¬a” that states a is
believed to be false, “not a” only implies a is not believed
to be true, and unlike “p ∨ ¬p”, “p or ¬p” is not tautolo-
gous. Each literal is true, false, or unknown, and the agent
only believes what it is forced to believe. ASP also supports
non-monotonic reasoning, i.e., revision of previously held
conclusions, an essential ability in dynamic domains.

Π(DC ,HC) has the signature and axioms of DC , inertia
axioms, reality checks, closed world assumptions for defined
fluents and actions, observations, actions, and defaults from
HC , and a CR rule for every default allowing the agent to as-
sume that the default’s conclusion is false in order to restore
consistency under exceptional circumstances. For example:

¬spread attack(X)
+← attacker(X)

allows the ad hoc agent to consider the rare situation of at-
tackers mounting a frontal attack. All reasoning tasks (e.g.,
planning, diagnostics, and inference) can be reduced to com-
puting answer sets of Π after including suitable helper ax-
ioms, e.g., to drive the agent to search for plans to achieve a
goal. Our ad hoc agent can pursue different goals, e.g., shoot
a nearby attacker or move to cover an unprotected region:

goal(I)←holds(agent shot(X), I), attacker(X)

holds(nearby(agah, X), I)

goal(I)←holds(in(agah, X, Y ), I),

holds(in free region(X,Y ), I)

The ad hoc agent selects goals by trading off their priorities
with the estimated cost of pursuing them, toward the overall
objective of ensuring the fort’s safety. Each answer set repre-
sents the ad hoc agent’s beliefs about the world; we use the
SPARC system (Balai, Gelfond, and Zhang 2013) to com-
pute answer sets. Example SPARC programs for FA domain
are in our repository (Dodampegama and Sridharan 2022).

Knowledge-based reasoning methods are often criticized
for requiring comprehensive domain knowledge, but ASP
has been used by an international research community to
reason with incomplete knowledge, and modern ASP solvers
are efficient for large knowledge bases (Erdem and Patoglu
2018). The effort involved in encoding knowledge is typ-
ically much less than training purely data-driven systems;
also, most of this knowledge is encoded only once and can
be revised over time (Sridharan and Meadows 2018).

3.2 Agent Models and Heuristics
A key component of our architecture is the ability to learn
models of the behavior of other agents, supporting rapid, in-
cremental updates and accurate predictions. In the FA do-
main, other agents include teammates (guards) and oppo-
nents (attackers). To build initial versions of these models,
we handcrafted policies for four types of agents, two each
of guards and attackers. These policies mimic simple strate-
gies, e.g., attackers that spread and attack. We executed these
policies and recorded states and actions of agents in a few
episodes to create 10000 examples.
Ecological Rationality and Heuristics: To build predictive
models, we used the Ecological Rationality (ER) approach,



Description of attribute Number
x position of agent 6
y position of agent 6
distance from agent to center of field 6
polar angle of agent with center of field 6
orientation of the agent 6
distance from agent to fort 6
distance to nearest attacker from fort 1
number of attackers not alive 1
previous action of the agent 1

Table 1: Attributes considered by ad hoc agent to build sim-
ple predictive models of other agents’ behavior.

which builds on Herb Simon’s definition of Bounded Ratio-
nality (Gigerenzer 2020) and the rational theory of heuris-
tics (Gigerenzer and Gaissmaier 2011). Unlike the focus
on optimal search in many fields (e.g., finance, comput-
ing), ER explores decision making under true uncertainty
(i.e., in open worlds), characterizes behavior as a function
of the internal (cognitive) processes and the environment,
and focuses on adaptive satisficing. Also, unlike the use of
heuristics to explain biases or irrational behavior (e.g., of
humans, in psychology), ER considers heuristics as a strat-
egy to ignore part of the information in order to make deci-
sions more quickly, frugally, and/or accurately than complex
methods (Gigerenzer and Gaissmaier 2011). It advocates an
adaptive toolbox of classes of simple heuristics (e.g., one-
reason, sequential search, lexicographic), and comparative
out-of-sample testing to identify heuristics that leverage the
target domain’s structure. This approach has provided good
performance in many applications (Gigerenzer 2016) char-
acterized by factors also observed in AHT, e.g., the need to
make rapid decisions under resource constraints.

Representational Choices and Models: Based on the ER
approach, we applied statistical attribute selection methods
to the set of 10000 samples to identify the pose (i.e, position,
orientation) of each agent, its recent action, and other key
attributes defining behavior—Table 1. Since these attributes
can take a wide range of values, we represented them using
the principles of abstraction and refinement in ER. In partic-
ular, we considered polar coordinates and relative distance
of each agent from the fort. We also built on prior work on
refinement in robotics (Sridharan et al. 2019) to reason about
positions at the level of coarser (abstract) regions and finer-
granularity grid locations that are components of these re-
gions, formally coupling the descriptions (DC ,DF ) through
component relations and bridge axioms such as:

in∗(A,R) if in(A,X, Y ), component(X,Y,R)

next to∗(R2, R1) if next to∗(R1, R2)

where location (X,Y ) is in region R and superscript “*”
refers to relations in DC . An example ASP program with
DF is in our repository. Our definition of refinement for-
mally links the two descriptions, enabling the ad hoc agent
to automatically choose the relevant part of the descriptions
at run-time based on the goal or abstract action, and to trans-
fer relevant information between the granularities.

Figure 3: Fast and frugal tree for an attacker type agent.

Figure 4: Fast and frugal tree for a guard type agent.

After these representational choices, we matched the
FA domain’s environmental factors (e.g., dynamic changes,
rapid decisions with limited samples) with the adaptive
heuristics toolbox to explore: an ensemble of “fast and fru-
gal” (FF) decision trees in which each tree provides a bi-
nary class label and has its number of leaves limited by the
number of attributes (Gigerenzer and Gaissmaier 2011; Kat-
sikopoulos et al. 2021); and STEW, a regularized (linear)
regression approach that exploits feature directions and is
biased towards an equal weights solution (Lichtenberg and
Simsek 2019). We performed statistical testing on unseen
examples using ANOVA (analysis of variance) (Fisher 1992)
to choose the FF trees-based models for behavior prediction.
Unlike many existing methods, these predictive models can
be learned and revised incrementally and rapidly. Also, con-
sistent agreement (disagreement) with predictions of an ex-
isting model can trigger model choice (revision). Figures 3-
4 show example FF trees learned for an attacker and a guard.

Transparency in Reasoning and Learning: The ability
to answer causal, contrastive, and counterfactual questions
about decisions and beliefs, plays a key role in human rea-
soning and learning, and promotes acceptability of auto-
mated decision-making systems (Anjomshoae et al. 2019;



Algorithm 1: Control Loop of Architecture
Input: N: number of games; Π(D,H): core ASP

program,M: behavior models of other
agents; P: other agents’ policies

Output: game stats: statistics of games
1 Create environment, load P , initialize environment
2 for i = 0 to N − 1 do
3 s← state of environment
4 while ¬ game over(s) do
5 ao ← other agents action(s,P)
6 aah ← adhoc agent action(s,Π,M)
7 a = ao ∪ aah
8 s′ = execute(s,a)
9 update models(M)

10 if game over(s′) then
11 update(game stats)
12 initialize environment
13 else
14 s = s′

15 end
16 end
17 end
18 return game stats

Fox, Long, and Magazzeni 2017). The use of knowledge-
based reasoning and simple predictive models in our archi-
tecture provides a good foundation to support the desired
transparency in the decisions and beliefs of the ad hoc agent
using our architecture. We build on prior work that demon-
strated that any question about an action choice (or belief)
can be answered by iteratively and selectively identifying
axioms and literals that influence this action (belief) and
have their antecedents satisfied in the corresponding answer
sets (Mota, Sridharan, and Leonardis 2021). Also, existing
software tools and simple predefined templates are used to
parse textual questions and construct textual answers based
on the relevant literals. Due to space constraints, we only
provide some qualitative examples (e.g., an execution trace)
of explanation generation in Section 4.3.

3.3 Control Loop
The overall control loop of our architecture is described in
Algorithm 1. First, the FA game environment is set up, in-
cluding the other agents’ policies P (Line 1) that are un-
known to the ad hoc agent, before each of the N games (i.e.,
episodes) are played (Lines 2-17). In each game, the other
agents’ actions are identified based on the current state and
P (Line 5), and the ad hoc agent’s action is computed by rea-
soning with domain knowledge and learned models (M) of
other agents’ behaviors (Line 6; Algorithm 2). The actions
are executed in the simulated environment to receive the up-
dated state (Line 8). The observed state can also be used to
incrementally learn and updateM, e.g., when observations
do not match predictions (Line 9). The updated state is used
for the next step (Lines 13-15). This process continues until
the game is over; the game’s statistics are stored for analysis

Algorithm 2: adhoc agent action
Input: s, Π(D,H),M
Output: a

1 if alive(adhoc agent) then
2 ao ← action predictions(M)
3 s′ ← simulate effects(ao)
4 zones← compute relevance(s,ao, s′)
5 ASP program← construct program(s,Π, zones)
6 answer set← SPARC(ASP program)
7 a← next action(answer set)
8 else
9 a← do nothing

10 end
11 return a

before moving to next game (Lines 10-12).
In Algorithm 2, the selection of the ad hoc agent’s ac-

tion is only valid if this agent is alive (Lines 1-7). The ad
hoc agent first uses the learned behavior models (M) of the
other agents (guards, attackers) to predict their next action
in the current state (Line 2). It simulates the effect of this
action to estimate the next state (Line 3). It uses this infor-
mation to compute the relevant regions (zones) in the domain
that need special attention (Line 4). This information is used
to automatically determine the regions and related axioms
to be considered, and the level of abstraction to be used for
reasoning (see Section 3.1, description of refinement in Sec-
tion 3.2, Line 5). The relevant information is also used to
automatically prioritize a goal (e.g., getting to a suitable re-
gion) to be added to the ASP program (Line 5). The corre-
sponding answer set provides the next action to be executed
by the ad hoc agent (Line 7, returned to Algorithm 1).

4 Experimental Setup and Results
We experimentally evaluated the following hypotheses:
• H1: our architecture enables adaptation to different team-

mate and opponent types;
• H2: our architecture supports incremental learning of

models of other agents’ behavior from limited examples;
• H3: our architecture provides better performance than a

state of the art data-driven method for AHT; and
• H4: our architecture supports the generation of relational

descriptions of the ad hoc agent’s decisions and belief.
We evaluated these hypotheses in the FA domain, a bench-
mark for multiagent systems research. Each episode (i.e.,
game) started with three guards protecting the fort and three
attackers trying to reach the fort; the ad hoc agent was one of
the guards. An episode ended when all members of a team
were killed, an attacker reached the fort, or guards managed
to protect the fort for a sufficient time period. Each agent
had eight action choices: stay in place, move in one of four
cardinal directions, turn clockwise or counterclockwise, or
shoot. Performance measures included the number of steps
in an episode, fraction of wins of a particular agent type or
team, prediction accuracy of behavior models, and fraction
of times a shooting guard eliminated an attacker.



4.1 Experimental Setup
For training, we hand-crafted two sets of policies for attack-
ers and other guards: (Policy1) guards stay close to the fort
and try to shoot attackers, while attackers spread and ap-
proach fort; (Policy2) guards and attackers spread and shoot
opponents. We designed these policies to capture basic be-
havioral characteristics in the domain. To simulate training
from limited examples, we used only 10000 observations of
state and agents’ actions to train the ensemble of FF trees.
We then tested the ad hoc agent in: (Exp1) when other
agents used handcrafted policies; and (Exp2) when other
agents used the following built-in policies of the FA domain:
• Policy 220: guards place themselves in front of the fort

and shoot continuously; attackers try to approach the fort.
• Policy 650: guards stay near the fort and try to shoot

nearby attackers; attackers try to sneak in from all sides.
• Policy 1240: guards spread out, are willing to move out

a bit from the fort, and try to shoot when attackers are
nearby; attackers try to sneak in from all sides.

• Policy 1600: guards spread, are willing to move further
out from fort, and try to shoot nearby attackers; some at-
tackers approach and shoot the guards, while others stay
back and wait for a chance to reach the fort.

Unlike the hand-crafted policies, built-in policies were based
on complex deep (graph) neural networks trained over many
episodes. This made evaluation challenging because the ad
hoc agent had no prior experience of agents following these
policies. We considered three baselines without our ad hoc
agent: (i) Base1 in Exp1 with agents following hand-crafted
policies; (ii) Base2 in Exp2 with agents following built-in
policies; and (iii) GPL, a state of the art AHT method based
on graph neural networks (Rahman et al. 2021) in Exp3 as
an extension of Exp2. Each data point in the results below
was the average of 40 episodes. For GPL, we took the aver-
age results from their supplementary material. We used these
experiments to evaluate H1-H3; H2 was also evaluated on a
separate dataset and H4 was evaluated qualitatively instead
of using the quantitative measures available in literature.

4.2 Experimental Results
Tables 2-3 summarize the results of Exp1. Compared with
Base1 that has all agents using hand-crafted policies, the av-
erage number of steps in an episode was a little less and there
was a (statistically) significant improvement in the num-
ber of episodes in which the guards won, when one of the
guards was an ad hoc agent. Given that the ad hoc agent used
models of other agents’ behavior learned from limited train-
ing examples of hand-crafted policies, the higher fraction of
wins with episodes of similar length is a good outcome.

Tables 4-5 summarize the results of Exp2. We observed
that the team of guards with an ad hoc agent using the behav-
ior models trained from the handcrafted policies was able to
adapt to the previously unseen built-in policies of the FA
domain. In particular, the average number of steps in an
episode was about the same or a little less for policies 220,
650, and 1240, compared with Base2 that had all the agents
using the built-in policies. At the same time, there was a sta-
tistically significant improvement in the % wins for the team

Policy with ad-hoc
agent

without ad-hoc
agent (Base1)

Policy1 19 22
Policy2 21 22

Table 2: Average number of steps in an episode with hand-
crafted policies and learned agent models (Exp1).

Policy with ad-hoc
agent

without ad-hoc
agent (Base1)

Policy1 90% 85%
Policy2 67% 62%

Table 3: Average % of episodes in which guards win with
handcrafted policies and learned agent models (Exp1).

of guards for these policies. The % of episodes in which the
team of guards won was rather small for policy 1600, al-
though there was a significant improvement when our ad hoc
agent was one of the guards (7% from 2%). Recall that this
policy was particularly challenging for the guards; some at-
tackers tried to draw the guards away from the fort and shoot
them while others stayed back and waited for an opportu-
nity to sneak in. Notice, however, that for policy 1600, the
team with our ad hoc agent was able to prolong the game for
much longer compared with Base2. These results support
H1, provide partial support for H2, and indicate the benefits
of reasoning and learning guiding each other. Videos of tri-
als, including those with changes in team composition, are
in our repository (Dodampegama and Sridharan 2022).

To further explore H2, we evaluated the learned behav-
ior models on a previously unseen examples from the hand-
crafted policies. Table 6 shows that the prediction accuracy
ranged from 60 − 87%, i.e., there were errors. However,
when used in conjunction with other components of our ar-
chitecture, these models were sufficient to improve the per-
formance of the team of guards compared with baselines
without our ad hoc agent. These results demonstrate the ben-
efits of not over-fitting on the training set and allowing rapid
revision of the learned models; they also support H2.

Figure 5 summarizes the results of Exp3 that evaluated
H3 based on the fraction of times a guard agent’s shoot-
ing eliminated an attacker, i.e., shooting accuracy. We com-
pared our ad hoc guard agent with an ad hoc guard agent us-
ing GPL, and a guard using Base2, in the context of built-in

Policy with ad-hoc
agent

without ad-hoc
agent (Base2)

policy 220 22 27
policy 650 40 40
policy 1240 24 24
policy 1600 34 27

Table 4: Average number of steps per episode with previ-
ously unseen built-in policies (Exp2); ad hoc guard reduces
(220) or provides comparable results (650, 1240), or extends
survival (1600), compared with Base2.



Policy with ad-hoc
agent

without ad-hoc
agent (Base2)

policy 220 85% 77%
policy 650 35% 20%
policy 1240 70% 52%
policy 1600 7% 2%

Table 5: Average % of episodes in which guards win with
previously unseen built-in policies (Exp2).

Agent Model Accuracy
Guard type 1 85.5%
Guard type 2 60.0%
Attacker type 1 86.9%
Attacker type 2 85.2%

Table 6: Prediction accuracy of learned behavior models.

policies. Our ad hoc guard’s average shooting accuracy was
significantly better than that of the ad hoc guard using GPL
for three policies (220, 650, 1240); results were comparable
for policy 1600. These policies are challenging, e.g., guards
are at risk with policy 1600 because the attackers try to draw
them out and shoot them. Also, the GPL-based agent was
trained for 60 ∗ 160000 steps, whereas our ad hoc agent rea-
soned with prior domain knowledge and predictive models
learned from 10000 samples to adapt to previously unseen
policies. In the final set of experiments in Figure 5 (“mix”),
agents other than the ad hoc agent used a random mix of
available policies in each episode; once again, our architec-
ture provided higher accuracy. These results support H3.

4.3 Execution Trace
As a qualitative example of providing relational descriptions
of decisions, consider an exchange with an ad hoc guard
agent after it shot an attacker; Figure 6 shows a snapshot.
• Human: “Why did you move to (3,14) in step 1?”
• Ad hoc Agent: “Because attacker1 was not in range and

I had to move to (4,14)”. This answer was based on the
long(er)-term goal of getting attacker1 in range, and the
associated short-term goal of getting to locations such as
(4, 14) that will eventually enable it to shoot attacker1.

• Human: “Why did you not move to (5,13) in step 4?”
• Ad hoc Agent: “Because that would have put attacker1

out of range and I had to shoot attacker1”. This example
demonstrates the ability to answer contrastive questions,
which is an important ability for learning in humans.

Similar scenarios can be created for other question types
(e.g., counterfactual). Also, reasoning can generate explana-
tions that refer to team behavior because the ad hoc agent’s
actions are based on domain state, predicted behavior of
other agents, and its goal(s). These results support H4.

5 Conclusions
We described an architecture for ad hoc teamwork that
combined knowledge-based and data-driven reasoning and

Figure 5: Our ad hoc agent’s shooting accuracy was better
in Exp3 compared with a guard using the built-in policy and
an ad hoc agent using a state of the art data-driven method.

Figure 6: Part of the domain showing the ad hoc guard agent
(green) moving to track and shoot an attacker (red).

learning by leveraging the principles of refinement and eco-
logical rationality. The architecture enabled an ad hoc agent
to perform non-monotonic logical reasoning with prior com-
monsense domain knowledge and an ensemble of fast and
frugal decision trees learned from limited examples to model
the behavior of other agents. In the benchmark fort attack
domain, our architecture enabled an ad hoc guard agent
to adapt to previously unseen teammates and opponents,
rapidly revise the learned models, perform substantially bet-
ter than baselines that included a state of the art data-driven
method, and generate on-demand relational descriptions of
its decisions. Future work will explore more complex sce-
narios with multiple ad hoc agents and partial observability,
and use our architecture on physical robots in AHT settings.
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