
Hindawi Publishing Corporation
Advances in Artificial Intelligence
Volume 2010, Article ID 765876, 20 pages
doi:10.1155/2010/765876

Research Article

Bootstrap Learning and Visual Processing Management on
Mobile Robots

Mohan Sridharan

Department of Computer Science, Texas Tech University, Lubbock, TX 79409, USA

Correspondence should be addressed to Mohan Sridharan, mohan.sridharan@ttu.edu

Received 1 October 2009; Accepted 10 November 2009

Academic Editor: Alfons Schuster

Copyright © 2010 Mohan Sridharan. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A central goal of robotics and AI is to enable a team of robots to operate autonomously in the real world and collaborate with
humans over an extended period of time. Though developments in sensor technology have resulted in the deployment of robots
in specific applications the ability to accurately sense and interact with the environment is still missing. Key challenges to the
widespread deployment of robots include the ability to learn models of environmental features based on sensory inputs, bootstrap
off of the learned models to detect and adapt to environmental changes, and autonomously tailor the sensory processing to
the task at hand. This paper summarizes a comprehensive effort towards such bootstrap learning, adaptation, and processing
management using visual input. We describe probabilistic algorithms that enable a mobile robot to autonomously plan its actions
to learn models of color distributions and illuminations. The learned models are used to detect and adapt to illumination changes.
Furthermore, we describe a probabilistic sequential decision-making approach that autonomously tailors the visual processing to
the task at hand. All algorithms are fully implemented and tested on robot platforms in dynamic environments.

1. Introduction

An open grand challenge in the field of robotics is to
enable widespread deployment of robots in the real world,
where they can operate autonomously and collaborate with
humans. Addressing this grand challenge would in turn
require answers to the following major questions.

(i) Autonomous Learning and Adaptation. How to enable
a robot to autonomously learn models of environ-
mental features based on sensory input, detect envi-
ronmental changes, and adapt the learned models in
response to such changes?

(ii) Processing Management. Given multiple sources of
information, which bits of information should be
processed, and what processing should be performed
in order to achieve a desired goal reliably and
efficiently?

(iii) Multiagent Coordination. How to enable a team of
robots, each with possibly different capabilities and
constraints, to collaborate robustly towards a shared
objective despite noisy sensing and communication?

In this paper, the focus is primarily on developing proba-
bilistic methods for Autonomous Learning and Adaptation,
and for Processing Management. We propose probabilistic
methods that enable a robot to use sensory inputs to
learn environmental models and respond to environmental
changes. Furthermore, given multiple sources of informa-
tion, the robot autonomously tailors the sensory processing
to the task at hand.

Mobile robots that sense and interact with the environ-
ment through a set of sensors and actuators are characterized
by the following features and requirements.

(i) Features

(a) Partial Observability. The true state of the world
is not directly observable. The robot can only
update its belief, that is, an estimate of the world
state by executing actions and observing the
noisy outcomes.

(b) Nondeterministic Actions and Observations. The
outcome of executing actions or making obser-
vations based on sensory input is nondeter-
ministic, that is, actions and observations are
unreliable.

2 Advances in Artificial Intelligence

(c) Computational Complexity. Many state-of-the-
art sensory processing algorithms (e.g., vision
algorithms) have high computational complex-
ity.

(ii) Requirements.

(a) Dynamic Performance. Robots operating in the
real world need to respond to the changes
in their environment despite computational
constraints; that is, there is a strong real-time
requirement.

(b) Reliability. Though outcomes of actions and
observations are nondeterministic, the robot
needs to operate with a high degree of relia-
bility, especially in critical applications such as
disaster rescue or surveillance.

Developments in sensor technology [1, 2] have resulted in
the deployment of mobile robots in specific applications such
as disaster rescue, navigation, and medicine [3–6]. The abil-
ity to accurately sense and interact with the environment is
however still lacking. The state of the art in mobile robotics is
hence far from achieving autonomous operation over a range
of domains. Real world environments change in ways that
cannot be specified in advance, while most sensors mounted
on mobile robots require a time-consuming manual calibra-
tion phase before deployment. In addition, this calibration
is sensitive to environmental changes. Furthermore, a robot
can process the inputs from its multiple sensors using a set of
algorithms, each of which may have a different reliability and
computational complexity. Processing all the information
would be infeasible in dynamic domains where real-time
operation is essential.

The above-mentioned challenges are all the more pro-
nounced in the case of visual input from color cameras. A
color camera provides higher bandwidth information than
range sensors (laser, sonar, etc.) at a much lower cost. Visual
input is however more noisy and sensitive to environmental
factors such as illumination, and visual information process-
ing algorithms are typically computationally expensive. Until
recently, many mobile robot applications have therefore
relied on range sensors [7, 8]. Even the approaches that
consider visual input make most high-level decisions based
on other sources of input [6, 9], or only use the limited
information obtained from intensity images [10]. A rich
source of information is hence not fully exploited.

One factor that can be utilized to offset the challenges
listed above is the presence of a moderate amount of
structure in many mobile robot environments. Examples of
such structure include known positions and properties (e.g.,
size, shape) of unique objects in the environment, infor-
mation which can be manually provided or automatically
inferred by the robot. This structure can be exploited to
enable autonomous operation on mobile robots. Our work
represents a comprehensive effort towards such learning,
adaptation, and processing management using the input
from color cameras as the primary source of information.
The work on autonomous learning and adaptation focuses

on color as the feature of interest and illumination as the
environmental factor that changes over time. The work
on processing management considers several sources of
information that are based on visual input. Specifically, this
paper summarizes the following contributions.

(i) A probabilistic bootstrap learning framework that
enables a robot to plan its actions in order to learn
models of color distributions and illumination con-
ditions in its environment [11]. The robot uses these
learned models to detect and adapt to illumination
changes [12].

(ii) A probabilistic sequential decision-making frame-
work which enables a robot to autonomously tailor
its visual information processing to the task at hand
[13].

These algorithms are tested on specific robot platforms and
have the potential of generalizing to other applications.

The remainder of this paper is organized as follows.
Section 2.1 summarizes a typical robot vision system, while
Section 2.2 describes the test platforms used. Section 3.1
describes the related work in the areas of color segmentation,
color learning, and illumination invariance, followed by
an overview of AI planning methods as applied to robot
vision tasks (Section 3.2). Next, Section 4.1 describes our
proposed approach for autonomous illumination-invariant
color learning, while Section 4.2 presents the approach
for visual processing management based on probabilistic
sequential decision processes. Finally, Section 5 summarizes
the conclusions and directions for further research.

2. Baseline Vision System and Test Platforms

In this section, we present an overview of a typical robot
vision system, followed by a description of the test platforms
used to evaluate the proposed algorithms.

2.1. Baseline Robot Vision System. Figure 1 shows a flowchart
of the typical robot vision system that uses color information.
Color segmentation is typically the first step, where the goal is
to cluster image regions into similar groups and/or to create
a mapping from pixel values to discrete color labels, that is,
to create a color map

ΠE : {m1,m2,m3} �−→ l|l∈[0,N−1], (1)

where m1, m2, m3 are the values along the color channels
(e.g., R, G, B) that can take values in [min-max] (0-255
for RGB), the subscript E represents the dependence on
illumination, and l refers to the numerical indices of the color
labels (e.g., blue = 1, orange = 2). This mapping is typically
generated by extensive manual labeling of image regions.

The (color) segmented image regions are used to find
“objects” and other desired structures using heuristics and
constraints based on the known properties (size, shape,
color, etc.) of the target objects. The detected objects and
their locations in the image can be used along with other
inputs (e.g., depth map from a stereo camera) for creating

Advances in Artificial Intelligence 3

Color segmentation Object recognition

Scene understanding,
localization

High-level behavior/
action strategy

Input color
image

Figure 1: Typical vision-based operation flowchart.

a 3D model of the scene. On mobile robots, the relative
distances and bearings of the detected objects can be used
in a localization module that computes the position and
orientation (i.e., pose) of the robot in the global frame
of reference. The 3D model of the scene and/or the pose
information is used by the robot to determine the high-level
behavior suitable to achieve the desired goal (e.g., navigate to
a location to retrieve an object). See [14] for an instance of
such a robot vision system.

In order to operate robustly in dynamic environments,
a robot has to deal with unexpected changes autonomously
and efficiently. For instance, Figure 2 shows that the color
map trained under one illumination results in poor segmen-
tation under a different illumination. Robots however fre-
quently have to operate in domains with changing illumina-
tion. Section 4.1 summarizes our approach for autonomous
learning of color models and adaptation to illumination
changes.

A mobile robot equipped with multiple sensors can
process its sensory inputs using many algorithms that may
have varying levels of uncertainty and computational com-
plexity. Hence, a key requirement for autonomous operation
is the ability to tailor the sensory processing to the task at
hand. Section 4.2 describes an instance of such processing
management of visual input using probabilistic sequential
decision processes. The overall goal of our research is to
enable autonomous mobile robot operation in a wide range
of applications.

2.2. Test Platforms. In this work, we use two different test
platforms to evaluate the algorithms: a four-legged robot in
the robot soccer scenario, and a mobile robot playmate in a
human-robot interaction scenario.

2.2.1. Robot Soccer. The color learning and illumination
invariance methods were evaluated on the SONY ERS-7
Aibo, a four-legged robot whose primary sensor is a CMOS
camera at the tip of its nose, with a limited field of view
(56.9◦ horz., 45.2◦ vert.). The images are captured at 30 Hz
with a resolution of 208 × 160 pixels. The robot has 20
degrees of freedom, three in each leg, three in its head, and
the rest in its tail, mouth, and ears. It has wireless LAN

for communication with an off-board PC or other robots.
However, all processing for vision, localization, motion and
strategy is performed on-board using a 576 MHz processor.

One major application domain for the Aibos is the
RoboCup Legged League [15], an international research
initiative where teams of four robots play a competitive
game of soccer on a (4 m × 6 m) indoor field. As with other
robots equipped with cameras, the vision system on the
Aibo has an initial color calibration phase. The calibration
includes extensive manual labeling of appropriate regions in
the images captured by the robot’s camera, in order to obtain
the color map (as described in Section 2.1). This manual
labeling is a major challenge to autonomous operation,
and the color map is sensitive to illumination changes—see
Figure 2. Figures 3(a) and 3(b) show images of the Aibo and
the soccer environment.

2.2.2. Robot Playmate. The visual processing management
experiments were conducted on a mobile robot playmate
that collaborates with a human to jointly manipulate and
converse about objects on a tabletop [16] as shown in
Figure 4(b). The robot is equipped with a stereo camera
(640×480 images at 30 Hz), manipulator arm, on-board pro-
cessors, and other sensors. The domain, though seemingly
simple, represents the state of the art in cognitive robotics
[17]. The processing cycle in this domain is different from the
flowchart described in Section 2.1—modules operating in
parallel process the vision and speech inputs, and create goals
that are achieved by other modules such as manipulation.
Visual processing in this domain, however, is characterized
by the same features and requirements as the robot soccer
scenario.

Typical visual processing tasks in this domain require
the ability to find the color, shape, identity, or category
of objects in the scene to support dialogues about their
properties; to see where to grasp an object; to plan an
obstacle free path to do so and then move it to a new
location; to understand spatial relations between objects; to
recognize actions performed by humans. Each of these vision
tasks is a hard problem in itself, but we are faced with the
formidable challenge of building a vision system capable of
performing all of them. Consider the scene in Figure 4(a)

4 Advances in Artificial Intelligence

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Illumination sensitivity: (a)–(d) color map trained under an illumination, (e)–(h) ceases to work when illumination changes.

with rectangular regions of interest (ROI) extracted from the
background. The robot has to use a subset of the available
visual routines to execute commands or answer queries:
“is there a blue triangle in the scene?”, “move the mug to
the right of the circle”. However, it is neither feasible nor
desirable to run all the routines on each image, since the
robot has to respond to dynamic changes.

3. Related Work

This paper focuses on learning, adaptation, and processing
management using visual input. The topics of interest such
as color learning, illumination invariance, and planning of
visual processing continue to be extensively researched in the
fields of computer vision, robot vision, and planning. This
section therefore reviews a set of representative methods for
these topics and analyzes the approaches in terms of their
applicability to robots operating in dynamic environments.

3.1. Color Segmentation, Learning, and Color Constancy.
Color segmentation is a well-researched field in computer
vision with several good algorithms [18–20]. The mean-
shift algorithm is a nonparametric technique for the analysis
of complex multimodal feature spaces and the detection of
arbitrarily shaped clusters [18]. The feature space is modeled
as an empirical probability density function (pdf). Dense
regions in the feature space correspond to the modes of
the unknown pdf. Once the modes are found, the clusters
can be separated based on the local structure of the feature
space. Mean-shift provides good performance on tasks such
as segmentation and tracking, but its quadratic complexity
makes it expensive to perform on robots with computational
constraints.

Active contours are another set of popular methods for
image segmentation [20–22]. The method defines initial
contours and then deforms them towards object boundaries.

Manjunath et al. describe a region-based method [20] that
segments images into multiple regions and integrates an
edge-flow vector field-based edge function for segmenting
precise boundaries. The method allows the user to specify the
similarity measure based on features such as color or texture.
The algorithm is not sensitive to the initial estimates and
provides good segmentation results on a variety of images,
but the iterative optimization is expensive to perform on
robots.

Image segmentation can also be posed as a graph-
partitioning problem, where each node represents a pixel in
the image, and the edges connect certain pairs of neighboring
pixels [19, 23]. Typically, graph-based segmentation methods
find minimum cuts in the graph, where a cut measures
the degree of dissimilarity between point sets by computing
the weights of the graph edges that have to be removed to
separate the two sets. Shi and Malik proposed the popular
normalized cut algorithm, a robust global criterion that
simultaneously maximizes the similarity within a cluster and
the dissimilarity between clusters [19]. Normalized cuts have
been used for computer vision tasks such as motion tracking
[24] and 3D view reconstruction [25], but the approach is
computationally expensive for robot platforms.

In the RoboCup domain, the typical approach is to
create mappings (1) from the YCbCr values to the color
labels [26]. Other methods include the use of decision
trees [27] and axis-parallel rectangles in the color space
[28]. These approaches involve the hand-labeling of images
over a period of an hour or more before the color map
can be generated (Section 2.1). Attempts to learn colors or
make them independent to illumination changes involve the
knowledge of the spectral reflectances of the objects under
consideration and/or require additional transformations that
are computationally expensive to perform on robots [29, 30].

An important consideration in color learning and seg-
mentation is the choice of color space. However, there is

Advances in Artificial Intelligence 5

(a) Robot soccer field setup

(b) Robot walking to the ball

Figure 3: Image of the robot soccer domain: the Aibo plays soccer
on the robot soccer field with goals and markers.

a lot of controversy on the “best” color space for different
applications. In order to address this challenge, Gevers and
Smeulders evaluated several color spaces to determine their
suitability for recognizing multicolored objects invariant
to significant changes in viewpoint, object geometry, and
illumination [30]. They presented a detailed theoretical and
experimental analysis of the several models. This research
hence provides a good reference on the choice of color spaces.

Attempts to automatically learn the color map in the
legged league have rarely been successful. Cameron and
Barnes [31] present an approach that detects edges in the
image and constructs closed figures to find image regions
corresponding to known objects. The color information
from these regions was used to build the color classifiers.
Illumination changes are tracked by associating the current
classifiers with the previous ones. This approach is time
consuming even with the use of off-board processing. Jungel
presents another approach where the color map is learned
using three layers of color maps with increasing precision
levels [32], with colors in each level being represented as
cuboids. The colors are defined relative to a reference color
(field green in the soccer domain) that is tracked with minor
illumination changes, and all other color distributions are
displaced in the color space by the same amount. However,
different colors do not actually shift by the same amount with
illumination changes, and hence the color map is reported
to be not as accurate as the hand-labeled one. Unlike these

(a) Tabletop scenario example

(b) Robot playmate setup

Figure 4: Image of the human-robot collaboration domain: a robot
and a human jointly converse about and manipulate objects on
a tabletop. Regions of interest (ROI) are bounded by rectangular
boxes.

prior approaches, our algorithm exploits domain knowledge
to model color distributions and learn a color map in ≈6
minutes of robot time, resulting in performance comparable
to the color map obtained after hours of human effort.

While learning can automate the color map generation,
the learned map is still sensitive to illumination changes. The
response obtained at a sensor can be defined as [33]

m
p
j =

∫ (
E(λ)Sp(λ)Rj(λ)

)
dλ, (2)

where E(λ) is the spectral power distribution of the illu-
minant, Sx(λ) is the surface reflectance at a scene point x,
while Rj(λ) is the spectral response (relative) of the imaging
device’s jth sensor. The response of the jth sensor of the
camera at pixel p, m

p
j , is the integral of the product of these

three terms over the range of wavelengths. Changing the
surface reflectance or the spectral power distribution of the
illuminant can change the sensor response. Color constancy
or illumination invariance is the ability to assign the same
symbolic labels to color distributions despite illumination
changes. Decades in computer vision have resulted in several
methods for color constancy, most of which focus on static
images and have high computational complexity.

The Retinex theory [34] is based on the assumption that
white reflection induces maximal rgb camera responses, and
uses the maximum r, g, and b responses as an estimate of

6 Advances in Artificial Intelligence

the illuminant. It was later modified to be based on global or
local image color averages—the “Gray World” algorithm [35]
is based on the same principle. However, the local or global
image averages correlate poorly with the actual illuminant
[36].

The gamut mapping algorithm [37] proposed by Forsyth
is based on the fact that surfaces can reflect no more
light than what is cast on them. The illuminant color is
hence constrained by the colors observed in the image,
and can be estimated using image measurements alone.
The algorithm selected the most likely mapping from a set
of mappings that transformed the sensor values under an
unknown illuminant to the gamut of colors observed under
a canonical illuminant. Finlayson proposed the median
selection method that included a constraint on the possible
color of the illuminant into the gamut mapping algorithm
[38]. The more recent correlation framework [33] measures
the likelihood that each of a possible set of illuminants is the
scene illuminant. However, these approaches require prior
knowledge of the illuminations which is not feasible in robot
domains.

Brainard and Freeman use a Bayesian decision frame-
work, which combines statistics such as gray world, subspace,
and physical realizability constraints [39]. They generate a
priori distributions to describe the probability of existence
of certain illuminants and surfaces. A maximum local
mass (MLM) estimator integrates local probabilities and
uses Bayes’ rule to compute the posterior distributions for
surfaces and illuminants, for a given set of photosensor
responses. However, significant prior knowledge of illumi-
nants and other statistics is required, and the approach is
computationally expensive. Tsin et al. present a Bayesian
maximum a posteriori (MAP) approach for outdoor object
recognition with a static surveillance camera [40]. Static
overhead high-definition images collected over several days
are used to learn models of reflectance and the light spec-
trum. A linear iterative scheme converges to the classification
result on the test images. A mobile robot system, however,
has to be robust to camera motions and dynamic changes.

On robots, the color constancy problem has often been
avoided by using nonvisual sensors such as range finders
[8]. Even when visual input is considered, the focus is on
recognizing well-separated colors [3]. There has been little
work on color constancy in the presence of shadows and
artifacts due to rapid camera motion. Further, with few
exceptions (e.g., [41, 42]), most methods do not function in
real time.

Schulz and Fox estimate colors using a hierarchical
Bayesian model with Gaussian priors and a joint posterior
on position and environmental illumination [43]. Even
when tested under two distinct illuminations and a small
set of colors, the approach requires prior knowledge of
color distributions and illuminations, in addition to being
computationally expensive. Lenser and Veloso present a tree-
based state description technique [41] for detecting changes
in lighting on Aibo robots. A time-series of average screen
illuminance is used to distinguish between illumination con-
ditions. We however believe that the color space distributions
could function as a better discriminating feature. Anzani

et al. describe an attempt at illumination invariance in the
RoboCup middle-size league [42], where a Mixture of Gaus-
sians (MoG) is used to generate multimodal distributions
for the various colors. The EM algorithm [44] is used with
online adaptation of the number of mixture components, in
order to adapt to minor illumination changes. However, the
labeling of color classes and association with mixture compo-
nents is done by human supervision, and the algorithm has
been tested only over a few illuminations in the lab. In the
recent DARPA grand challenges, Thrun [6] modeled colors
as MoG and attempt to add additional Gaussians and modify
the parameters of the existing Gaussians in response to the
changes in illuminations. However, they were interested only
is distinguishing safe regions on the ground from the unsafe
regions and did not have to model overlapping color classes
separately.

Section 4.1 summarizes our approach for modeling illu-
minations and overlapping colors without prior knowledge
of color distributions. The learned models are used to detect
and adapt to a range of illuminations. See [45] for a recent
survey on color learning and illumination invariance.

3.2. Visual Processing Management. AI planning and cogni-
tive planning architectures are well-researched fields [46–49].
The focus here is on a specific subcategory of the planning
problem: the joint planning of the sensing (where to look)
and information processing (what to look for) actions to
achieve a desired goal.

Classical planning methods use deterministic models
and require prior knowledge of state, action outcomes, and
all contingencies. Many modern planning methods extend
the machinery of classical planning in order to model the
nondeterminism inherent in perception. Draper et al. [50]
proposed C-BURIDAN, a planning scheme that incorporates
a probabilistic model of the noisy sensors and effectors,
while still retaining a symbolic STRIPS-like representation of
action effects [51]. The plan-assessment phase treats actions
as probabilistic state transitions, while the plan-refinement
phase links the symbolic action effects to the symbolic
subgoals of the desired goal state. Their formulation is similar
to our POMDP approach as they reason about the best
action to perform based on prior belief about the world and
the observations obtained from action execution. However,
their approach requires the action preconditions and effects
to be manually specified, does not incorporate a notion
of action costs, and requires a manual ordering of actions
to accumulate belief from repeated execution of the same
action.

In contrast to the C-BURIDAN system, Petrick and
Bacchus’s PKS planner [52] describes actions in a first-
order language, in terms of their effect on the agent’s
knowledge rather than their effect on the world. The model
is hence nondeterministic in the sense that the true state
of the world may be determined uniquely by the actions
performed, but the agent’s knowledge of that state is not.
For example, dropping a fragile item will break it, but if the
agent does not know that the item is fragile, it must use an
observational action to determine its status. PKS captures

Advances in Artificial Intelligence 7

the initial state uncertainty and constructs conditional plans
based on the agent’s knowledge. More recently, Brenner and
Nebel [53] proposed the Continual Planning (CP) approach,
based on the FF planner [54], which interleaves planning,
plan execution, and monitoring. Unlike classical planning,
an agent in CP postpones reasoning about unknowable or
uncertain states until more information is available. Actions
are allowed to assert that the preconditions for the action will
be met when the agent reaches that point in the execution of
the plan. If these preconditions are not met during execution,
or are met earlier, replanning is triggered. CP is therefore
similar to PKS in representation but works by replanning
rather than constructing conditional plans. There is however
no representation of the uncertainty in the observations
and actions. In applications where observations are noisy,
the optimal behavior may be to increase the confidence in
the image interpretation by running the operators more
than once on several images of a scene, and accumulating
the evidence. This cannot be readily represented in the
approaches described above.

There is a significant body of work in the image
processing community on planning of visual operations
[55–57]. Such approaches typically use a classical planner
that takes a user-specified high-level goal and constructs
a pipeline of image processing operations. The planners
use deterministic models, actions represented as STRIPS-
like operators with prespecified preconditions and effects,
and domainspecific rules for evaluating the output of
each operator. Unsatisfactory results are handled by re-
planning the operator sequence or modifying the operators’
parameters [57, 58].

In the field of computer vision, probabilistic sequential
decision processes,, that is, Markov Decision Processes
(MDPs) and Partially Observable MDPs (POMDPs), have
been used for image interpretation. Darrell [59] used
memory-based reinforcement learning and POMDPs to
learn to foveate salient body parts in an active gesture
recognition system. The action set consists of foveation
actions and a special recognition action. During the learning
phase, execution of the recognition action is followed by
manual feedback on the target object’s presence in the scene,
so that each action sequence can be assigned a reward.
Reinforcement learning is used to learn what foveation
actions to execute, and when to execute the terminal
recognition action. More recently, Li et al. [60] posed image
interpretation as an MDP, using human-annotated images
in an offline process to determine the reward structure by
applying all possible sequences of image operators to the
labeled images. Dynamic programming methods are used
to determine the value function for the explored parts of
the state space, which is then extrapolated to the entire
state space using an ensemble learning technique. During
online execution, each step consists of feature extraction
and the choice of an action that maximizes the learned
value functions. Approaches that require manual feedback
in an initial training phase are too time-consuming to use
on a robot interacting with a human. It would instead
be desirable to autonomously generate the models and
policies.

Sequential decision processes have also been used for
planning a sequence of gaze locations (image ROIs) that are
analyzed to identify the desired target. In the recent work,
Vogel and de Freitas [61] have posed gaze sequence selection
as a finite-horizon sequential decision process that elegantly
combines bottom-up saliency, top-down target knowledge,
and spatial target context. The gaze planning strategy
was tested on image databases to determine the location
of computer monitors. Though this approach requires a
prior distribution over object locations that is difficult to
compute for multiple objects in practical scenes, it clearly
demonstrates the benefits of visual processing management.

There has also been considerable related work in the
field of active sensing, where the goal is to decide on sensor
placement and sensor information processing based on its
relevance to the task at hand [62, 63]. Kreucher et al.
[62] presented an active sensing approach for scheduling
sensors in order to learn the number and states of a
group of moving targets in a surveillance region. The joint
multitarget probability density is estimated using a particle
filter. A sensing action is chosen (at each time step) based
on the Renyi-divergence measure, and then the probability
density of the number and states of the targets is updated.
However, estimating the joint probability density requires
considerable prior information that is difficult to obtain
in robot environments. Our visual processing management
approach (Section 4.2) is also focused on computing a
sequence of operations for a specific task. However, our
approach uses automatic belief propagation to enable the
robot to respond to dynamic changes.

Recently, there has been considerable interest in the use
of submodular functions for sensor placements in spatial
phenomena modeled as Gaussian processes [64, 65]. For
objective functions that can be represented as submodular
functions, the greedy policy provides performance that is
at least 63% of optimal performance [65]. However, our
approach is significantly similar to methods that aim to
maximize the information gain, and such approaches cannot
be represented using submodular functions [64].

Since POMDP solutions of practical-sized problems
are typically intractable, several researchers have focused
on imposing structure in POMDP formulations in order
to make it more tractable. Pineau et al. [4, 66] propose
a hierarchical POMDP approach for high-level behavior
control on a nursing assistant robot, similar to the MAXQ
decomposition for MDPs [67]. They impose an action
hierarchy, with the top level action being a collection of
simpler actions that are represented by smaller POMDPs.
A hierarchical planning algorithm operates in a bottom-
up manner, finding complete solutions, that is, policies for
the smaller POMDPs. The execution proceeds in a top-
down manner: invoking the policy at the top-level recursively
traverses the hierarchy invoking a sequence of local policies
until a primitive action is reached. Model parameters at all
levels are defined over the same space of states, actions, and
observations, but the relevant space is abstracted for each
POMDP using a dynamic belief network. Hansen and Zhou
[68] propose a similar Task Hierarchy (TH) for planning
with POMDPs, where the policies are defined as finite-state

8 Advances in Artificial Intelligence

controllers (FSCs) and the dynamic programming policy of
a subproblem is treated as an abstract action in the next
higher level POMDP. The difference is that each POMDP in
the hierarchy is an indefinite-horizon POMDP in order to
allow FSC termination without recognition of the underlying
terminal state. Similar systems have also been proposed
for autonomous robot navigation [69–71]. In the actual
application, however, a significant amount of data for the
hierarchy and model creation has to be hand-coded.

There has been considerable work on exploring repre-
sentations for hierarchical POMDPs that allow for tractable
performance in practical applications. Theocharous et al.
[72] represented hierarchical POMDPs as dynamic Bayesian
networks (DBNs), for the specific task of using multireso-
lution spatial maps for indoor robot navigation. They have
shown that the DBN representation can train faster (and
with fewer samples) than the hierarchical POMDP or the
flat POMDP. More recent work by Toussaint et al. [73] aims
to learn the hierarchical representation of a POMDP based
on maximum likelihood estimation, using dynamic Bayesian
networks and parameter estimation based on Expectation-
Maximization. However, these approaches require consider-
able manual supervision, or are computationally expensive
to use on robots.

Similar to existing approaches, the summarized hier-
archical POMDP approach defines the higher level model
parameters as functions of the lower level policies. However,
automatic belief propagation is achieved through a functional
decomposition that considers images of regions in space at
the higher level, and the corresponding image ROIs at the
lower level. Incorporating additional operators or ROIs is
hence easier.

4. Proposed Approaches

This section summarizes our work on autonomous learning,
adaptation, and visual processing management. Section 4.1
describes the algorithm that enables a robot to use
autonomously learned color and illumination models to
detect and adapt to illumination changes. Next, Section 4.2
presents the algorithm that enables a robot to autonomously
tailor its visual processing to the task at hand.

4.1. Planned Illumination-Invariant Color Learning. As
described in Section 2.1, the manual calibration of the
color map is time-consuming and sensitive to illumination
changes. However, as with many other application domains,
the robot on the soccer field knows (or can infer) a significant
amount of the structure in its environment—it knows the
positions and color labels of the objects of interest (e.g., goals,
markers, etc.). Here, we describe an approach that enables
the robot to exploit this known structure to do the following.

(i) Learn models of color distributions and illumina-
tions, which can be refined incrementally.

(ii) Use the learned models to detect and adapt to a range
of illumination changes.

The overall algorithm is summarized in Algorithm 1—
specific line numbers are referenced in the text below. The
robot initially has no prior information of color distributions
or illumination. It has an algorithm that exploits the known
structure of the environment to plan a motion sequence for
learning the color map—see Algorithm 2.

The first question to address is what to learn? That
is, we need to decide on the appropriate models for
color distributions and illuminations. We use a disjunctive
representation that models the a priori probability density
function (pdf) for each color (l) either as a 3D Gaussian or as
a 3D Histogram.

p(m | l) ∼ N
(
µl,Σl

)
, or ≡ histl(b1, b2, b3)∑

histl
, (3)

where (b1, b2, b3) are the histogram bin indices correspond-
ing to the color channel values m = (m1,m2,m3). The
histogram is normalized to obtain a pdf. Assuming all colors
are equally likely, that is, P(l) = 1/N , for all l ∈ [0,N −
1], each color’s a posteriori pdf is proportional to the a
priori pdf. The color space is discretized and each color map
cell is assigned the label of the most likely pdf. In a given
situation, one of the two models may be more suitable for
a color’s pdf, and the choice is made autonomously using the
bootstrap test [74]. Though other color models are feasible,
the disjunctive model provides a balance between accuracy
and computation.

Each illumination is represented by a color map
and autonomously-collected image statistics. Based on the
hypothesis that images from the same illumination have
measurably similar distributions of pixels in color space,
images captured by the robot are transformed into the
normalized RGB space (r, g, b). Histograms in (r, g), with
64 bins in each dimension, are normalized to obtain
pdfs (rgHistEillum) that form the first statistic. The distance
between every pair of pdfs is computed and the distribution
of distances (DEillum), modeled as a Gaussian, constitutes the
second statistic. The Jensen-Shannon (JS) measure is used
for computing the distance between the distributions

JS(a, b) = KL(a, m) + KL(b, m)
2

,

KL(a, b) =
∑
i

∑
j

(
ai, j · ln

ai, j
bi, j

)
, m = a + b

2
.

(4)

The JS distance is a function of the log of the pdfs (a, b) and is
hence robust to peaks in the distributions, that is, large image
regions of a single color.

A mobile robot typically has to operate in environments
where the illumination changes unpredictably. Given the
models for color distributions and illumination, the next
question to address is: how to detect and adapt? That is,
how to detect illumination changes and adapt to them.
Major illumination changes, for instance, when the lamps
are suddenly switched on (or off), cause large shifts in color
distributions. The current color map is no longer valid and
the robot is soon lost. Minor (or slow) illumination changes,
for instance, the variation in natural light during the day,

Advances in Artificial Intelligence 9

Require: For each known illumination Ei, i ∈ [0,M − 1],
color map ΠEi , (r, g) distributions rgHistEi , and distribution
of JS-distances DEi .

Require: Algorithm to plan motion and learn colors au-
tonomously (Algorithm 2).

Require: Positions, shapes and color labels of the objects of
interest in the robot’s environment. Initial robot pose.

(1) Initialize: M = 0, illum = 0, testTime = 0 (no prior
illumination knowledge).

(2) Plan motion and learn ΠEillum .
(3) Generate rgHistEillum , N(r, g) space distributions, and

distribution of JS-distances, DEillum , using images cap-
tured at random during color learning.

(4) Save image statistics, M =M + 1.
(5) while true do
(6) Get new image. Segment image and detect objects.
(7) if minorChange (Color) then
(8) minorUpdate (Color). Get ΠÊ from current color

distributions.
(9) Revise current illumination representation to get

rgHistÊ and DÊ, to be used for subsequent opera-
tions.

(10) end if
(11) if currentTime− testTime ≥ timeth then
(12) rgtest = (r, g) distribution of current image.
(13) for i = 0 to M − 1 do
(14) dAvg[i] = (1/N)

∑
j JSDist(rgtest , rgHistEi [j])

(15) end for
(16) if Exists (Ê) then
(17) dAvgÊ = (1/N)

∑
j JSDist(rgtest , rgHistÊ[j])

(18) end if
(19) if Exists (Ê) and withinRange (dAvgÊ, DÊ) then
(20) Continue with ΠÊ.
(21) else if withinRange (dAvg[illum], DEillum) then
(22) Continue with ΠEillum .
(23) else if withinRange(dAvg[i], DEi), i /= illum then
(24) Use ΠEi , illum = i.
(25) else
(26) New illumination, illum =M, M =M + 1.
(27) Learn ΠEillum autonomously.
(28) Learn rgHistEillum for new illumination.
(29) Use ΠEillum for subsequent operations.
(30) end if
(31) testTime = currentTime.
(32) end if
(33) end while

Algorithm 1: Illumination adaptation algorithm.

cause the robot’s segmentation to slowly deteriorate as the
color distributions shift.

For each object detected from the color segmented image
regions, the robot computes

numPixelsl
totalPixels

≤ changeThreshold, (5)

where numPixelsl represents the pixels of the color label (l)
of the detected object, and totalPixels is the total number

of pixels within the object’s bounding rectangle. If the value
of this ratio falls below a threshold consistently (for ≥ 60%
of N consecutive frames) it indicates a minor illumination
change, denoted by Detectminor (minorChange()—line 7).
The new illumination is denoted by Ê. The pixels within
the corresponding image region are used to build a new
model (i.e., a histogram or a Gaussian) for the color
distribution, which is merged with the current model for
that color (minorUpdate()—line 8). For Gaussians, we use

10 Advances in Artificial Intelligence

Require: Ability to learn color models.
Require: Positions, shapes and color labels of the objects of

interest in the robot’s environment. Initial robot pose.
(1) Move between randomly selected target poses.
(2) CollectMEMData() – collect data for motion error model.
(3) CollectColLearnStats() – collect color learning statistics.
(4) NNetTrain() – Train the Neural network for the MEM, (8).
(5) UpdateFM() – Generate the statistical feasibility model, (9).
(6) GenCandidateSeq() – Generate candidate sequences, (10).
(7) EvalCandidateSeq() – Evaluate candidate sequences.
(8) SelectMotionSeq() – Select final motion sequence.
(9) Execute motion sequence and learn colors – Algorithm

described in [76].

Algorithm 2: Motion sequence generation.

the measurement update of a Kalman Filter [75]

Gain Kl = Σlold
(
Σlold + Σlnew

)−1,

µlup = µlold + Kl

(
µlnew − µlold

)
,

Σlup = (I−Kl)Σlold ,

(6)

where the subscripts old, new, and up represent the current,
new, and updated model, respectively, for color l. For
histograms, a weighted average is computed

plold =
histlold∑
histlold

, plnew =
histlnew∑
histlnew

,

plavg = wold plold +wnew plnew , wold +wnew = 1,

plup =
plavg∑
plavg

, histlup = plup
∑(

histlold + histlnew
)

(7)

for merging the normalized histograms with the existing
normalized histograms to obtain the updated histograms.
The weights are based on the number of samples in the
corresponding histograms. The color map and the current
illumination model are modified and used in subsequent
operations (line 9). This adaptation scheme is called
Adaptminor .

In order to detect sudden illumination changes, the robot
periodically (timeth = 0.5 seconds) generates a test image
histogram in the (r, g) space (line 12). The average distance
(dAvg) is computed between this test histogram and the set
of histograms corresponding to each illumination for which
a representation has been learned (lines 13–15). Illumination
representations created while tracking minor illumination
changes are included in this computation (lines 16–18 in
Algorithm 1).

If dAvg lies within the threshold range (95%) of the
distance distribution corresponding to the current illumina-
tion (withinRange()—lines 19, 21), the robot continues to
use the current color map. If dAvg lies outside the range
of the distance distribution of the current illumination, but
within the range of the distance distribution corresponding
to an illumination for which the robot has learned a model,

the robot transitions to using the corresponding color
and illumination models. However, if dAvg lies outside
the range of all known illuminations, the robot models
a new illumination (Detectmajor) and learns models for
color distributions (lines 25–30). This adaptation scheme
(Adaptmajor) cannot be used with a reduced threshold to
handle minor illumination changes, because it could result
in a large number of color maps for changes in a few
distributions. Both Adaptminor and Adaptmajor are hence
necessary.

Given the algorithm to adapt to illumination changes, the
final question to address is: how to learn? That is, how to learn
the color map and illumination model. As summarized in
Algorithm 2 we answer this question by finding a sequence
of poses (x, y, θ) the robot can move through, learning one
color at each pose. The goal is to simultaneously maximize
color learning opportunities while minimizing localization
errors—the robot may obtain more training samples by
moving a larger distance, but this motion may cause larger
localization errors. This goal is achieved by discretizing the
robot poses into cells, and using three components: a motion
error model (MEM), a statistical feasibility model (SFM),
and a search routine.

The MEM predicts the error in the robot pose in response
to a motion command. The inputs are the difference between
the starting pose (xi, yi, θi) and target pose (x f , y f , θ f), and
the list of colors the robot has learned. The output is the
pose error that would be incurred during this motion. The
MEM is represented as a back-propagation neural network
[77] with N +3 inputs, three outputs and one hidden layer of
15 nodes

{
Δx,Δy ,Δθ , c1, c2, . . . , cN

}
�−→

{
errx, erry , errθ

}
, (8)

where {Δx,Δy ,Δθ} represent the difference in pose, and
{c0, c1, . . . , cN−1} are binary variables representing the target
colors. If all the colors are known, all the markers can be
recognized—with only some colors known, some markers
are not recognizable, and the robot’s localization suffers.

For each robot pose, the SFM provides the probability
of learning each of the desired colors given that a subset of

Advances in Artificial Intelligence 11

the colors have been learned. A feasibility check based on
the robot’s joint angles and camera field of view eliminates a
lot of cells—the robot can learn colors only when its camera
is pointing towards a known object. The feasibility check is
performed once for each object configuration. Each cell of
the SFM stores a probability measure

SFM
(
d, e, f , vi

) = p, ∀{d, e, f
} ∈ [0,K − 1], (9)

where d, e, f are cell indices of the K discrete poses and
vi, i ∈ [0,M − 1] represents all possible combinations of
colors.

In the training phase, the robot moves between randomly
generated target poses and executes two localization routines,
one with all colors known (provides ground truth) and
another with only a subset of colors known. The difference of
the two pose estimates provides the training samples to build
the MEM (CollectMEMData(), NNetTrain() in Algorithm 2).
In parallel, the robot attempts to learn colors based on
the knowledge of a subset of the colors. The Gaussian-
smoothed and normalized cell counts of the successful
learning attempts are used to compute the SFM (Collect-
ColLearnStats()—line 3, UpdateFM()—line 5). The SFM has
to be relearned when the object configurations change, but
even with just the geometric constraints the robot is able
to provide motion sequences leading to successful color
learning.

Given the learned models (MEM, SFM), for any given
starting pose during testing, the robot generates all candidate
motion sequences (GenCandidateSeq()—line 6), that is, all
possible paths along the discretized pose cells. The depth of
the search is equal to the number of colors to be learned—
we assume that the robot learns one color at each pose. If the
robot is to learn N colors, the motion sequence is

path:
{
xi, yi, θi, colori

} ∀i ∈ [0,N − 1]. (10)

This formulation results in a large number of paths (≈109).
However, only a small subset of paths (≈104) are evaluated
completely. The MEM predicts the pose error if the robot
travels from the starting pose to the first pose. The vector sum
of the error and the target pose predicts the actual pose. If the
desired color can be learned at this pose (high probability
in SFM), the move to the next pose is evaluated. If the
whole path is evaluated, the net pose error and probability
of success are computed (EvalCandidateSeq()—line 7). The
path that provides a high probability of success and a low
pose error is executed (SelectMotionSeq()—line 8) by the
robot. At each pose, the expected object location is projected
on the image to extract pixels that are used to model the
color distributions and learn the color map. The data for the
illumination model is collected during the learning process.

4.1.1. Experimental Results. We need to evaluate the robot’s
ability to (a) plan a motion sequence and learn models
for color distributions and illumination for different object
configurations and (b) use the learned models to detect and
adapt to illumination changes.

Table 1: Planning and localization accuracies in challenging con-
figurations. Planned motion sequence always succeeds in learning
colors. Localization comparable to hand-labeled color map.

Config Plan (%)
Localization error

X (cm) Y (cm) θ (deg)

Learned 100 9.6± 3.7 11.1± 4.8 9± 7.7

Hand-labeled — 6.9± 4.1 9.2± 5.3 7.1± 5.9

The localization accuracy is used as the performance
measure. Given the colors needed for localization (pink,
yellow, blue, white, green), the depth of the search is limited to
three for ease of analysis (and without loss of generality)—
the ground colors (green, white) are learned by scanning in
place. The field is discretized into (6 × 9 × 12) cells, that is,
divisions of 600 mm, 600 mm, and 30◦ along x, y, amd θ.
The back-propagation network is learned using the MATLAB
Neural Network toolbox—the initial training of MEM and
SFM takes ≈1 hour of autonomous robot effort.

Different object configurations were created by placing
six target objects at different positions along the boundary of
the field that are known to the robot. The planning capability
was evaluated for 7 challenging object configurations, each
with 15 different robot starting poses. In addition, the local-
ization errors were measured as the robot moved through a
sequence of poses (15 trials of 10 poses)—ground truth was
obtained with a tape measure and a protractor. The results
are summarized in Table 1. The robot is able to generate a
valid plan over all the trials, and the localization accuracy
is comparable to that obtained from a hand-labeled color
map. Figure 5 shows some planning results—the starting
position is denoted by number “0” while the direction of
the arrows show the orientation. The robot smoothly trades
off the ability to learn better models for color distributions
based on a larger object, against the associated motion-based
localization errors.

In addition to the “best” motion-plan, several of the top
sequences lead to successful color learning. If the robot is
unable to learn all colors during plan execution, it creates
a new plan based on current knowledge. Over a set of 20
images, the average segmentation accuracy of the learned
and hand-labeled color map is 94.9 ± 3.9 and 96.7 ± 4.3
respectively (no difference at 95% significance). Ground
truth is provided by a human observer. The motion planning
is particularly useful where object configurations change
less frequently than illumination. The entire color learning
process takes ≈6 minutes of robot effort instead of hours of
human effort.

Next, the ability to detect and adapt to illumination
changes was evaluated—here, using AdaptX implies the
use of DetectX as well. First, the robot used Adaptmajor
as the illumination was slowly changed (over 20 seconds)
between two conditions that would not be detected as
being different by Detectmajor . The robot stood in place
and panned its head, measuring the distance and angle to
an object over the 20 seconds period. Table 2 summarizes
the measurement errors averaged over four different objects
and three different illuminations with ≈15 trials under each

12 Advances in Artificial Intelligence

Yellow goal
P

in
k-

ye
llo

w
P

in
k-

bl
u

e

Blue goal

B
lu

e-
pi

n
k

Ye
llo

w
-p

in
k

3

2

1

0

(a)

Yellow goal

P
in

k-
ye

llo
w

P
in

k-
bl

u
e

B
lu

e
go

al

B
lu

e-
pi

n
k

Ye
llo

w
-p

in
k

3

1

2
0

(b)

Figure 5: Sample motion plans generated by the algorithm. All
plans lead to successful color learning on the robot.

Table 2: Error in distance measurements with and without
Adaptminor . Adaptation results in much smaller errors.

Illum + Alg Dist error (mm) Ang error (deg)

Slow +NoAdapt 191.31± 105.61 12.37± 2.85

Slow +Adaptmin 25.53± 19.14 2.11± 0.83

situation. Ground truth values were obtained with a tape
measure and protractor. The results show that Adaptminor
leads to segmentation accuracy (95.1 ± 4.3) and hence
localization errors (≈10 cm, 12 cm, 10◦) similar to those
under constant illumination. In the absence of Adaptminor
the measurement errors are significant.

Table 3: Time taken to find-and-walk-to-object.

Illum + Alg Time (sec) Fail

Constant +NoAdapt 6.18± 0.24 0

Slow +Adaptmaj 31.73± 13.88 9

Slow +Adaptmaj,min 6.24± 0.31 0

Sudden +Adaptmin 45.11± 11.13 13

Sudden +Adaptmaj,min 9.72± 0.51 0

Sudden + Slow +Adaptmaj,min 10.32± 0.83 0

Next, in order to show that both Adaptminor and
Adaptmajor are essential, the time taken by the robot to
find-and-walk-to-object is measured. The robot starts out
near the center of the field with the object placed near the
penalty box of the opponent’s goal. Table 3 summarizes the
results averaged over different illuminations, with 15 trials
under each illumination. With no change in illumination,
the robot can find-and-walk-to-object in 6.18± 0.24 seconds.
When the illumination changes slowly, using just Adaptmajor
does not help—large variance in second row. Including
Adaptminor provides good performance (6.24±0.31 seconds).
Similarly, when the illumination is changed suddenly, using
just Adaptminor does not help—the robot totally fails to
perform the task most of the time, resulting in a large
number of failures (fourth row, third column). With both
Adaptmajor and Adaptminor the robot can perform the
task, the additional time being used to confirm that a
change in illumination did occur (9.72 ± 0.51 seconds).
In these experiments, major illumination changes result
in illuminations for which the robot has already learned
models—Adaptmajor implies a transition to the suitable
model. Finally, the illumination is changed significantly, held
constant for 3 seconds, and then changed slowly over the next
5 seconds. The robot is able to find-and-walk-to-object in
10.32±0.83 seconds if and only if Adaptmajor andAdaptminor
are used. The results show that the proposed algorithm
enables the operation over a range of illuminations—
different intensities (≈400Lux to ≈1600Lux) and color
temperatures (2300 K–4000 K) were evaluated. Additional
results (videos and images) are available online: http://www
.cs.utexas.edu/ AustinVilla/?p=research/autoplan illum.

In the recent research, we have used the algorithms
described above to learn models of other sensory features,
and to robustly fuse information obtained from different
sensory inputs on multiple robot platforms [78].

4.2. Visual Processing Management. The human-robot inter-
action domain described in Section 2.2.2 involves a robot
equipped with multiple sensors whose inputs are processed
by several algorithms with varying levels of uncertainty. Since
the focus on this paper is on the visual input, we present an
algorithm that autonomously tailors its visual processing to
the task at hand.

Consider the example of an input image from the
tabletop scenario (Section 2.2.2) that is preprocessed to yield
regions of interest (ROI), that is, rectangular image regions
that are different from a previously trained model of the

Advances in Artificial Intelligence 13

background—Figure 4(a) shows examples of ROIs. Consider
the query: “which objects in the scene are blue?” Without
loss of generality and for ease of analysis, assume that the
robot has the following set of visual operators at its disposal:
a color operator that classifies the dominant color of the ROI
it is applied on, a shape operator that classifies the dominant
shape within the ROI, a sift operator that uses the SIFT
features [79] to detect the presence of one of the previously
trained object models. The color operator characterizes
ROIs based on color-space histograms, while the shape
operator characterizes the dominant contour within the ROI
using invariant moments. The sift operator characterizes
target objects with local image gradients that are robust
to scale, orientation, and viewpoint changes. We use the
following terms interchangeably: visual processing actions,
visual actions, and visual operators. Given these operators,
the task is to plan a sequence of operators that can answer
user queries with high confidence.

We pose the visual processing management task as
an instance of probabilistic sequential decision making,
and specifically as a Partially Observable Markov Deci-
sion Process (POMDP) [80]. The POMDP formulation
captures the partial observability and non-determinism
that characterize visual processing on robots (Section 1).
The robot maintains a probability distribution over the
true underlying state, called the belief state. Each action
considers the true underlying state to be composed of
the class labels (e.g., red(R), green(G), blue(B) for color;
circle(C), triangle(T), square(S) for shape; picture, mug, box
for sift), a label to denote the absence of any valid object—
empty (φ), and a label to denote the presence of multiple
classes (M). The belief state maintenance also requires an
observation function that provides a probability distribution
over the set of possible outcomes of each action. The
set of action outcomes consists of the class labels, the
label empty (φ) which implies that the match probability
corresponding to the class labels is very low, and unknown
(U) which implies that multiple classes are equally likely
and the ROI may therefore contain multiple objects. U
is an observation, whereas M is part of the underlying
state: they are not the same since they are not perfectly
correlated.

Since operators only update belief states, we include
“special actions” that cause a transition to a terminal state
where no further actions are applied, that is, these query-
specific actions terminate processing to answer the query.
The answer could report or “say” (not to be confused with
language-based communication) which underlying state is
most likely to be the true state, or it could simply state the
presence or absence of the target object. In the description
below, without loss of generality and for ease of explanation,
we only consider two operators: color and shape, each of
which provides three class labels. The operators are denoted
with the subscripts c and s, respectively. The approach
generalizes to sift, other vision algorithms, and more out-
comes. True states and observations are distinguished by
the superscripts a and o, respectively. The POMDP for a
single ROI in the image can then be defined as the tuple
〈S, A, T , Z, O, R〉.

(i) S : Sc × Ss ∪ term, the set of states, is a Carte-
sian product of the variables describing different
aspects of the underlying state. It also includes a
terminal state (term). Sc : {φac ,Rac ,Ga

c ,Bac ,Ma
c }, Ss :

{φas ,Cas ,Ta
s , Sas ,Ma

s }.
(ii) A : {color, shape, Asp} is the set of actions. The

first two entries are the visual operators. The rest are
special actions that represent responses to the queries,
describing the presence/absence of the target: Asp =
{sFound, sNotFound}, or specific query responses:
Asp = {sRed, sGreen, sBlue}, that is, actions such as
“say blue”. All the special actions lead to term.

(iii) T : S×A×S → [0, 1] represents the state transition
function. For operators such as color and shape that
do not change the underlying state, it is the identity
matrix. For special actions it represents a transition to
term. For actions that change the state, the transition
function can be defined suitably [81].

(iv) Z : {φoc ,Roc ,G
o
c ,B

o
c ,Uo

c ,φos ,Cos ,To
s , Sos ,U

o
s } is the set of

observations, a union of the observations for each
visual action under consideration, that is, Z = Zc ∪
Zs.

(v) O : S ×A×Z → [0, 1] is the observation function,
a matrix of size |S| × |Z| for each action. For each
visual action, it is learned offline by the robot, and it
is a uniform distribution for the special actions.

(vi) R : S×A → R specifies the reward, that is, the value
of taking a particular action in a particular state. It is
hence a mapping from the state-action space to real
numbers—a negative reward represents a cost. In our
case

∀s ∈ S, R
(
s, shape

) = −1.25 · fs(ROI− size),

R(s, color) = −2.5 · fc(ROI− size),

R
(
s, special actions

) = ±100 · α.
(11)

The cost for visual actions depends on the relative
computational complexity of the operator and the
size of the ROI. For instance, the color operator is
twice as costly as shape, and this is used to assign
a cost factor such that the least expensive operator
has a relative cost value close to 1. The dependence
on ROI size is captured using a polynomial function
(14)—the degree and coefficients of the function are
computed experimentally as described later in this
section. For special actions, a large positive (negative)
reward is assigned for making a right (wrong)
decision for a given query. For instance, for “what
is the color of the ROI?”: R(RacT

a
s , sRed) = 100 · α

and R(Bac T
a
s , sGreen) = −100·α, while for “is there a

red object in the scene?”: R(RacT
a
s , sFound) = 100·α,

and R(Bac T
a
s , sFound) = −100 · α. The variable α

trades-off computational costs against reliability. For
instance, when α is large the special action is taken
after executing a larger number of actions, resulting
in higher reliability.

14 Advances in Artificial Intelligence

Given the belief state, that is, the probability distribution over
the underlying state at time t: bt, the belief update proceeds
as

bt+1(s′) = O(s′, at, ot+1)
∑

s∈S T (s, at, s′) · bt(s)
P(ot+1 | at , bt) , (12)

where O(s′, at, ot+1) = P(ot+1 | st+1 = s′, at), bt(s) = P(st =
s), P(ot+1 | at , bt) =

∑
s′∈S{P(ot+1 | s′, at) ·

∑
s∈S P(s′ |

at, s) bt(s)} is the normalizer and T (s, at, s′) = P(st+1 = s′ |
at, st = s). The planning task for a single ROI involves solving
this POMDP to find a policy of the form

π∗ : (b) �−→ a, (13)

that is, a mapping from belief states to actions that max-
imizes reward over a range of belief states. Plan execution
corresponds to traversing a policy tree, repeatedly choosing
the action with the highest value at the current belief state,
and updating the belief state after executing that action
and receiving an observation. In order to ensure that the
observations are conditionally independent of each other
given different images of the same scene, we take a new
image of the scene if an action is to be repeated on the same
ROI. This independence assumption is essential for the belief
update described in (12), and though the images are not
strictly independent the assumption works well in practice.

For a single ROI with m features (e.g., color, shape)

each with n values (e.g., Rac , Ga
c , Bac , φac , and Ma

c), the
POMDP has a state space of size nm + 1. Actual scenes
will contain several objects and hence several ROIs—for k
ROIs we have nmk + 1 states, that is, the state space grows
exponentially. In addition, the (worst case) time complexity
of POMDPs is exponential in the state space dimensions.
Therefore, POMDP formulations of all but the very simple
problems soon become intractable, even with state-of-the-
art approximate solvers [82].

We ameliorate part of the inherent intractability by
introducing a hierarchical decomposition: we model each ROI
with a lower-level (LL) POMDP as described above, and use
a higher-level (HL) POMDP to choose, at each step, the ROI
whose policy tree is to be executed. This decomposes the
overall problem into one POMDP with state space 2k + 1,
and k POMDPs with state space nm + 1. Essentially, we
have achieved a functional decomposition by separating the
problem of what information to process (i.e., which ROI
to focus on) from how to process it (i.e., which operators
to use). Without loss of generality, we assume that there
are two ROIs in the image and define the HL-POMDP as

〈SH , AH , T H , ZH , OH , RH〉.

(i) SH = {R1 ∧ ¬R2,¬R1 ∧ R2,¬R1 ∧ ¬R2,R1 ∧ R2} ∪
termH is the set of states. It represents the presence
or absence of an object satisfying the query in one
or more of the ROIs. It also includes a terminal state
(termH).

(ii) AH = {u1,u2, AH
sp} are the actions. The sensing

actions (ui) denote the choice of executing one of the
LL ROIs’ policy trees. The special actions (AH

sp) are
query-specific, and defined in a manner similar to
that for the LL-POMDP. All the special actions lead
to termH .

(iii) T H is the state transition function, which leads to
termH for special actions and is an identity matrix
for other actions.

(iv) ZH = {FR1,¬FR1,FR2,¬FR2} is the set of observa-
tions. It represents the observation of finding or not-
finding the target object when each ROI’s policy is
executed.

(v) OH : SH × AH × ZH → [0, 1], the observation
function of size |SH | × |ZH |, is a uniform matrix
for special actions. For sensing actions, it is obtained
from the policy trees for the LL-POMDPs.

(vi) RH is the reward specification. For each sensing
action, it is the “cost” of running the visual policy
solution of the corresponding LL-POMDP. For a
special action, it is a large positive (negative) value
if it predicts the true underlying state correctly
(incorrectly): R(R1 ∧ R2, sR1 ∧ R2) = 100, while
R(R1 ∧¬R2, sR1 ∧ R2) = −100.

A key challenge in such hierarchical formulations is the
belief propagation between the levels in the hierarchy. In
order to automate this belief propagation, the HL reward
and observation functions in our hierarchy are based on
the policy trees of the corresponding LL-POMDPs. More
specifically, the HL observation function and reward spec-
ification are computed by traversing the corresponding LL
policy trees, while propagating an initial belief and using
LL observation functions that are modified based on the
target query. However, these changes to the LL belief states
and observation functions are used only for building the
HL-POMDP model. Normal belief updates in the LL-
POMDPs use an unmodified observation function and an
appropriate initial belief, that is, for instance, uniform if
nothing is known about the contents of the corresponding
ROI. Complete details on the belief propagation between the
LL and the HL can be found in [13].

The overall planning and execution cycle is as follows.
Based on the target query, the available visual actions and
the number of ROIs, the LL-POMDPs are created and
solved. The policy trees of the LL-POMDPs are parsed
to automatically generate the required components (e.g.,
observation functions, rewards) of the HL-POMDP. The HL-
POMDP is then solved to obtain the HL policy. During
execution, invoking the HL-Policy results in the selection
and analysis of a specific ROI. The ROI is analyzed until
a terminal action is reached in the LL. The control then
returns to the HL, where the beliefs are updated based on
the LL response and a new action is chosen, that is, a ROI
is selected for further analysis. The process continues until a
terminal action is executed in the HL and the input query is
answered.

Advances in Artificial Intelligence 15

In practical scenes, objects may overlap due to occlusions
or a change in viewpoint, resulting in multiple objects being
enveloped in a single ROI. Processing such scenes would
require visual operators that split ROIs into subregions
based on one or more of its properties (e.g., color, shape,
local gradients). Planning with such actions that change
the perceived state of the system is a significant challenge
in POMDP formulations. However, such actions can be
included in our hierarchy by defining suitable transition and
observation functions. In the case of the region-splitting
actions, the only difference during execution would be that
a state change in the LL could create new ROIs. In addition
to creating and solving POMDP models for the new ROIs
in the LL, a new POMDP will have to be created and solved
in the HL. The execution cycle would otherwise remain
unchanged. Though we do not provide more information
here on the incorporation of actions that analyze images
with overlapping objects, complete details can be found in
[81, 83]. In addition, the quantitative results described below
were obtained by including such actions in the experimental
analysis.

In summary, we propose a two-level hierarchy in the
(image) state and action space. In the LL, each ROI is
assigned a POMDP and analyzed using the visual operators,
while the HL-POMDP maintains the belief over the entire
image and chooses (at each step) the ROI best-suited for
further processing, thereby answering the input query. The
process of creating and solving the POMDPs proceeds
automatically because of the elegant belief propagation
between the LL and HL. As a result, the proposed approach
can be used to address a range of queries in the test domain.

4.2.1. Experimental Results. The experimental setup is as
follows. The camera mounted on a robot captures images
of a tabletop scene. Any change from the learned model
of the background is identified as a salient region, and all
such regions of interest (ROI) are extracted. The system has
a sophisticated saliency operator for complex scenes [84],
but the background subtraction suffices for the tabletop
scenario—it is also computationally efficient. In an initial
training phase, objects of known properties are put on
the table, and the robot repeatedly applies the available
operators on these objects. Statistics are collected regarding
the operator outcomes and the run-times of the individual
operators on specific ROIs. These statistics are used to
estimate the observation functions and the rewards/costs
of the visual operators. For instance, we had defined the
dependence of the visual operator costs on ROI size as a
polynomial

f (r) = a0 +
N∑
k=1

ak · rk, (14)

where r is the ROI-size (in pixels). The degree and coef-
ficients of the polynomial are estimated from the collected
statistics. In the experiments below, all POMDPs are created
in the format of the ZMDP package [85]. The POMDPs are
solved using a state of the art point-based solver [82] in the
package.

We first describe the execution for the query: “where are
the blue circles?” on the image shown in Figure 6(a). Since
no prior information is available about either of the two
ROIs the HL-POMDP first chooses to analyze the ROI R1

because its smaller size results in lower action costs: action
u1 in Figure 6(b). The corresponding LL-POMDP runs the
color operator on the ROI. Even though it is more costly,
the color operator’s observation function indicates a higher
likelihood of success in comparison to shape, and it is hence
applied first. The outcome of applying an operator is one of
the possible observations (e.g., Roc ,G

o
c ,B

o
c ,Uo

c ,φoc for color)—
in this case the answer is Roc , that is, red. The observation
is used to update the belief state. In this case, the outcome
decreases the likelihood of finding a blue circle in R1. The
reward specification (α = 0.2 in (11)) ensures a trade-off
between computation and reliability, and there is no further
investigation of this ROI (e.g., with a shape operator). The
best action chosen in the next step of the LL policy for
R1 is hence a terminal action: sNotFound. The HL-POMDP
receives the observation that the target is not found in R1,
leading to a belief update and a subsequent action selection:
action u2 in Figure 6(c). Then R2’s LL-POMDP policy tree
is invoked, causing the color and shape operators to be
applied in turn on the ROI. The higher noise in the shape
operator causes it to be applied twice (on two independent
images) before the uncertainty is reduced sufficiently. Then a
terminal action (sFound) is chosen—the increased reliability
therefore comes at the cost of execution overhead. The
response from the LL-POMDP of R2 updates the HL belief,
resulting in the selection of a terminal action in the HL-
POMDP: (s¬R1 ∧ R2), that is, a blue circle exists in R2 and
not R1—Figure 6(d).

One could argue that it would be better to choose a new
action in the HL at each time-step, instead of waiting for the
LL-POMDP to terminate. However, the proposed approach
provides the key benefit of automatic belief translation from
the LL to the HL. In addition, it stops early if negative
evidence is found for the target object. Finding positive
evidence only increases the posterior probability of the ROI
being explored—even if the HL-POMDP were to choose the
next action, it would choose to process the same ROI again.

One advantage of the POMDP-based approach is that it is
easy to incorporate prior knowledge in the decision-making.
Consider the same scene in Figure 6(a) and the query: “where
is the blue circle?”, that is, the location of the single blue circle
in the image is to be determined. If it is known that the blue
circle is more likely to exist in R2, the initial beliefs of the ROI
could be modified. As a result, the cost of execution of R2’s
policy would be lower (in the HL-POMDP), and R2 would
be chosen to be analyzed first leading to a faster response.

In order to evaluate the proposed approach quantita-
tively, the hierarchical POMDP planner (HiPPo) is compared
with a modern planner that handles the non-determinism
qualitatively: Continual Planning (CP) [53]. As discussed in
Section 3.2, CP is a fast planner that has been applied to
human-robot interaction scenarios. The planning methods
were also compared against the naive approach of applying
all the available operators on the ROIs. The results obtained
over a set of ≈15 different queries, with ≈10 trials for each

16 Advances in Artificial Intelligence

u1 u2

R1 R2

(a) Input image

HL-POMDP u1

LL-POMDP 1

Level: 0

Level: 1

Red
Color

sNotFound

Level: 0

(b) Execution Step 1

HL-POMDP nFR1 u1

u2

Level: 0

LL-POMDP 1

Level: 0

Level: 1

Red
Color

sNotFound

LL-POMDP 2

Color

Blue Shape

Circle Shape

Circle

sFound

Level: 1

Level: 2

Level: 3

Level: 0
Level: 1

(c) Execution Step 2

HL-POMDP nFR1 u1

u2 FR2

snR1R2

Level: 0

LL-POMDP 1

Level: 0

Level: 1

Red
Color

sNotFound

LL-POMDP 2

Color

Blue Shape

Circle Shape

Circle

sFound

Level: 1

Level: 2

Level: 3

Level: 0
Level: 1
Level: 2

(d) Execution Step 3

Figure 6: Example query: “where are the blue circles?” LL-POMDP reward specification results in early termination when negative evidence
is found. Belief propagation provides reliability.

such query, are summarized in Figures 7(a) and 7(b). The
naive approach is denoted by “no planning” in Figure 7(b).

First, Figure 7(a) compares HiPPo against the standard
POMDP approach that plans in the joint space of all
the ROIs. The nonhierarchical approach soon becomes
intractable, even when as few as three operators are used to
analyze three or more ROIs. HiPPo, on the other hand, is
reasonably efficient even as the number of ROIs in the scene
increases.

The LL-POMDPs for two ROIs typically differ only
in terms of their action costs that are a function of ROI
sizes. Hence, the policies computed over discretized ROI
sizes were cached and reused for ROIs of similar size. This
approximation makes HiPPo’s planning time comparable to
that of CP, and the value estimation error introduced by
this approximation can be measured and used to trade-off
accuracy against efficiency [81]. As observed in Figure 7(b),
the total (planning + execution) time for HiPPo is only
slightly larger than that of CP—HiPPo has a larger execution
time because some operators are executed more than once in
order to reduce the uncertainty. In addition, both planners
(HiPPo and CP) are significantly faster than the naive
approach.

Finally, we compared the three approaches in terms of
reliability, that is, their ability to provide correct answers
to queries. HiPPo provides a reliability of 90.75% that is
significantly better than the reliability of CP (76.67%) or
the naive approach (76.67%). CP cannot perform any better
than the naive approach because it does not account for
the uncertainty in operator outcomes. HiPPo, on the other
hand, inherently exploits the learned models of operator
uncertainties and accumulates belief to provide reliable
performance.

The key contribution is the hierarchical decomposition
that can be modeled automatically to address a range of
queries. It is easy to incorporate other operators, even those
that change the state of the system. HiPPo is therefore an
efficient and reliable approach towards visual processing
management. Furthermore, the lessons learned in the table-
top scenario can be used in other applications.

5. Conclusions and Future Work

A central goal of robotics and AI is to enable a team of robots
to operate autonomously in the real world and collaborate
with humans over an extended period of time. In this paper

Advances in Artificial Intelligence 17

2

4

6

8

10

12

14

16

18

P
la

n
n

in
g

ti
m

e
(l

og
2

sc
al

e)

1 2 3 4 5 6 7

Number of regions

Joint POMDP
HiPPo

Joint POMDP versus HiPPo

(a) HiPPo versus joint POMDP. Joint POMDP soon becomes
intractable

0

10

20

30

40

50

60

70

80

90

T
im

e
(s

ec
on

ds
)

1 2 3 4 5 6 7 8

Number of regions

No planning
CP
HiPPo

HiPPo, CP and no planning (total time)

(b) Comparing HiPPo, CP versus No planning

Figure 7: Experimental results: comparing planning and execution
times of HiPPo and CP against no planning. HiPPo and CP are
comparable and faster than no planning.

we have described algorithms that address two key challenges
to widespread deployment of mobile robots: autonomous
learning and adaptation, and processing management. We
have focused primarily on visual input from color cameras

and summarized two key contributions: (a) a probabilistic
framework where the robot autonomously learns models
for color distributions and illumination, and detects and
adapts to illumination changes; (b) a probabilistic sequen-
tial decision-making framework that enables the robot to
autonomously tailor the visual information processing to the
task under consideration.

Our bootstrap learning approach enables a robot to
plan its actions in order to learn models for color distri-
butions and illuminations. The lessons learned with this
low-dimensional feature (i.e., color) can be extended to
other visual features (e.g., texture, gradients) and nonvisual
input (e.g., range information). Currently, the approach for
planned learning requires information about the structure
of the environment, that is, a map of the world. However,
existing approaches in robotics and computer vision can be
incorporated in this system to learn most of this structure
autonomously [86, 87].

The approach described in this paper enables a mobile
robot to use the learned models to detect and adapt to
illumination changes. One future direction of research is
to incorporate a joint model of color and illuminations.
Existing research in the field of computer (and human)
vision can be used to identify the parameters of this model,
and the robot can estimate the values of the parameters based
on data collected in its operating environment. The approach
can then be extended to other visual features as well. The
long-term goal would be to fully automate the learning of
environmental models, and the adaptation to environmental
changes.

A robot equipped with multiple sensors and multiple
algorithms to process the sensory input needs a scheme to
tailor the processing to the task under consideration. In this
paper, we have focused on such processing management of
visual input. One future direction of research is to include
other operators and process more complex scenes. This
increase in complexity may require a range of hierarchies
in state and action spaces [66]. We are also interested in
high-level scene processing, which could be defined as an
additional level in the hierarchy above the existing levels. A
particular region in space could be chosen for analysis with
the objective of maximizing the information gain, and the
existing hierarchy could then be used to process images of the
chosen region in space. The key challenge would once again
be the automatic belief propagation between the levels in the
hierarchy.

As seen in Section 4.2, one key challenge with POMDP
formulations of practical problems is the efficiency. Our hier-
archical decomposition helps address part of the observed
intractability. However, as the focus shifts to more complex
scenarios, it may be essential to decouple the parts of
the scenario that can be analyzed using nonprobabilistic
methods. The POMDP-based analysis of the more uncertain
components of the system would then be tractable.

Overall, we have summarized algorithms that address
key challenges to the widespread deployment of mobile
robots in the real world. We have shown that the robots
can autonomously learn, adapt, and plan their sensory
information processing. The long-term goal is to enable

18 Advances in Artificial Intelligence

robots to use a combination of learning and planning to
respond autonomously and efficiently to a range of tasks,
thereby collaborating with humans in a wide range of critical
applications.

Acknowledgments

The author thanks collaborators from the University of Texas
at Austin (Peter Stone) and University of Birmingham (UK)
(Jeremy Wyatt, Richard Dearden, and Aaron Sloman). This
work was supported in part by the ONR award N00014-09-
1-0658.

References

[1] “Hokuyo laser,” 2010, http://www.hokuyo-aut.jp/products/.
[2] “Videre design camera,” 2010, http://www.videredesign.com/

vision/stereo products.htm.
[3] B. W. Minten, R. R. Murphy, J. Hyams, and M. Micire, “Low-

order-complexity vision-based docking,” IEEE Transactions on
Robotics and Automation, vol. 17, no. 6, pp. 922–930, 2001.

[4] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun,
“Towards robotic assistants in nursing homes: challenges and
results,” Robotics and Autonomous Systems, vol. 42, no. 3-4, pp.
271–281, 2003.

[5] DARPA, “The DARPA urban robot challenge,” 2007, http://
www.darpa.mil/grandchallenge/index.asp/.

[6] S. Thrun, “Stanley: the robot that won the DARPA grand
challenge,” Journal of Field Robotics, vol. 23, no. 9, pp. 661–692,
2006.

[7] S. Thrun, M. Beetz, M. Bennewitz, et al., “Probabilistic
algorithms and the interactive museum tourguide robot
minerva,” International Journal of Robotics Research, vol. 19,
no. 11, pp. 972–999, 2000.

[8] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust monte
carlo localization for mobile robots,” Artificial Intelligence, vol.
128, no. 1-2, pp. 99–141, 2001.

[9] DARPA, “The DARPA grand challenge,” 2005, http://www
.grandchallenge.org/.

[10] S. Se, D. Lowe, and J. Little, “Vision-based mapping with
backward correction,” in Proceedings of the IEEE International
Conference on Intelligent Robots and Systems (IROS ’02), vol. 1,
pp. 153–158, Lausanne, Switzerland, October 2002.

[11] M. Sridharan and P. Stone, “Structure-based color learning
on a mobile robot under changing illumination,” Autonomous
Robots, vol. 23, no. 3, pp. 161–182, 2007.

[12] M. Sridharan and P. Stone, “Global action selection for
illumination invariant color modeling,” in Proceedings of the
IEEE International Conference on Intelligent Robots and Systems
(IROS ’07), pp. 1671–1676, San Diego, Calif, USA, November
2007.

[13] M. Sridharan, J. Wyatt, and R. Dearden, “HiPPo: hierarchical
POMDPs for planning information processing and sensing
actions on a robot,” in Proceedings of the 18th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS ’08), pp. 346–354, Sydney, Australia, September 2008.

[14] P. Stone, M. Sridharan, D. Stronger, et al., “From pixels to
multi-robot decision-making: a study in uncertainty,” Robotics
and Autonomous Systems, vol. 54, no. 11, pp. 933–943, 2006.

[15] H. Kitano, M. Asada, I. Noda, and H. Matsubara, “Robot
world cup,” Robotics and Automation, vol. 16, no. 6, p. 700,
1998.

[16] N. Hawes, A. Sloman, J. Wyatt, et al., “Towards an integrated
robot with multiple cognitive functions,” in Proceedings of the
22nd National Conference on Artificial Intelligence (AAAI ’07),
vol. 2, pp. 1548–1553, Vancouver, Canada, July 2007.

[17] CoSy, “Cognitive systems for cognitive assistants,” 2008, http://
www.cognitivesystems.org/.

[18] D. Comaniciu and P. Meer, “Mean shift: a robust approach
toward feature space analysis,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 24, no. 5, pp. 603–619,
2002.

[19] J. Shi and J. Malik, “Normalized cuts and image segmen-
tation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, no. 8, pp. 888–905, 2000.

[20] B. Sumengen, B. S. Manjunath, and C. Kenney, “Image
segmentation using multi-region stability and edge strength,”
in Proceedings of the IEEE International Conference on Image
Processing (ICIP ’03), vol. 3, pp. 429–432, Barcelona, Spain,
September 2003.

[21] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active
contours,” International Journal of Computer Vision, vol. 22,
no. 1, pp. 61–79, 1997.

[22] N. Paragios and R. Deriche, “Geodesic active regions for
supervised texture segmentation,” in Proceedings of the IEEE
International Conference on Computer Vision (ICCV ’99), vol.
2, pp. 926–932, Kerkyra, Greece, September 1999.

[23] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-
based image segmentation,” International Journal of Computer
Vision, vol. 59, no. 2, pp. 167–181, 2004.

[24] J. Shi and J. Malik, “Motion segmentation and tracking using
normalized cuts,” in Proceedings of the IEEE International
Conference on Computer Vision (ICCV ’98), pp. 1154–1160,
Bombay, India, January 1998.

[25] D. Hoiem, A. Efros, and M. Hebert, “Recovering surface layout
from an image,” International Journal of Computer Vision, vol.
75, no. 1, pp. 151–172, 2007.

[26] W. Uther, S. Lenser, J. Bruce, M. Hock, and M. Veloso,
“Cm-pack’01: fast legged robot walking, robust localization,
and team behaviors,” in Proceedings of the 5th International
RoboCup Symposium, Seattle, Wash, USA, August 2001.

[27] S. Chen, M. Siu, T. Vogelgesang, et al., RoboCup-2001: The
Fifth RoboCup Competitions and Conferences, Springer, Berlin,
Germany, 2002.

[28] D. Cohen, Y. H. Ooi, P. Vernaza, and D. D. Lee, RoboCup-2003:
The Seventh RoboCup Competitions and Conferences, Springer,
Berlin, Germany, 2004.

[29] Y. B. Lauziere, D. Gingras, and F. P. Ferrie, “Autonomous
physics-based color learning under daylight,” in Proceedings
of the EUROPTO Conference on Polarization and Color Tech-
niques in Industrial Inspection, vol. 3826, pp. 86–100, Munich,
Germany, June 1999.

[30] T. Gevers and A. W. M. Smeulders, “Color-based object
recognition,” Pattern Recognition, vol. 32, no. 3, pp. 453–464,
1999.

[31] D. Cameron and N. Barnes, “Knowledge-based autonomous
dynamic color calibration,” in Proceedings of the 7th RoboCup
International Symposium (RoboCup ’03), Padua, Italy, July
2003.

[32] M. Jungel, “Using layered color precision for a self-calibrating
vision system,” in Proceedings of the 8th International RoboCup
Symposium (RoboCup ’04), Lisbon, Portugal, July 2004.

[33] G. Finlayson, S. Hordley, and P. Hubel, “Color by correlation:
a simple, unifying framework for color constancy,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
23, no. 11, pp. 1209–1221, 2001.

Advances in Artificial Intelligence 19

[34] E. H. Land, “The retinex theory of color constancy,” Scientific
American, vol. 237, pp. 108–129, 1977.

[35] G. Buchsbaum, “A spatial processor model for object colour
perception,” Journal of the Franklin Institute, vol. 310, no. 1,
pp. 1–26, 1980.

[36] D. H. Brainard and B. A. Wandell, “Analysis of the retinex
theory of color vision,” Journal of the Optical Society of America
A, vol. 3, no. 10, pp. 1651–1661, 1986.

[37] D. Forsyth, “A novel algorithm for color constancy,” Interna-
tional Journal of Computer Vision, vol. 5, no. 1, pp. 5–35, 1990.

[38] G. Finlayson and S. Hordley, “Improving gamut mapping
color constancy,” IEEE Transactions on Image Processing, vol.
9, no. 10, pp. 1774–1783, 2000.

[39] D. H. Brainard and W. T. Freeman, “Bayesian color constancy,”
Journal of the Optical Society of America A, vol. 14, no. 7, pp.
1393–1411, 1997.

[40] Y. Tsin, R. T. Collins, V. Ramesh, and T. Kanade, “Bayesian
color constancy for outdoor object recognition,” in Proceedings
of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR ’01), vol. 1, pp. I1132–I1139,
Kauai, Hawaii, USA, December 2001.

[41] S. Lenser and M. Veloso, “Automatic detection and response
to environmental change,” in Proceedings of the IEEE Interna-
tional Conference of Robotics and Automation (ICRA ’03), vol.
1, pp. 1416–1421, Taipei, Taiwan, May 2003.

[42] F. Anzani, D. Bosisio, M. Matteucci, and D. G. Sorrenti,
“On-line color calibration in non-stationary environments,”
in Proceedings of the 9th International RoboCup Symposium
(RoboCup ’05), pp. 396–407, Osaka, Japan, July 2005.

[43] D. Schulz and D. Fox, “Bayesian color estimation for adaptive
vision-based robot localization,” in Proceedings of the IEEE
International Conference on Intelligent Robots and Systems
(IROS ’04), vol. 2, pp. 1884–1889, Sendai, Japan, September
2004.

[44] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification,
John Wiley & Sons, New York, NY, USA, 2nd edition, 2000.

[45] M. Sridharan and P. Stone, “Color learning and illumina-
tion invariance on mobile robots: a survey,” Robotics and
Autonomous Systems, vol. 75, no. 1, pp. 1–38, 2009.

[46] M. Ghallab, D. Nau, and P. Traverso, Automated Planning:
Theory and Practice, Morgan Kaufmann, San Francisco, Calif,
USA, 2004.

[47] R. A. Brooks, “A robust layered control system for a mobile
robot,” Robotics and Automation, vol. 2, no. 1, pp. 14–23, 1986.

[48] J. E. Laird, A. Newell, and P. Rosenbloom, “SOAR: an
architecture for general intelligence,” Artificial Intelligence, vol.
33, no. 3, pp. 1–64, 1987.

[49] J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C.
Lebiere, and Y. Qin, “An integrated theory of the mind,”
Psychological Review, vol. 111, no. 4, pp. 1036–1060, 2004.

[50] D. Draper, S. Hanks, and D. Weld, “A probabilistic model
of action for least-commitment planning with information
gathering,” in Proceedings of the 10th Conference on Uncertainty
in Artificial Intelligence (UAI ’94), Seattle, Wash, USA, July
1994.

[51] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, Prentice-Hall, Upper Saddle River, NJ, USA, 2nd
edition, 2003.

[52] R. P. A. Patrick and F. Bacchus, “Extending the knowledge-
based approach to planning with incomplete information and
sensing,” in Proceedings of the 14th International Conference
on Automated Planning and Scheduling (ICAPS ’04), pp. 2–11,
Whistler, Canada, June 2004.

[53] M. Brenner and B. Nebel, “Continual planning and acting
in dynamic multiagent environments,” Journal of Autonomous
Agents and Multi-Agent Systems, vol. 19, no. 3, pp. 297–331,
2009.

[54] J. Hoffmann and B. Nebel, “The FF planning system: fast
plan generation through heuristic search,” Journal of Artificial
Intelligence Research, vol. 14, pp. 253–302, 2001.

[55] R. Clouard, A. Elmoataz, C. Porquet, and M. Revenu, “Borg:
a knowledge-based system for automatic generation of image
processing programs,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 21, no. 2, pp. 128–144, 1999.

[56] S. Chien, F. Fisher, and T. Estlin, “Automated software module
reconfiguration through the use of artificial intelligence
planning techniques,” IEE Proceedings: Software, vol. 147, no.
5, pp. 186–192, 2000.

[57] M. Thonnat and S. Moisan, “What can program supervision
do for program reuse?” IEE Proceedings: Software, vol. 147, no.
5, pp. 179–185, 2000.

[58] S. Moisan, “Program supervision: yakl and pegase+ reference
and user manual,” Rapport de Recherche 5066, INRIA, Sophia
Antipolis, France, December 2003.

[59] T. Darrell, “Reinforcement learning of active recognition
behaviors,” Tech. Rep. 1997-045, Interval Research Corp., Palo
Alto, Calif, USA, 1997.

[60] L. Li, V. Bulitko, R. Greiner, and I. Levner, “Improving an
adaptive image interpretation system by leveraging,” in Pro-
ceedings of the 8th Australian and New Zealand Conference on
Intelligent Information Systems, Sydney, Australia, December
2003.

[61] J. Vogel and N. de Freitas, “Target-directed attention: sequen-
tial decision-making for gaze planning,” in Proceedings of
the International Conference on Robotics and Automation
(ICRA ’08), pp. 2372–2379, Pasadena, Calif, USA, May 2008.

[62] C. Kreucher, K. Kastella, and A. Hero, “Sensor management
using an active sensing approach,” IEEE Transactions on Signal
Processing, vol. 85, no. 3, pp. 607–624, 2005.

[63] A. O. I. Hero, D. A. Castanon, D. Cochran, and K. Kastella,
Foundations and Applications of Sensor Management, Springer,
New York, NY, USA, 2008.

[64] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor
placements in gaussian processes: theory, efficient algorithms
and empirical studies,” Tech. Rep. CMU-ML-07-108, Carnegie
Mellon University, 2007.

[65] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor
placements in gaussian processes: theory, efficient algorithms
and empirical studies,” Journal of Machine Learning Research,
vol. 9, pp. 235–284, 2008.

[66] J. Pineau and S. Thrun, “High-level robot behavior control
using POMDPs,” in Proceedings of the 8th National Conference
on Artificial Intelligence (AAAI ’02), Edmonton, Canada, July
2002.

[67] T. Dietterich, “The MAXQ method for hierarchical rein-
forcement learning,” in Proceedings of the 15th International
Conference on Machine Learning (ICML ’98), Madison, Wis,
USA, July 1998.

[68] E. A. Hansen and R. Zhou, “Synthesis of hierarchical finite-
state controllers for POMDPs,” in Proceedings of the Inter-
national Conference on Automated Planning and Scheduling
(ICAPS ’03), pp. 113–122, Trento, Italy, June 2003.

[69] A. F. Foka and P. E. Trahanias, “Real-time hierarchical
POMDPs for autonomous robot navigation,” in Proceedings of
the IJCAI Workshop on Reasoning with Uncertainty in Robotics,
Edinburgh, Scotland, July 2005.

20 Advances in Artificial Intelligence

[70] J. M. Porta, M. T. J. Spaan, and N. Vlassis, “Robot planning in
partially observable continuous domains,” in Robotics: Science
and Systems, 2005.

[71] J. Pineau and G. Gordon, “POMDP planning for robust robot
control,” in Proceedings of the 12th International Symposium on
Robotics Research, San Fransisco, Calif, USA, October 2005.

[72] G. Theocharous, K. Murphy, and L. P. Kaelbling, “Rep-
resenting hierarchical POMDPs as DBNs for multi-scale
robot localization,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA ’04), pp. 1045–
1051, New Orleans, La, USA, April 2004.

[73] M. Toussaint, L. Charlin, and P. Poupart, “Hierarchical
POMDP controller optimization by likelihood maximization,”
in Proceedings of the 24th Conference on Uncertainty in Artificial
Intelligence (UAI ’08), Helsinki, Finland, July 2008.

[74] B. Efron and R. J. Tibshirani, An Introduction to Bootstrap,
Chapman and Hall, New York, NY, USA, 1993.

[75] P. S. Maybeck, Stochastic Models, Estimation and Control,
Academic Press, New York, NY, USA, 1979.

[76] M. Sridharan and P. Stone, “Color learning on a mobile
robot: towards full autonomy under changing Illumination,”
in Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI ’07), Hyderabad, India, January
2007.

[77] C. M. Bishop, Pattern Recognition and Machine Learning,
Springer, New York, NY, USA, 2008.

[78] M. Sridharan and X. Li, “Learning sensor models for
autonomous information fusion on a humanoid robot,”
in Proceedings of the IEEE-RAS International Conference on
Humanoid Robots (ICHR ’09), Kobe, Japan, June 2009.

[79] D. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, vol. 60,
no. 2, pp. 91–110, 2004.

[80] L. Kaelbling, M. Littman, and A. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial
Intelligence, vol. 101, no. 1-2, pp. 99–134, 1998.

[81] M. Sridharan, J. Wyatt, and R. Dearden, “E-HiPPo: extensions
to hierarchical POMDP-based visual planning on a robot,”
in Proceedings of the 27th Workshop of the UK Planning and
Scheduling Special Interest Group (PlanSIG ’08), Edinburgh,
UK, December 2008.

[82] T. Smith and R. Simmons, “Point-based POMDP algorithms:
improved analysis and implementation,” in Proceedings of
the 21st Conference in Uncertainty in Artificial Intelligence
(UAI ’05), Edinburgh, UK, July 2005.

[83] M. Sridharan, J. Wyatt, and R. Dearden, “POMDP-based
planning for visual processing management on a mobile
robot,” in Proceedings of the 5th International Cognitive Vision
Workshop (ICVW ’09), Saint Louis, Mo, USA, October 2009.

[84] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based
visual attention for rapid scene analysis,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 20, no. 11, pp.
1254–1259, 1998.

[85] “ZMDP planning code,” 2008, http://www.cs.cmu.edu/∼trey/
zmdp.

[86] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse,
“MonoSLAM: real-time single camera SLAM,” Pattern Anal-
ysis and Machine Intelligence, vol. 29, no. 6, pp. 1052–1067,
2007.

[87] P. Felzenszwalb and D. Huttenlocher, “Efficient matching of
pictorial structures,” in Proceedings of the International Confer-
ence on Computer Vision and Pattern Recognition (CVPR ’00),
Hilton Head, SC, USA, June 2000.

