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Abstract

Embodied AI agents deployed in assistive roles often have to
collaborate with humans or other agents without prior coor-
dination, quickly adapting to new situations and the behav-
ior of others. State of the art methods for such ad hoc team-
work often pursue a data-driven approach that needs a large
labeled dataset of prior observations, lacks transparency, and
makes it difficult to rapidly revise existing knowledge in re-
sponse to changes. This paper advocates the combination of
knowledge-based reasoning and data-driven learning for ad
hoc teamwork. In the context of collaborating with a human,
our architecture enables an ad hoc agent to use a Large Lan-
guage Model to anticipate abstract future tasks and goals of
the human. The agent then computes a plan of concrete ac-
tions to achieve these goal(s) based on non-monotonic log-
ical reasoning with the predicted future task(s), prior com-
monsense domain knowledge, and models that are rapidly
learned and revised from limited examples to predict the hu-
man’s concrete action choices. The architecture capabilities
are illustrated and evaluated in VirtualHome, a realistic 3D
simulation environment.

1 Introduction
Consider an embodied AI agent completing daily living
tasks in collaboration with a human it has not worked with
before. Figure 1 shows the agent and human working to pre-
pare breakfast and set up a workstation. The human and the
agent have a limited view of the environment at each step
and do not communicate directly with each other1. While
the human is aware of the upcoming tasks in the domain,
the agent is not; it has to reason with different descriptions
of domain knowledge and uncertainty, adapting its actions
to changes in the domain and the human’s behavior to col-
laborate efficiently. These characteristics represent Ad Hoc
Teamwork (AHT), where an agent must cooperate with oth-
ers without prior coordination (Stone et al. 2010).

The state of the art in AHT has moved from using pre-
determined policies for selecting actions in specific states to
methods with a key data-driven component that uses a long
history of prior experiences to build probabilistic or deep
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1Our architecture can support communication between agents,
but we do not include it here for simplicity.

Figure 1: Screenshots from VirtualHome (Puig et al. 2018)
showing a human (female in green top) and an embodied AI
agent (male in blue shirt) collaborating.

network methods that model the behavior of other agents
(or agent types) and optimize the behavior of the ad hoc
agent (Mirsky et al. 2022). However, it is difficult to gather
large training datasets of different situations in practical do-
mains. Also, these methods lack transparency, and make it
difficult to revise existing knowledge over time.

In a departure from existing work, we advocate the de-
sign of architectures for AHT that bridge knowledge-based
and data-driven reasoning and learning methods. Specifi-
cally, we build on our recent work on AHT in structured
domains (Dodampegama and Sridharan 2023a,b) to explore
human-agent collaboration in more complex domains. An ad
hoc agent equipped with our architecture:
1. Leverages the strengths of Large Language Models

(LLMs) to anticipate future tasks and goals of the human
collaborator using partial sequence of tasks for efficient
collaboration in dynamic settings; and

2. Considers current and anticipated tasks as joint goals,
and performs non-monotonic logical reasoning with rel-
evant commonsense domain knowledge and a rapidly-
learned predictive model of the human’s behavior to de-
termine its actions toward achieving the goals.

We use Answer Set Prolog (Gelfond and Kahl 2014) for non-
monotonic logical reasoning and GPT4o mini for high-level
task anticipation. We evaluate our architecture’s capabilities
in household scenarios in VirtualHome, a realistic physics-
based 3D simulation environment for multiagent collabora-
tion (Puig et al. 2018).

2 Related Work
Research in AHT evolved from the use of specific protocols
defining the agents’ behavior in specific scenarios (Bowl-



ing and McCracken 2005), to the use of probabilistic and
sampling-based methods (Barrett et al. 2013) over a pe-
riod of time (Mirsky et al. 2022). Methods currently con-
sidered to be state of the art include a data-driven com-
ponent, using probabilistic, deep-network and/or reinforce-
ment learning (RL) methods to learn policies that deter-
mine action choices based on a long history of prior ob-
servations of different types of agents or situations. For
example, RL methods have been used to select a policy
for a new teammate from the policies learned for different
teammate types (Barrett et al. 2017), and model-based RL
has been used to learn environment models and behavior
of teammates (Ribeiro et al. 2023). Researchers have used
attention-based deep neural networks to jointly learn poli-
cies for different agent types (Chen et al. 2020) and differ-
ent team compositions (Rahman et al. 2021); hierarchical
variational auto-encoders and meta-learning to model and
infer beliefs over other agents (Zintgraf et al. 2021); Con-
volutional Neural Networks to detect and adapt to chang-
ing teammate types (Ravula, Alkoby, and Stone 2019); sam-
pling strategies combined with learning methods to opti-
mize performance (Zand, Parker-Holder, and Roberts 2022);
and meta-RL methods with self-play and perturbed rewards
to respond to unknown teammates (Fang et al. 2024). Re-
searchers have also explored communication strategies for
AHT, e.g., broadcast messages at a cost or use heuris-
tic methods (Macke, Mirsky, and Stone 2021). Such data-
driven methods are resource-hungry, build opaque models,
and make it difficult to adapt to changes.

Recent work in AHT has leveraged Large Language Mod-
els (LLMs), e.g., an LLM-based hierarchical planner (IRoT)
has been used to generate an ad hoc agent’s policy to sup-
port zero-shot collaboration (Liu et al. 2024), and memory
retrieval and code-driven reasoning have been used for AHT
in the AvalonPlay benchmark (Shi et al. 2023). In parallel,
there has been increased use such data-driven methods for
embodied AI systems in physically realistic simulation en-
vironments such as Habitat (Savva et al. 2019) and Virtual-
Home (Puig et al. 2018) that support the generation of com-
plex scenarios for evaluating AI systems.

Our architecture combines knowledge-based and data-
driven methods for reasoning and learning, allowing an ad
hoc agent to adapt to the behavior of its teammate in a com-
plex, realistic household environment. We demonstrate that
the interplay between reasoning and learning enables the ad
hoc agent to utilize prior knowledge, learn and revise pre-
dictive models of human behavior with limited data, and ac-
curately anticipate future tasks with minimal feedback.

3 Architecture
In our architecture for human-embodied AI ad hoc collab-
oration (Figure 2), the ad hoc agent is an assistive embod-
ied AI agent that utilizes non-monotonic logical reasoning
with prior commonsense domain knowledge and an incre-
mentally learned behavior model of its human teammate.
At each step, both the human and the ad hoc agent receive
state observations from the environment, which they inde-
pendently use to determine and perform their actions. The
tasks to be carried out each day are determined by the task

generator. The ad hoc agent is only aware of the current
task of the human. To anticipate the human’s future goals,
the ad hoc agent utilize a LLM. The prompt to the LLM is
created following different prompt-engineering techniques
(Section 3.3) and the LLM’s output is validated to ensure
the feasibility and correctness of the predictions. Any avail-
able previous knowledge of tasks in the domain is used in
the prompts and the external validation. Each component of
the architecture is described using the following example.

Example Domain 1 [Embodied AI Agent]
Consider an AI agent and a human collaborating to com-
plete household tasks; Figure 1 shows snapshots of prepar-
ing breakfast and setting up the work-station (Puig et al.
2018). The agent and the human can interact with the en-
vironment through actions that involve moving to places,
picking up or placing objects, switching appliances on or
off, and opening or closing appliances. Completing a task
requires a sequence of such actions to be computed and ex-
ecuted by the embodied AI agent and/or the human with-
out direct communication between them. The agent assumes
that the human has access to the same information about do-
main state, predicts the actions that the human will execute
over the next few steps, and makes its plan of actions accord-
ingly. The agent’s prior commonsense knowledge includes
relational descriptions of some attributes of the domain, ob-
jects, and human. It also includes axioms governing actions
and changes, such as the agent not being able to hold more
than two objects at a time or that it is impossible to pick up
objects that are not in the same location as the agent.

3.1 Knowledge Representation and Reasoning
In our architecture, any given domain’s transition diagram is
described using an extension of action language ALd (Gel-
fond and Inclezan 2013). Action languages are formal
models of parts of natural language for describing transition
diagrams of dynamic systems. The domain representation
comprises a system description D, a collection of statements
of ALd, and a history H. D has a sorted signature Σ with ba-
sic sorts and describes the domain attributes (statics, fluents)
and actions in terms of the sorts of their arguments. Virtual-
Home domain include basic sorts such as object, appliance,
ad hoc agent, human, and step (for temporal reasoning).
These sorts are arranged hierarchically, e.g., apple is a
sub-sort of food that is a sub-sort of graspable, a sub-sort
of object. Actions can be agent actions, performed by
the ad hoc agent, e.g., grab(ad hoc agent, object) and
switch on(ad hoc agent, appliance), or exo actions,
performed by the human, e.g., exo grab(human, object)
and exo switch on(human, appliance). Statics are do-
main attributes whose values cannot be changed and fluents
are attributes whose values can be changed. Fluents can
be inertial, which obey inertia laws and are changed by
actions, e.g., at(ad hoc agent, location) is the ad hoc
agent’s location; and defined, which do not obey inertia laws
and are not directly changed by ad hoc agent’s actions, e.g.,
agent at(human, location) denotes the human’s location.

Based on Σ, the domain dynamics are described in D us-
ing three types of axioms: causal law, state constraint, and



Figure 2: Our architecture combines the complementary strengths of knowledge-based and data-driven reasoning and learning,
along with the anticipation capabilities of Large Language Models.

executablility condition such as:

open(A,E) causes opened(E) (1a)
¬(at(A,L1), I) if at(A,L2), I), L1 ̸= L2 (1b)
impossible grab(A,O) if on(O,E), (1c)

not opened(E)

where Statement 1(a), a causal law, implies that an agent(A)
opening an appliances(E) causes it to be opened; State-
ment 1(b), a state constraint, implies that an agent(A)
cannot be in two places(L1, L2) at the same time; and
Statement 1(c), an executability condition, prevents the ad
hoc agent(A) from trying to grab an object(O) from an
appliance(E) with a closed door.

History H is a record of statements of the form
obs(fluent, boolean, step), which represent observations,
and statements of the form hpd(action, step), which repre-
sent action execution, at specific time steps. It also includes
default statements that are true in the initial state.

To reason with knowledge, we automatically construct
program Π(D,H) in CR-Prolog (Balduccini and Gelfond
2003), an extension to ASP that supports consistency restor-
ing (CR) rules. Π(D,H) includes statements from D and
H, inertia axioms, reality check axioms, closed world as-
sumptions for defined fluents and actions, helper relations,
e.g., holds(fluent, step) and occurs(action, step) to im-
ply that a fluent is true and an action is part of a plan at a time
step, and helper axioms that define goals and guide planning
and diagnosis. ASP is based on stable model semantics, and
encodes default negation and epistemic disjunction, i.e., un-
like “¬a” that states a is believed to be false, “not a” only
implies a is not believed to be true, and unlike “p ∨ ¬p”,
“p or ¬p” is not tautologous. Each literal is true, false, or
unknown, and the agent only believes what it is forced to
believe. ASP supports non-monotonic reasoning, i.e., the

ability to revise previously held conclusions, which is es-
sential for agents reasoning and acting in practical domains
based on incomplete knowledge and noisy observations. The
CR rules allow the agent to make assumptions (e.g., that a
default statement does not hold) under exceptional circum-
stances to recover from inconsistencies. All reasoning tasks,
i.e., planning, diagnostics, and inference are reduced to com-
puting answer sets of Π. We use the SPARC system (Balai,
Gelfond, and Zhang 2013) to solve CR-Prolog programs.

The VirtualHome scenario is complex, with many objects
scattered in different compartments. Achieving goals often
requires a computationally expensive process to compute
plans with multiple steps. To ensure scalability, we build
on prior work in our group on a refinement-based architec-
ture (Sridharan et al. 2019). The ad hoc agent represents and
reasons at two resolutions, with the fine-resolution transition
diagram defined as a refinement of the coarse-resolution one,
automatically selecting and using the resolution and the part
of the description relevant to the task at hand.

Knowledge-based reasoning and learning methods are
often criticized for their need for comprehensive domain
knowledge, but existing methods can leverage incomplete
knowledge and revise it over time (Sridharan and Meadows
2018). Also, the effort to encode this knowledge is much less
than the effort needed to train purely data-driven systems.

3.2 Agent Behavior Models
Practical human-agent collaboration domains change over
time, e.g., due to the human’s actions. In addition to prior
knowledge, our architecture enables the ad hoc agent to
reason with models that predict the human’s behavior. We
use the Ecological Rationality (ER) principle (Gigerenzer
2020), based on Herb Simon’s definition of Bounded Ra-
tionality and the algorithmic theory of heuristics, to quickly



Figure 3: FF tree model of human behavior for the
grab book action in the VirtualHome domain.

learn and update predictive behavior models of the human
(i.e., the other agent). ER explores decision making ”in the
wild”, i.e., under open world uncertainty with the space of
possibilities not fully known, and characterizes behavior as
a function of internal cognitive processes and the environ-
ment. It prioritizes adaptive satisficing because in the ab-
sence of comprehensive knowledge, optimal decisions may
be unknowable and not just hard to compute. Also, heuris-
tics are used to ignore part of the information to make de-
cisions more quickly, frugally, and/or accurately than com-
plex methods (Gigerenzer and Gaissmaier 2011). This ap-
proach has provided better performance that more sophisti-
cated ones in practical applications (Gigerenzer 2016).

Our architecture enables the ad hoc agent to select rel-
evant attributes and learn a model of the human behavior
incrementally and from limited data. Specifically, the agent
learns an ensemble of Fast and Frugal (FF) trees to predict
the human’s behavior. Each FF tree provides a binary choice
for a particular action, and the number of leaves in a tree
is limited by the number of attributes (Katsikopoulos et al.
2021). Each level of the tree contains an exit allowing the
agent to make quick decisions based on available data. Un-
like many current methods for AHT, these predictive models
can be learned and revised incrementally and rapidly, which
is a useful capability for AHT.

Figure 3 shows one such FF tree learned for the human.
Our trees are built while minimizing false positives. The ini-
tial version of these trees were built using only 1000 traces
of human action choices and domain state from the Virtu-
alHome domain, with the corresponding attributes listed in
Table 1. Since each FF tree provides a binary choice we
build an ensemble of trees with a simple decision tree con-
sidering the output from the FF trees. Furthermore, consis-
tent agreement (or disagreement) between observations and
model predictions can trigger model selection or revision of
the existing models, allowing the ad hoc agent to quickly
adapt to changes in the domain or the human’s behavior.

3.3 Task Anticipation with LLMs
While LLMs have demonstrated impressive statistical pre-
diction capabilities, they (by themselves) are not capable
of effective planning or self-validation (Kambhampati et al.
2024). They have been shown to be much more effective
when they are used to generate generic (high-level) plans

Description of the attribute

Immediate two previous actions of the human
Position of the human (x,y,z)
Orientation of the human (x,y,z)
Any objects in the hand of the agent
Current and previous tasks
Flags (day of the week, going to office, guests expected)

Table 1: Attributes used to create the behavior models of the
human in the VirtualHome domain.

that are then validated externally to ensure correctness and
feasibility before using suitable subroutines to implement
each plan step (Kambhampati et al. 2024). LLMs can thus
also be viewed as good translators between natural language
and domain-specific languages that help refine and correct
planning models (Guan et al. 2023).

Motivated by the above findings, we use LLMs in our
architecture to anticipate high-level future tasks to be exe-
cuted. In the absence of the LLM, the ad hoc agent and the
human come to know of tasks (to be completed in in Vir-
tualHome) one at a time. When the LLM is included in the
architecture, the ad hoc agent obtains the anticipated next
task/goal that is likely to be assigned once the current task is
done. By jointly considering the current and next tasks, the
ad hoc agent can come up with a better plan of actions that
can enhance the overall team performance.

Figure 4 show an example input prompt for the LLM in
VirtualHome by the ad hoc agent. We employ three prompt
engineering strategies for refining LLM performance.

1. Adopting a persona: Assign a specific role or charac-
ter to the LLM model to guide its responses. This helps
the model generate responses that are consistent with the
assigned role and contextually appropriate.

2. Few-shot prompting: The model is provided some ex-
amples within the prompt, guiding the use of pretrained
knowledge to perform any given task with limited data.

3. Chain-of-thought (CoT): Step-by-step reasoning pro-
cess that could be followed when arriving at an answer.
This helps the model generate intermediate reasoning
steps leading to more accurate and relevant responses.

More specifically, we asked the LLM to adopt the persona of
an intelligent household assistant for more accurate and con-
textually appropriate responses. Then we utilized ‘few-shot’
prompting by including two example task routines from pre-
vious days in the prompt. These examples were dynamically
selected from a list of past tasks, randomly chosen from two
different days to provide as examples to the LLM. These ex-
ample routines can be at various stages of completion: one
with no completed task for the LLM to predict, and another
partially completed routine for the LLM to continue. Finally
we utilized the CoT method to describe the reasoning behind
each of the selected tasks of the examples in a day. This pro-
vided the LLM with additional context and guidance allow-
ing for rapid adaptation, which is critical in AHT settings.
We provided the LLM with a list of possible high-level tasks



Figure 4: Example prompt sent to the LLM to anticipate the human’s future tasks. Each prompt includes a list of possible tasks,
two partially completed example routines, and a partially completed routine for the LLM to complete.

in the VirtualHome domain. This enabled the LLM to pro-
vide more actuate and contextual responses. We then asked
the LLM to complete a routine for a given day.

The tasks predicted by the LLM are parsed by an external
validator. Specifically, the future task list from the LLM out-
put is compared with the existing knowledge in the ASP pro-
gram and previous experience (i.e., observations) to ensure
that the tasks are feasible (for the given day) and that the task
order is reasonable. Given that the LLM is not trained in the
specific domain, there may be a difference between the task
order preferred by a human in VirtualHome and the order
suggested by the LLM. Thus, we re-order the tasks if they
are not in a reasonable (or preferred) order. For example,
the agent may need to prioritize preparing the workstation
for work over packing a bag for shopping when the human
is working from home, or the human may prefer breakfast
before starting on coffee. This ensures plan feasibility and
prioritizes tasks that require more attention.

The validated high-level LLM-based task predictions can
be set as joint goals to be achieved. In our architecture, the ad
hoc agent considers one anticipated (future) task along with
the current task and the predicted human actions toward the
current task, planning a sequence of actions that it then ex-
ecutes. We show that team performance is much better with
the LLM-based anticipation than without it.

4 Experimental Setup and Results
We experimentally evaluated the following hypotheses re-
garding the capabilities of our architecture:

• H1: Reasoning with prior domain knowledge and predic-
tive behavior models improves team performance;

• H2: Considering anticipated tasks from the LLM as joint
goals improves team performance compared with pursu-
ing one goal at a time;

• H3: Incrementally-updated prompts of recent experi-
ences and external validators lead to better LLM-based
task anticipation and improved team performance; and

• H4: Using LLMs to predict low-level actions(planning)
in complex domains results in poor performance.

We evaluated these hypotheses in VirtualHome with the lat-
est GPT-4o-mini LLM. Each episode continued until the
human-agent team completed all tasks for the given day. We
recorded the number of steps (plan length) and the total time
taken by the team (i.e., human and embodied AI agent) to
complete the task as the performance measures. More de-
tails of the experiments and baselines are provided below.

4.1 Experimental Setup
In the VirtualHome domain, we modeled the human as a
simulated entity that selects its actions based on an ASP
program. This program (and thus the human) does not rea-
son about the agent’s capabilities. An external task generator



computes a sequence of tasks, but the human and the ad hoc
agent only receive one task (to be completed) at a time. Both
the human and the ad hoc agent received the same observa-
tions from the domain at each step, which they used to plan
their respective actions in the domain.

When the ad hoc agent received a task from the task gen-
erator, it prompted the LLM for any future tasks. As de-
scribed in Section 3.3 (also see Figure 4), these anticipated
tasks were validated to check their feasibility and execution
order. The validated goals were then mapped to a ASP goal
and set as the goal of the ad hoc agent together with the goal
received from the task generator. In our implementation, the
ad hoc agent planned jointly for the goal from the task gen-
erator and the next (anticipated) task from the LLM. During
this planning process, the ad hoc agent also used the learned
human behavior prediction model to predict the possible fu-
ture actions of the humans, as described in Section 3.2. Re-
call that these predictive models were built only using 1000
examples of prior traces of human actions and domain state.

The ASP program of the ad hoc agent included additional
axioms for reasoning about these predicted actions (of the
human) that are mapped to exogenous actions. As a result,
the ad hoc agent’s plan anticipates that the preconditions for
some intermediate steps will be created by the human’s ac-
tions, even though the human may not always do so. On the
other hand, the human cannot predict the ad hoc agent’s ac-
tions, and the ASP program governing the human’s action
choices (in simulation) does not include axioms for reason-
ing about these actions, leading to the human’s actions being
determined primarily by the current state and goal.

For evaluating H1 and H2 in Exp1, we randomly selected
100 task routines and measured the ability of the team com-
prising a human and an embodied AI agent to successfully
complete these tasks in VirtualHome. The performance mea-
sures were the number of steps and time taken to complete
the tasks. We used three specific baselines to evaluate the
contribution of each component of our architecture.

• Base1: used the LLM for anticipating future tasks, but
did not use the predictive behavior models to anticipate
the future actions of the human.

• Base2: did not use the LLM to predict the future tasks,
but used the predictive behavior models to anticipate the
human’s future actions.

• Base3: did not use the LLM for task anticipation or be-
havior models to predict the human’s future actions.

The agent only planned for current task in Base2 and Base3.
Next, for evaluating H3 in Exp2, we randomly selected 20

task routines from the domain and recorded the team perfor-
mance (number of steps and task completion time) when the
LLM used different prompt-engineering methods (adopt-
ing a persona, few-shot prompting, CoT; Section 3.3) and
when the LLM did not use the prompt-engineering meth-
ods. We used three baselines to evaluate the importance of
each prompt-engineering method and the external validator.

• Base4: did not use any specific prompt-engineering
method or external validator.

• Base5: used few-shot prompting (i.e., two examples of

partially completed routines and their expected answers
included in the prompt) but no external validator.

• Base6: used CoT prompting i.e., each example was ac-
companied by a step-by-step explanation on arriving at
the answer, but no external validator.

• Base7: used external validator to filter (and reorder)
LLM output but no prompt-engineering methods.

For evaluating H4, we conducted a special experiment
where we extended our architecture to utilize the LLM for
low-level planning (Base8). Specifically, we extended our
prompt to include information on the low-level actions that
can be executed in VirtualHome along with their intended
purposes, such as: move(agent, location): move the agent to
an adjacent location; grab(agent, object): pick up an object.
We also supplied the LLM with Action Feasibility Rules:

• Movement Limitation (critical): you must only move to
adjacent locations defined by the next to relationships.
Any move to a destination that is not adjacent is prohib-
ited. Always check adjacency before predicting a move.

• Object Location: you must be in the same location as an
object to perform any action on it (e.g., grab or put).

• Carrying Limit: you cannot hold more than two objects
at a time. Also, when holding two objects, actions like
open, close, switch-on, or switch-off require you to put
down at least one object first.

• Appliance Safety: for safety, you should not open appli-
ance doors when they are switched on.

• If the human is holding an object, assume they will han-
dle all tasks involving the object. Do not attempt to grab
or interact with the object the human is holding. Instead,
focus on parts of the goal unrelated to that object.

Then we included information about adjacent places in the
domain emphasizing the fact that the agent can only move
between the defined adjacent places.

next to(counter one, kitchen table)

next to(livingroom desk, livingroom coffeetable)

The LLM had access to the current world state, including
the location of the human, agent, objects, and appliances,
each appliance’s state, and information about the objects
held by the agent or human. The problem specification also
described the task to be performed; the immediate previous
actions of the human and the agent; any specific informa-
tion to be considered on any given day (e.g., human working
from home or the office); whether it is a weekday or the
weekend; and whether the human is expecting guests. In ad-
dition, the prompt included a detailed example of selecting
an action, and asked the LLM to generate a plan for achiev-
ing the assigned goal and specify the next action to execute.

The action choice by the LLM was then assigned as the
action of the ad hoc agent. As a recovery mechanism, we
corrected identified errors in the LLM output up to three
times per trial. For example, if the LLM selected an action
that was not feasible in its current location, such as attempt-
ing to grab an object without moving to the appropriate loca-
tion or trying to move to a non-adjacent place, we provided



feedback explaining why the action choice was incorrect.
The feedback allowed the LLM to predict another action for
that step, and we measured the ability of the human-ad hoc
agent team to achieve success in completing the tasks in the
previously selected 100 task routines. As before, the perfor-
mance measures were the number of steps and time taken to
complete the set of tasks.

4.2 Experiment Results
Table 2 summarizes the results of Exp1. When the ad hoc
agent used task anticipation from the LLM and the human
action prediction based on the behavior prediction models, it
resulted in the best performance with lowest number of steps
and time to complete the task routines. When the ad hoc
agent used the LLM for future task anticipation but not the
output from the behavior prediction models (Base1), both
the number of steps and time taken to complete the tasks
increased. This can be attributed to the fact that being un-
able to anticipate the actions of the human teammate may
lead the ad hoc agent to select the same actions as the hu-
man. Such conflicts prevent effective collaboration between
the human and the ad hoc agent. These results emphasize
the importance of using the behavior prediction models in
planning and support hypothesis H1.

When the ad hoc agent used the behavior prediction mod-
els to predict the future actions of the human, but did not
use the LLM to anticipate possible future tasks (Base2), the
performance worsened further, with a further increase in the
number of steps and the time taken to complete the task. Re-
call that this setting corresponds to the agent only planning
for one goal at a time and not anticipating future goals. Plan-
ning and executing actions jointly for the current goal and
the goal likely to be assigned in the immediate future of-
ten saves both time and effort, and this benefit is lost when
the ad hoc agent does not anticipate future tasks. For exam-
ple, when the agent visited the bedroom to retrieve a board
game to entertain guests, it could have also picked up bottles
of wine from the cellar that is on the way. Instead, making
two separate trips for these tasks unnecessarily extends the
length and duration of the the plans. These results indicate
the impact that planning for joint goals has on overall per-
formance, supporting hypothesis H2.

Base3 used neither the future task anticipation from the
LLM nor the predictions of human’s action based on the be-
havior models. This led to worst observed performance with
the highest value for both number of steps and time taken
by the team to complete the assigned tasks. These results
further support hypotheses H1 and H2.

Table 3 show the results from Exp2, where we used the
LLM to predict the future tasks in VirtualHome with and
without the external validator and the prompt-engineering
methods discussed in Section 3.3. We observed a marked
improvement in performance in the form of lower number
of steps and time taken to successfully complete the task
routines when the external validator and a combination of
prompting methods were used. In particular, the use of exter-
nal validator to check and correct the output from the LLM
based on domain-specific information had a significant im-
pact on performance. These results support H3.

Architecture Steps Time(s)

Proposed (anticipate tasks, predict actions) 26.8 361.0
Base1 (anticipate tasks) 29.3 385.8
Base2 (predict actions) 34.1 443.0
Base3 37.5 487.4

Table 2: Average number of steps and time taken by team
(human, ad hoc agent) to complete the task routines; LLM-
based task anticipation and FF trees-based human action
prediction substantially improve performance.

Architecture Steps Time(s)

Proposed (all prompting, with validator) 27.5 372.7
Base4 (no prompting, no validator) 33.1 427.7
Base5 (few-shot prompting, no validator) 32.1 441.1
Base6 (chain-of-thoughts, no validator) 31.7 430.8
Base7 (no prompting, with validator) 28.9 387.5

Table 3: Average number of steps and time taken by the team
(human and ad hoc agent) to successfully complete the tasks
when using the prompt-engineering methods in conjunction
with the external validators.

Table 4 shows the results of Exp3, where we used the
LLM to directly anticipate the low-level actions for the ad
hoc agent in the VirtualHome domain. The number of steps
and time taken to successfully complete the task routines
are significantly higher than our architecture as well as all
the baselines (Base1-3). These results support H4.

We also performed a qualitative evaluation of our archi-
tecture’s capabilities, particularly of hypothesis H3. Fig-
ure 5 shows an execution example from the VirtualHome do-
main using the LLM without the prompt-engineering meth-
ods or external validator. In this scenario, as explained in
the prompt, the LLM was asked to predict a list of tasks a
human would perform on a weekday while working from
home. The expected task list from the LLM was [Prepare
breakfast weekday, Prepare home work-station, Prepare cof-
fee, Prepare lunch]; i.e., making breakfast and setting up the
workstation were considered to the time-critical tasks to be
completed first before proceeding to other tasks. When not
using the prompt-engineering methods and external valida-
tor, the task list predicted by the LLM was [Prepare break-
fast weekday, Prepare coffee, Prepare home work-station,
Pack bag]. This task routine did not align with the human
preferences; more importantly, it led to a conflicting situa-
tion in which making coffee was given higher priority than

Architecture Steps Time

Base8 (LLM predict low-level actions) 39.7 520.0

Table 4: Average number of steps and time taken by the
human-ad hoc agent team to successfully complete the task
routines when using the LLM to predict low-level actions
that can be directly executed in the VirtualHome domain.



Figure 5: Execution example illustrating how the use of
LLM in the absence of suitable prompt-engineering meth-
ods or an external validator causes conflicts during plan ex-
ecution.

Figure 6: Execution example illustrating the use of behavior
prediction models to improve performance. The tasks ex-
ecuted are [Prepare breakfast weekend, Prepare activities,
Serve snacks, Clean kitchen]. When the ad hoc agent is un-
able to predict the human’s actions, it frequently chooses to
execute same action as the human leading to longer plans.

setting up the workstation. This would lead to the human
being late for work and the coffee not being hot when the
human was ready to drink it. Additionally, packing the bag
was an unnecessary action that prevented the ad hoc agent
from making proper use of its time in collaborating with
the human. In addition, when the agent used the prompt-
engineering methods described in Section 3.3, the task list
predicted by the agent was [Prepare breakfast weekday, Pre-
pare home work-station, Prepare coffee, Clean dishes]. This
task routine was then further filtered by the external valida-
tor to remove the non-feasible task of Clean dishes. These
results further support H3.

Figure 6 shows an execution example of the ad hoc agent
executing the tasks [Prepare breakfast weekend, Prepare ac-
tivities, Serve snacks, Clean kitchen]. When the agent did
not use behavior prediction models, it often selected the
same actions as the human when pursuing any particular

task/goal, leading to unnecessary delays in completing the
assigned tasks. However when the agent use the FF trees-
based behavior prediction models, it avoided such unnec-
essary actions and delays, resulting in more efficient plans.
These results further support hypothesis H1.

5 Conclusions
This paper described an architecture for Ad Hoc Team-
work (AHT), enabling an embodied AI agent to collaborate
with a human by reasoning with prior commonsense domain
knowledge and incrementally learned models that predict
the human behavior. The architecture integrates principles
of non-monotonic logical reasoning and ecological rational-
ity, automatically identifying and reasoning with relevant in-
formation. It leverages the generic knowledge and predictive
capabilities of LLMs for high-level task and goal anticipa-
tion based on limited prompts, translating them into concrete
actions executed within a realistic physics-based simulation
environment (VirtualHome). We demonstrate the architec-
ture’s improved performance compared with various base-
lines, highlighting the significance of each component in our
design. In future work, we aim to explore the scalability of
our architecture to multiple ad hoc agents and humans, as
well as its implementation and evaluation on physical robots
in AHT settings.
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