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Abstract

Robots are increasingly being used in different application
domains due to rapid advancements in hardware and compu-
tational methods. However, state of the art methods for many
problems in robotics are based on deep networks and similar
data-driven models. These methods and models are resource-
hungry and opaque, and they are known to provide arbitrary
decisions in previously unknown situations, whereas practi-
cal robot application domains require transparent, multi-step,
multi-level decision-making and ad hoc collaboration under
resource constraints and open world uncertainty. In this paper,
I argue that for widespread use of robots, we need to revisit
principles that can be traced back to the early pioneers of AI.
We also need to make these principles the foundation of the
architectures we develop for robots, with modern data-driven
methods being one of many tools that build on this founda-
tion. I then illustrate the potential benefits of this approach
in the context of fundamental problems in robotics such as
visual scene understanding, planning, changing-contact ma-
nipulation, and multiagent/human-agent collaboration.

1 Motivation and Claims
Robots are increasingly being deployed in application do-
mains such as navigation, healthcare, and manufacturing.
Although the development of high-fidelity hardware has
aided this deployment, advancements in AI algorithms have
revolutionized the field of robotics. In particular, methods
and frameworks based on end-to-end, data-driven1 deep net-
works and foundation models such as Large Language Mod-
els (LLMs) and Vision Language Models (VLMs) are con-
sidered state of the art for perception, reasoning, manipula-
tion, and interaction problems in robotics (and AI) (Doshi
et al. 2024; Huang et al. 2023; Schick et al. 2023; Surı́s,
Menon, and Vondrick 2023; Zhang et al. 2024; Zhao, Lee,
and Hsu 2023). There is a lot of hype and fear surround-
ing the development and use of such methods and models,
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1The use of these terms to characterize modern AI methods
is actually incorrect; the design of end-to-end methods involves a
considerable amount of “engineering” based on knowledge of task
and domain. Also, there is an established history of AI algorithms
learning from data. These terms are still used in this paper just to
make better contact with existing literature.

with researchers claiming that these methods possess capa-
bilities such as “planning”, “commonsense reasoning”, and
“general intelligence”. As a result, we are witnessing a rapid
decline in the diversity of mathematical formulations being
pursued to address open problems in robotics.

To motivate the need for a different and broader approach,
let us first consider the key requirements characterizing in-
tegrated robot systems sensing and (inter)acting in the phys-
ical world. These requirements include the ability to:

• make multi-step, multi-level decisions based on multi-
modal inputs such as vision, speech, and touch;

• operate under open world uncertainty, where optimal de-
cisions are unknowable and probabilities often do not
meaningfully model the uncertainty;

• operate under (often strict) constraints on resources such
as computation, storage, and training examples;

• rapidly and incrementally augment and revise (as
needed) existing models for various tasks such as per-
ception, planning, and navigation; and

• support transparency in decision making, expressing
these decisions in terms of human concepts such as be-
liefs and goals to promote understanding.

Let us next consider the well-known characteristics of mod-
ern deep network methods and models.

• They are excellent statistical predictors for well-defined
tasks, but they may make the correct decisions or arbi-
trary ones in truly novel situations;

• Despite the development of architectures with different
structures and properties, they are based on a narrow set
of representations and update processes;

• They are resource-hungry, making substantial computa-
tion, data, storage and energy demands; and

• They are batch learning systems whose internal opera-
tion remains opaque; even when we are able to attribute
decisions to specific nodes, we are often unable to ascribe
meaning to this finding.

Even when such deep networks are used to develop hy-
brid methods, for example, the rich literature in neurosym-
bolic (NeSy) AI (Besold et al. 2022) and probabilistic NeSy
AI (Smet et al. 2023), we end up with symbolic methods
and/or probabilistic uncertainty models guiding the learning



of a deep network backbone. There is thus a fundamental
mismatch between the requirements of integrated robot sys-
tems and the characteristics of the modern AI methods be-
ing developed for core problems in robotics. The associated
representational choices and update processes limit expres-
sivity, efficiency, transparency, and reproducibility. Further-
more, they contribute to the ongoing mad rush to set up large
computing centers to collect and process all the data, po-
tentially supported by many new power plants, leading to a
substantial negative impact on sustainability.

2 Revisiting Key Principles
I argue that the mismatch described in the previous section
can be addressed by revisiting some key principles that can
be traced back to the early pioneers of AI but are not fully
leveraged in modern robotics research. These pioneers were
deeply inspired by (and contributed to) related disciplines
such as Philosophy and Psychology, and much of their work
in AI was inspired by a joint exploration of natural intelli-
gence, i.e., cognition and control in humans and other bio-
logical systems. For example, the following observations are
highly relevant to robotics research:
1. Human behavior is jointly determined by internal cogni-

tive processes and the environment. We jointly explore
the underlying perception, reasoning, control, and learn-
ing problems using different representations and pro-
cesses at different abstractions (Sloman 2012; Turing
1952), automatically directing attention to relevant rep-
resentations and processes as needed (Broadbent 1957;
Triesman and Gelade 1980).

2. Unlike the “batch learning” and optimization approach
currently prevalent in AI and other disciplines, hu-
mans acquire skills incrementally, interactively, and
compositionally through adaptive satisficing under re-
source constraints and open world uncertainty; humans
seek to make rational decisions instead of optimal
ones (Gigerenzer 2021; Simon 1956).

3. Human skills, particularly our motor control skills, have
evolved over a long time for some very hard engineering
problems. It is difficult and computationally expensive to
replicate these skills in robots (Minsky 1986; Moravec
1990). Also, just replicating our hardware, e.g., our arms
and hands, is unlikely to be sufficient for the desired
functional capability, e.g., dexterous robot manipulation.

These observations do not preclude the use of deep network
or other similar methods in robotics. Instead, they advocate
that we embed certain key principles in robot architectures,
and consider deep networks as one of many different tools
that can be included in the architecture as needed. Here, I
highlight three such key principles.

1. Refinement. It can be viewed, in the context of robotics,
as representing actions and change in the domain in the
form of transition diagrams at different abstractions, with
the fine(r)-granularity description being a refinement of
the coarse(r)-granularity description. It is a fundamen-
tal concept that has appeared in research in robotics and
computing over many decades. For example, in the field

of software engineering and programming languages,
there are approaches for type and model refinement,
although they do not consider theories of actions and
change (Freeman and Pfenning 1991; Lovas and Pfen-
ning 2010; Mellies and Zeilberger 2015). To adapt this
principle to robotics, the key idea is to establish a for-
mal relationship between the descriptions at different ab-
stractions that each support different representations and
processes to update these representations. The relevant
representations (and processes) can then be chosen au-
tomatically for any given task and domain depending on
the information sources and resources available, by draw-
ing on the other two principles described below. Note
that even a limited exploration of this idea of selective
attention (Broadbent 1957) has led to impressive results
with deep networks (Doshi et al. 2024). Furthermore, the
support for different representations enables the robot to
incrementally acquire domain knowledge from different
sources, and to interactively provide on-demand descrip-
tions of its decisions in different ways that make contact
with human concepts such as goals and beliefs.

2. Ecological Rationality (ER). It builds on Herb Simon’s
definition of Bounded Rationality (Simon 1955, 1956)
and the related rational theory of heuristics (Gigerenzer
2020). Unlike the focus on optimal search in many dis-
ciplines (e.g., finance, computing) in the presence of risk
over a set of known scenarios, ER studies decision mak-
ing under open world uncertainty, i.e., when the space
of possible scenarios is not known in advance. It char-
acterises the behavior of a human or an AI system as
a joint function of the internal cognitive processes and
the environment, using adaptive satisficing to make ra-
tional decisions instead of optimal ones. Also, unlike the
use of heuristics as a “hack” or to explain biases (e.g.,
in the heuristics and biases program in Psychology), ER
considers heuristics as a strategy to ignore part of the in-
formation in order to make decisions more quickly, fru-
gally, and accurately than complex methods (Gigerenzer
and Gaissmaier 2011). Unlike modern AI research that is
largely prescriptive (focusing on what should be done),
it is both descriptive (describing what people or agents
do) and prescriptive. It advocates an adaptive toolbox of
classes of simple decision heuristics such as tallying, se-
quential search, and fast and frugal (FF) trees, and an al-
gorithmic approach involving out-of-sample and out-of-
population testing to identify heuristics that match do-
main characteristics. Such decision heuristics are well-
suited to make decisions under open world uncertainty,
where optimal decisions are unknowable and probabili-
ties are not a good model of the uncertainty. Their design
also automatically supports process-level explanations of
the decisions made.

3. Interactive learning. It is a term used to refer jointly
to different types of learning such as supervised (or
unsupervised) learning and learning from reinforce-
ment (Laird et al. 2017). The difference lies in how this
learning is triggered and achieved. Modern AI systems
focus on learning a single model or policy that deter-



mines decisions across different categories, situations,
platforms, and/or domains. Such an approach is consid-
ered to be essential for generalization without realizing
that there is a mismatch between the underlying design
choices and the desired functional capabilities. For ex-
ample, the learned model or policy is hard to understand,
explain, or revise in a meaningful manner. These ap-
proaches are well-suited for tasks or domains in which
the range of options or situations to be considered are
known a priori and sufficient resources are available; they
are not really suitable for decision making in the wild,
i.e., under open-world uncertainty (Katsikopoulos et al.
2021a). Interactive learning, on the other hand, focuses
on learning as needed to adapt to any given domain and
set of tasks. Also, it advocates reasoning with any prior
domain knowledge to inform and constrain the learning.
Such an approach, not surprisingly, leads to simpler mod-
els that are amenable to incremental and rapid revisions,
even in previously unknown situations, particularly when
used in conjunction with the principles described above.

3 Architectural Examples
This section provides examples of embedding the principles
outlined above in robot architectures to address problems in
reasoning, control, collaboration, and learning.

Refinement for knowledge representation and reasoning.
One example of refinement of agents’ action theories used
situation calculus to describe the theories, and assumed the
existence of a bisimulation relation between the theories for
a given refinement mapping (Banihashemi, Giacomo, and
Lesperance 2017, 2018). Although assuming the existence
of a bisimulation relation often has a negative impact on ex-
pressivity and computational efficiency in robotics domains,
this work provides a good example of the transfer of infor-
mation and control between two abstractions. There has also
has been related work on combining discrete and contin-
uous planning at different resolutions for task and motion
planning (TAMP) in robotics (Garrett et al. 2021). This can
involve using classical planners based on first-order proposi-
tional logic for planning discrete abstract movement actions,
implementing each abstract action using continuous plan-
ners (Srivastava et al. 2013). This can also involve learning
feature-based state and action abstractions towards general-
ized TAMP for continuous control tasks (Curtis et al. 2022).

Key limitations of the existing work are that they do not
fully: (a) support the bidirectional flow of relevant infor-
mation between the different abstractions; (b) handle uncer-
tainty, particularly the effect of non-stationarity (of the do-
main) and future state uncertainty on the associated models;
and (c) address the discontinuities in the interaction dynam-
ics, i.e., the sudden changes in forces and the resultant ac-
celeration experienced by the robot when it makes or breaks
contact with objects and surfaces (Garrett et al. 2021).

My work has explored the hypothesis that the above-
mentioned limitations are the result of not jointly consid-
ering the reasoning and learning problems, and not lever-
aging all the principles outlined above in the design of
the corresponding architecture. For example, we devel-

oped a refinement-based architecture that supports different
representations (logics, probabilities) and processes (non-
monotonic logical reasoning, probabilistic sequential deci-
sion making) for reasoning with the transition diagrams at
different abstractions (Sridharan et al. 2019). In particular,
we have focused on making rational decisions; relaxing the
need for performance guarantees; embedding cognitive the-
ories of intention (Gomez, Sridharan, and Riley 2021), affor-
dance (Langley, Sridharan, and Meadows 2018; Sridharan,
Meadows, and Gomez 2017), and explainable agency (Lan-
gley et al. 2017; Sridharan and Meadows 2019; Sridharan
2024); and on automatically determining the part of the
finer-resolution diagram relevant to implement any given
coarse-resolution transition. We demonstrated experimen-
tally that the resultant architecture performs better than state
of the art knowledge-based or data-driven systems.

Decision heuristics for manipulation and collaboration.
ER and decision heuristics have been used to achieve good
performance on prediction problems in application domains
such as finance, healthcare, and law (Brighton and Gigeren-
zer 2012; Durbach et al. 2020; Gigerenzer 2016; Kat-
sikopoulos et al. 2021b). There is hardly any use of these
methods in robot architectures, except in some related work
in the cognitive systems community (Langley and Katz
2022). This lack of uptake is potentially due to their inherent
simplicity, which is a strength but makes researchers doubt
their suitability for practical problems. Also, unlike modern
data-driven AI methods, the successes of decision heuristics
do not receive the attention they deserve.

I present two examples of my work to demonstrate the
power of decision heuristics. The first one focuses on col-
laboration between agents without prior coordination, i.e.,
ad hoc teamwork (AHT) (Mirsky et al. 2022). Methods con-
sidered state of the art for AHT use a large labeled dataset of
prior observations to model the behavior of other agent types
and to determine the ad hoc (AI) agent’s behavior (Barrett
et al. 2017; Rahman et al. 2021; Santos et al. 2021). As
stated earlier, such methods do not support rapid incremen-
tal revisions or transparency, and the necessary resources
(e.g., training examples, computation) are often not avail-
able in practical domains. In a departure from these meth-
ods, we adapted our refinement-based architecture to pose
AHT as a joint reasoning and learning problem. This ar-
chitecture enabled an ad hoc agent to choose its actions
based on non-monotonic logical reasoning with prior do-
main knowledge (of action theories in different abstractions)
and models learned and revised rapidly to predict the behav-
ior of other agents. These predictive models were based on
an ensemble of FF trees and used orders of magnitude fewer
examples (e.g., 5K instead of 1M) compared with the state
of the art methods. We experimentally demonstrated the ad
hoc agent’s ability to collaborate with other agents in com-
plex environments, adapting to previously unknown changes
(e.g., in agent types or team composition) to provide per-
formance comparable with or better than the existing meth-
ods (Dodampegama and Sridharan 2023a,b).

The second example is changing-contact robot manipu-
lation, which involves a robot making and breaking con-



tacts with different objects and surfaces; many robot and
human manipulation tasks are such changing-contact tasks.
The dynamics of these tasks are piecewise continuous, with
abrupt transitions (i.e., sudden changes in force and accel-
eration) that can damage the robot or the domain objects.
Unlike existing data-driven methods that attempt to explore
different possible transitions in advance, and pose the prob-
lem of smooth motion as an offline optimization problem
or learning problem (Khader et al. 2020), we drew inspi-
ration from insights into human motor control (Flanagan
et al. 2003; Kawato 1999). Specifically, we enabled the robot
to rapidly learn and revise simple models that predict the
end-effector sensor observations in the next step based on a
single initial demonstration of the movement and run-time
observations. During run-time, any mismatch between pre-
dicted and actual sensor measurements revises the predictive
forward model and the gain parameters of a simple force-
motion control law. Using experiments conducted in differ-
ent simulation domains and on a physical robot manipula-
tor, we demonstrated the ability to ensure smooth motion
while performing changing-contact manipulation tasks with
changes in surfaces and contacts that the robot was not aware
of before (Sidhik, Sridharan, and Ruiken 2024).

Interactive learning for visual scene understanding and
planning. In addition to the AHT example above, I present
two examples to illustrate the benefits of leveraging the in-
terplay between reasoning and learning in architectures that
embed the outlined principles. I intentionally pick examples
that illustrate the use of these principles in conjunction with
modern data-driven AI systems.

The first example focuses on vision-based scene under-
standing, planning, and question answering, which are fun-
damental problems in computer vision and robotics. Meth-
ods considered to be state of the art for these problems are
based on deep networks that are trained, for example, with
a large dataset of images, potential questions, and answers
to these questions. We, on the other hand, designed archi-
tectures based on the principles outlined above. Specifically,
we adapted our refinement-based architecture to determine
the occlusion of objects and the stability of object struc-
tures in images, arrange objects in desired configurations,
and to answer questions about the decisions made. This ar-
chitecture performed non-monotonic logical reasoning with
generic domain knowledge available a priori to make the de-
sired decisions (e.g., about stability and occlusion) if possi-
ble. Examples that could not be handled through reasoning
triggered learning, with the robot automatically identifying
such examples and the relevant regions in the correspond-
ing images to be used for learning. Although this learning
can be accomplished using one of many different methods,
we intentionally used deep networks so that we could also
use them as baselines for comparison. In addition, the cor-
responding training examples were also processed by an ap-
proach based on decision heuristics to induce new domain
knowledge (e.g., actions and axioms) to be used for subse-
quent reasoning. We experimentally demonstrated: (a) per-
formance comparable with or better than systems based just
on deep networks, while using orders of magnitude fewer

training examples; (b) faster training and better accuracy
with deep networks when used as needed and only with rele-
vant examples; and (c) performance improvement over time
when reasoning and learning bootstrap off of each other (Ri-
ley and Sridharan 2019; Sridharan and Mota 2023). We also
demonstrated that the architecture enables a robot to pro-
vide relational descriptions at different abstractions as ex-
planations in response to different types of questions (causal,
contrastive, counterfactual) (Mota, Sridharan, and Leonardis
2021; Sridharan 2024).

The second example illustrates the inclusion of an LLM in
an architecture based on the outlined principles. Specifically,
we developed an architecture that enabled an embodied (AI)
agent2 to collaborate with a human in completing assigned
tasks in a home environment. Many papers have incorrectly
claimed that LLMs can “plan” although their operation does
not match the original interpretation of planning, as high-
lighted in a recent tutorial and position paper (Kambhampati
et al. 2024). Instead, our architecture drew inspiration from
work on LLM-Modulo frameworks (Guan et al. 2023), and
used an LLM to provide a generic prediction about the se-
quence of tasks likely to be assigned in the near future. The
AI agent considered these anticipated tasks as joint goals in
conjunction with the current task. It then incorporated deci-
sion heuristics with classical planning methods to compute
action sequences that would enable it to achieve these goals
in collaboration with the human. We demonstrated substan-
tial improvement in accuracy and computational efficiency
of task completion compared with a system that only used
an LLM or did not anticipate future tasks (Arora et al. 2024).

In summary, this paper is an attempt to promote appreciation
for some fundamental principles that can be traced back to
the early pioneers of AI but are not being fully leveraged in
the design of modern AI systems. I hope that the examples
provided in this paper will encourage researchers to incorpo-
rate these principles in the architectures they develop to ad-
dress various open problems in robotics. More broadly, with
the increasing development and use of AI methods in dif-
ferent disciplines such as Astrophysics, Chemistry, and Cli-
mate science, these principles and related observations are
also relevant to research in AI and these other disciplines.

Acknowledgements
The ideas described in this paper were informed by research
threads pursued in collaboration with Hasra Dodampegama,
Michael Gelfond, Gerd Gigerenzer, Rocio Gomez, Kon-
stantinos Katsikopoulos, Pat Langley, Ales Leonardis, Ben
Meadows, Tiago Mota, Heather Riley, Saif Sidhik, Özgür
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