
In International Conference on Autonomous Agents and Multiagent Systems (AAMAS 12),
Valencia, Spain, June 4-8, 2012.

Active Visual Sensing and Collaboration on Mobile Robots
using Hierarchical POMDPs

Shiqi Zhang
Department of Computer Science

Texas Tech University
s.zhang@ttu.edu

Mohan Sridharan
Department of Computer Science

Texas Tech University
mohan.sridharan@ttu.edu

ABSTRACT

A key challenge to widespread deployment of mobile robots in the

real-world is the ability to robustly and autonomously sense the en-

vironment and collaborate with teammates. Real-world domains

are characterized by partial observability, non-deterministic action

outcomes and unforeseen changes, making autonomous sensing

and collaboration a formidable challenge. This paper poses vision-

based sensing, information processing and collaboration as an in-

stance of probabilistic planning using partially observable Markov

decision processes. Reliable, efficient and autonomous operation is

achieved using a hierarchical decomposition that includes: (a) con-

volutional policies to exploit the local symmetry of high-level vi-

sual search; (b) adaptive observation functions, policy re-weighting,

automatic belief propagation and online updates of the domain map

for autonomous adaptation to domain changes; and (c) a probabilis-

tic strategy for a team of robots to robustly share beliefs. All algo-

rithms are evaluated in simulation and on physical robots localizing

target objects in dynamic indoor domains.

Categories and Subject Descriptors

I.2.9 [Artificial Intelligence]: Robotics

General Terms

Algorithms, Experimentation

Keywords

Integrated perception, cognition, and action; Robot planning (in-

cluding action and motion planning); Robot teams, multi-robot sys-

tems, robot coordination.

1. INTRODUCTION
Autonomous and robust sensing and collaboration is a key chal-

lenge to widespread deployment of mobile robots in the real-world.

Real-world application domains are characterized by partial ob-

servability, non-deterministic action outcomes and unforeseen dy-

namic changes. A robot equipped with multiple sensors (e.g., cam-

eras and range finders) can use different algorithms to process sen-

sory inputs with varying levels of reliability and computational

complexity. It is not feasible for the robot to observe the entire

domain or process all sensory inputs with all available algorithms

and still respond to dynamic changes. At the same time, robust

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

operation requires that the robot make best use of relevant infor-

mation. Furthermore, each robot in a team can possess different

capabilities and communication between robots can be unreliable.

Autonomous and robust sensing and collaboration on robots de-

ployed in the real-world is hence a formidable challenge.

This paper poses vision-based sensing and collaboration as a

planning task and uses partially observable Markov decision pro-

cesses (POMDPs) [8] to enable each robot in a team to tailor sens-

ing and processing to the task at hand. Although POMDPs ele-

gantly model the non-determinism and partial observability of real-

world domains, the state space of these domains typically increases

exponentially and even state of the art (approximate) POMDP solvers

have high computational complexity [14, 19]. Our prior work in-

troduced a hierarchical decomposition in POMDPs for reliable and

efficient visual sensing and processing in simulation and simplistic

tabletop scenarios [22, 23]. This paper builds on our prior work to

enable a robot to autonomously direct sensing to relevant locations,

and consider the reliability and complexity of available algorithms

to determine the sequence of sensing and processing actions best

suited to a given task. Each robot then shares beliefs (acquired by

processing sensory cues) with teammates to collaborate robustly in

real-world domains. The following novel contributions are made:

• Local symmetries in visual sensing are exploited to learn convo-

lutional policies for efficient operation over large state spaces.

• Adaptive observation functions, policy re-weighting and auto-

matic belief propagation in the hierarchy are used in conjunction

with online revisions to domain map (based on range data) to

enable the robot to adapt to dynamic changes.

• A probabilistic belief sharing strategy is used to enable a team of

robots to merge individual and communicated beliefs to collab-

orate robustly despite unreliable communication.

These contributions enable the use of POMDPs for reliable, effi-

cient and autonomous visual sensing and collaboration on mobile

robots. All algorithms are evaluated in simulation and on phys-

ical robots deployed to localize target objects in dynamic indoor

domains. The remainder of the paper is organized as follows. Sec-

tion 2 summarizes related work, while Section 3 describes the hier-

archical planning approach. Experimental results are described in

Section 4, followed by conclusions in Section 5.

2. RELATED WORK
Research in vision, planning and robotics has produced sophis-

ticated algorithms for planning a pipeline of visual operators for

a high-level goal. Many such algorithms use deterministic action

models whose preconditions and effects are propositions that need

to be true apriori, or are made true by executing the operator. How-

ever, such formulations are insufficient for application domains with

partially observable state and non-deterministic action outcomes.



In vision research, image interpretation has been modeled us-

ing MDPs and POMDPs. Li et al. [12] used human-annotated im-

ages to determine the reward structure, explore the state space and

compute value functions—actions that maximize the learned func-

tions are chosen during online operation. Similarly, active sensing

has been used to decide sensor placement and information process-

ing, using particle filters and relative entropy maximization for es-

timating a joint multitarget probability density [10]. Sensor place-

ments in spatial phenomena have also been modeled as Gaussian

processes using submodular functions [9]. However, many visual

planning tasks are not submodular, and it is difficult to model prob-

ability densities using manual feedback over many trials on robots.

Since a POMDP formulation can become intractable due to the

exponential state explosion of real-world domains, researchers have

focused on imposing structure on application domains. Pineau and

Thrun [16] proposed a hierarchical approach for behavior control

of a robot assistant. The top level action is a collection of simpler

actions modeled as smaller POMDPs and solved completely to en-

able bottom-up planning and top-down plan execution. Similar ap-

proaches have been used for robot navigation [7] but a significant

amount of data for the hierarchy and model creation is hand-coded.

Recent work has focused on learning POMDP observation mod-

els [1]; using information maximization for POMDP-based visual

search [4, 23], and developing factored representations and faster

POMDP solvers [14, 19]. Researchers have also focused on inte-

grating human input in POMDPs for human-robot interaction [18].

However, these methods are still not suitable for dynamic domains

with large state spaces, and do not enable automatic model creation

and belief propagation that is essential for robot domains.

Many algorithms continue to be developed for multiagent and

multirobot collaboration in a variety of domains [15]. Sophisticated

algorithms have also been developed recently for using decentral-

ized POMDPs (Dec-POMDPs) for multiagent and multirobot col-

laboration [11]. However, the computational complexity of these

formulations is more than that of POMDP formulations [2]. Re-

search has also shown that using complex communication strate-

gies does not necessarily improve task completion times [21]. This

paper addresses these challenges using hierarchical POMDPs that

enable autonomous active visual sensing on each robot and robust

collaboration between a team of robots.

3. PROBLEM FORMULATION
Figure 1 summarizes the POMDP hierarchy for visual sensing,

processing and collaboration. Each robot uses the hierarchy to lo-

cate one or more target objects. The top-level visual sensing (VS)-

POMDP determines the sequence of 3D scenes to process to lo-

cate a specific target, as described in Sections 3.1–3.3. For each

chosen scene, the scene processing (SP)-POMDP determines the

sequence of regions to process in a sequence of images using the

appropriate set of algorithms. The SP-POMDP has one or two lay-

ers depending on the characterization of the learned object models,

as described in Section 3.4. The hierarchy is then augmented with

a communication layer that enables each robot in a team to share

beliefs with teammates to collaborate robustly despite unreliable

communication, as described in Section 3.5.

3.1 POMDP Planning
In real-world domains, the robot has to move and analyze differ-

ent scenes to locate target objects that can exist in different loca-

tions. Consider the situation where a robot has learned a domain

map [6] and has to locate a specific target. The 3D area is repre-

sented as a discrete 2D occupancy grid and each grid cell stores

the probability of occurrence of the target object. The VS-POMDP

Figure 1: Overview of POMDP hierarchy for target localization.

poses sensing as the task of maximizing information gain, i.e., re-

ducing the belief state entropy in a grid with N cells. The POMDP

tuple 〈S,A,T,Z,O,R〉 is defined as:

• S : si, i∈ [1,N] is the state vector; si corresponds to the event that

the target is in grid cell i.

• A : ai, i∈ [1,N] is the set of actions. Executing ai causes the robot

to move to and analyze grid cell i.

• T : S× A× S → [0,1] is the state transition function. It is an

identity matrix here because actions do not change state.

• Z : {present, absent} is the observation set that indicates if the

target is detected.

• O : S×A×Z → [0,1] is the observation function (see below).

• R : S×A→ R is the reward specification that is based on belief

entropy (see below).

The robot maintains a belief state, a probability distribution over

the state. The entropy of belief distribution Bt is given by:

H (Bt) = −
N

∑
i=1

bit log(b
i
t) (1)

where bi is the ith entry of the belief distributed over the N grid

cells. With no prior knowledge of target location, the belief is uni-

formly distributed and entropy is maximum. The VS-POMDP aims

to choose actions that significantly reduce the entropy by causing

the belief distribution to converge to likely target locations. The re-

ward of action at at time t is hence defined as the entropy reduction

between belief state Bt−1 and the resultant belief state Bt :

R(at) :=H (Bt−1)−H (Bt) (2)

=∑
k

bkt log(b
k
t )−∑

j

b
j
t−1log(b

j
t−1)

The observation function models the probability of target detection

as a function of the robot position and target position:

if isBlocked(s j,ak) (3)

O(zi = present,s j,ak) = Pr(zi = present|s j,ak) = β

else

O(zi = present,s j,ak) = η · exp{−λ µ2/2σ2}

O(zi = absent,s j,ak) = 1−O(zi = present,s j,ak)

where the probability of observation “present” in cell i given that

the target is in cell j and the focus is on cell k, i.e., p(zi|s j,ak), is a

Gaussian distribution whose mean depends on the target location,

the grid cell being examined and the field of view: µ = fµ (s j,ak).
The variance of the Gaussian represents the sensitivity of sensory

cues to the object’s distance from the sensor—there is more un-

certainty associated with the observation of a target at a greater

distance. The factor η is a normalizer. If there is any obstacle be-



tween the robot and the target, i.e., isBlocked(s j,ak), β is a small

probability that the target can still be observed. This observation

function is used to perform belief updates after sensing actions pro-

vide observations, and to generate observations in the simulated

experiments. Given these model parameters, belief update in the

VS-POMDP proceeds as follows:

Bt+1(s
′) =

O(s′,at+1,ot+1)∑s T (s,at+1,s
′) ·Bt(s)

p(ot+1|at+1,bt)
(4)

POMDP solvers take such a model and compute a policy that maps

belief states to actions: π : Bt 7→ at+1 . In the VS-POMDP, the

computed policy has to minimize entropy in Bt over a planning

horizon. Policy gradient algorithms are used to compute the policy

in the form of stochastic action choices, i.e., the policy is learned as

a matrix of “weights” that are used (during plan execution) to prob-

abilistically choose an action for specific belief states [3]. Actions

in the VS-POMDP require the robot to physically move between

grid cells, expending time and effort. Instead of the formulation

described above, motion costs are addressed in a post-processing

step, as described in Section 3.3.

3.2 Convolutional Policy
In real-world domains, the state space of the VS-POMDP can

increase exponentially, making it intractable to compute the pol-

icy in real-time even with sophisticated solvers. This challenge is

addressed by exploiting the local shift and rotation symmetries of

visual processing. Specifically, if the robot is analyzing a specific

grid cell, only the beliefs immediately around that grid cell change

substantially, i.e., the performance is a function of (and can affect)

only a small number of surrounding cells. The robot captures this

local influence by learning a policy kernel based on a baseline pol-

icy for a map with a small number of grid cells. The policy for

a larger map with a larger number of grid cells is generated au-

tomatically by an inexpensive convolution operation. This section

describes the creation of policy kernels and the use of convolutional

policies for efficient sensing and processing.

3.2.1 Kernel Extraction

Consider the stochastic baseline policy generated for a 5×5 map,

which has 25 states and 25 actions. In the 2D matrix of action

weights, each column corresponds to an action and each row cor-

responds to a state. The matrix is re-organized into layers, where

each layer corresponds to action weights for a particular state and

is a represented as a 2D matrix of the same size as the map. This

re-organization enables the robot to use the local symmetries (i.e.,

shift and rotation invariance) to extract a kernel without significant

loss of information:

K̄(s) = (πV ⊗ CK
m)(s) =

∫
πV (s̃)CK

m(s− s̃)ds̃, (5)

K = ( ∑
states

K̄) ·/W

where K̄ is the un-normalized kernel, πV is baseline policy gener-

ated for the VS-POMDP over the 5×5 map andCK
m is the convolu-

tion mask of the same size as the target kernel. Since the mask only

considers action weights within a local region, the layers of the re-

sultant kernel are summed up and normalized using W , a matrix

that stores the count of the number of accumulated weights across

all layers. For instance, a 3× 3 policy kernel is computed by con-

volving a 3×3 mask with the 5×5 policy layers and normalizing

the weights in the region covered by the mask.

The computed kernel does not assign action weights to grid cells

further away from the center of the convolution mask. Since these

action weights are usually much lower than values in the kernel,

they can all be set to a small default value:

wd =

∑
actions

∑
states

πV −∑ ∑
states

K̄

Nactions×Nstates−∑W
(6)

where the default action weight wd is a function of the number of

states (Nstates) and actions (Nactions). To prevent the summation

of “small weights” from overwhelming the kernel’s weights when

generating policies for large maps, wd is revised to make the ratio

of importance assigned to the area covered and left uncovered by

the kernel to be similar over maps of different sizes:

ŵd = wd − ln(
NE
states− sz(W )

NK
states− sz(W )

) (7)

where NE
states and NK

states are the number of states in the large map

and kernel respectively, and sz(W ) is the number of entries in W .

3.2.2 Policy Extension

Once a policy kernel has been learned, it can be used to effi-

ciently compute the convolutional policy for a larger map:

πV
C (s) = (K⊗CE

m)(s) =
∫

K(s̃)CE
m(s− s̃)ds̃ (8)

where πV
C is the convolutional policy, K is the policy kernel and

CE
m is the convolution mask of the same size as the target map. For

instance, for a 10× 10 map, CE
m is a 10× 10 mask over which the

3× 3 policy kernel is convolved. The desired policy is generated

one layer at a time by centering the kernel on the state represented

by the layer. Since the kernel covers only grid-cells in a small area,

other cells are assigned the weight computed in Equation 7 and the

resultant policy is normalized. Although it may take some time for

the robot to learn a baseline policy for a small map, it is a one-time

computation. The kernel extracted from a baseline policy needs to

be revised only when the robot’s sensors change substantially.

3.3 Motion Costs and Path Planning
Unlike visual search over an image, a mobile robot has to phys-

ically move between grid cells. The movement takes time and is

associated with unreliability that has a cumulative effect as the dis-

tance traveled increases. Each action is hence assigned a cost pro-

portional to the distance to be traveled by revising the action’s pol-

icy weights during policy execution:

ŵ(i) = w(i)
1

1+
dA∗ (ai,a j)

speed

(9)

where dA∗(ai,a j) is the distance between the current grid cell and

the candidate grid cell, which is computed using the A∗ search al-

gorithm [20]. The A∗ search includes a heuristic cost to the target

grid cell and a path cost to account for obstacles (e.g., walls) in the

domain map. The revised policy trades off the expected likelihood

of locating the target in a specific grid cell against the cost of travel-

ing to that location. When the domain map changes due to changes

in object configurations (e.g., objects are moved and/or new ob-

stacles are created), the robot automatically revises the map using

laser-based simultaneous localization and mapping (SLAM) algo-

rithms. The modified map is used to recompute distances between

grid cells and revise action weights for subsequent computations.

In addition to revising action weights to model motion-based

costs, hill-climbing is used to make the search more efficient in

large maps. Consider Figure 2, which shows a domain map (sim-

ilar to Figure 8) discretized into grid cells. The green grid is the

current position of the robot after executing the most recent action.

At this point, there are three grid cells in the map with significantly



Figure 2: Illustration of hot-spot detection.

higher weights than the other cells: the orange and pink grids have

w = 0.3 and the blue grid has w = 0.2. Since the robot’s current

position is equidistant from the pink and orange grids, these grids

have an equal chance of being the next grid cell visited by the robot.

However, given that the robot has three valid candidates of similar

relevance, it makes sense to visit the pink cell first because it is also

close to the blue grid cell. Instead of looking for a grid cell with the

largest ŵ (Equation 9), the robot therefore selects the path through

the candidate grid cells that has the largest summation of ŵ val-

ues. Since it is computationally expensive to estimate an optimal

path by evaluating all paths through all grid cells in a large map,

the robot detects “hot-spots”, i.e., grid cells with sufficiently large

beliefs, and plans a path through them.

To compute hot-spots, N seeds are randomly selected and then

refined based on hill-climbing to arrive at local maxima, i.e., cells

similar to the orange, blue and pink grids in Figure 2. These hot-

spots are considered to be the interesting areas for further analysis.

The robot then computes the values of paths wp through combina-

tions of these hot-spots:

wp([h0,h1, . . . ,hN ]) =
N

∑
i=1

f (wi,
i

∑
j=1

dA∗(h j−1,h j)) (10)

where, hn is the nth hot-spot, h0 is the current position of the robot

and other entries are chosen by hill-climbing. The function f is

defined in Equation 9. In Figure 2, the values of the pink-blue-

orange and orange-pink-blue paths are 0.0672 and 0.0591 respec-

tively, making the pink grid cell the most likely choice for being

analyzed next. This path planning does not imply that the robot

will move through all the hot-spots—once a robot arrives at a grid

cell, the corresponding observation revises the belief distribution

and hence the planned path. The path planning ensures that the

robot’s attention is directed towards the most interesting grid cells.

3.4 Scene Processing
Invoking the VS-POMDP policy computed for a specific target

causes a 3D scene to be chosen for analysis. The robot moves

and captures images of this scene. As stated earlier, there are two

options for scene processing depending on the scene complexity

and learned object models—specific examples are provided in Sec-

tion 4. In uncluttered scenes with unique objects, the SP-POMDP

is a two layered POMDP as described in [22]. Each input image

is analyzed to extract salient regions of interest (ROI). Each ROI is

modeled as a lower-level (LL)-POMDP, where actions are infor-

mation processing operators (e.g., to detect color or shape). The LL

policy provides the best sequence of operators to apply on a specific

ROI to detect the target. The LL policies of all image ROIs are used

to automatically create a high-level (HL)-POMDP. Executing an

action in the corresponding HL policy directs robot’s attention to a

specific ROI. The result of executing the corresponding LL policy

causes an HL belief update and action choice until presence or ab-

sence of the target in the image is determined. In cluttered scenes

with sophisticated learned object models, the robot may need to

process the entire image. Scene processing is then reduced to a sin-

gle POMDP over the image. With either version of SP-POMDP, the

result of scene processing causes a belief update in the VS-POMDP

and subsequent analysis of grid cells until the target is found or a

time limit is exceeded. The entire hierarchy operates automatically

and efficiently for dynamic domains.

3.5 Multirobot Collaboration
Consider (next) a team of X robots trying to locate Y targets.

Each robot maintains a belief vector for each target, and uses the

hierarchical POMDPs to detect each target. This section describes

an algorithm for a team of robots to share beliefs and collaborate to

locate all targets reliably and efficiently.

We assume that the targets are visually distinguishable and that

the observations of different targets are independent of each other.

Each robot now stores a data structure:

{Bi, fi}, ∀i ∈ [1, |TL|] (11)

where Bi is the belief vector for a specific target i among the list of

target objects (TL) and fi is a binary flag that indicates discovery

of a target. The robot also stores an action map M , a vector of the

same size as the belief vector. Each entry in this vector stores the

number of times the robot has visited the corresponding grid cell:

M = 〈m1, · · · ,mN〉 (12)

where mi is the count of the number of times grid-cell i has been

visited. For moving targets, values in the action map decay over

time if they are not reinforced by more recent visits. Each robot

uses the POMDP hierarchy to update the appropriate belief vectors

based on observations. After the belief update, each robot shares

the belief information with its teammates by broadcasting a pack-

age that includes its current belief vectors (∀i Bi), discovery flags

(∀i fi) and the action map (M ).

There is uncertainty associated with sensing on each robot and

communication between robots—the information from a teammate

(when received successfully) may reinforce or contradict the infor-

mation acquired by the robot by processing sensory inputs. At the

same time, the communicated estimates provide useful information

about map locations that the robot has not visited. Each robot hence

merges own and communicated beliefs by assigning a trust factor to

beliefs based on whether the robot that generated this belief vector

has recently observed the corresponding map region:

b
j,own
i =

m
j,own
i ·b

j,own
i +m

j,comm
i ·b

j,comm
i

m
j,own
i +m

j,comm
i

(13)

∀ j ∈ [1,N], ∀i ∈ [1, |TL|]

where b
j
i is jth entry of the belief vector of the ith target, while

m
j,own
i and m

j,comm
i are action map entries of the robot and the

teammate whose communicated belief is being merged. Although

this merging process can be sensitive to processing order, it works

well in practice. Next, the target discovery flags are updated:

F = { f owni || f commi ;∀i ∈ [1, |TL|]} (14)

where each target is considered to be found when at least one robot

has localized it. Once a target is discovered, a robot that requires a

new target chooses an undiscovered object from the list (|TL|):

targetID = argmaxi{max
j

Bi( j)} (15)

where the robot chooses the target object whose location it is most

certain about, i.e., the target that is likely to require the least amount



of work to localize. The robot makes this choice based on current

beliefs that include the beliefs communicated by teammates. This

target selection approach (intentionally) includes some overlap of

targets among robots to account for unreliable communication, but

robots in the team distribute tasks and rarely go to the same target.

Furthermore, an additional cost is included to trade-off distance of

travel against expected likelihood of locating the target (or priority

of target, if known), similar to Equation 9.

4. EXPERIMENTAL RESULTS
This section describes the results of experiments performed to

evaluate the robot’s ability to: (a) use convolutional policies and

the POMDP hierarchy for reliable, autonomous and efficient vi-

sual sensing and processing in complex domains; and (b) proba-

bilistically merge own beliefs with communicated beliefs of team-

mates to achieve robust collaboration. Experiments were hence

conducted in simulation and on robots to evaluate the following

hypotheses: (I) the constrained convolution (CC) policy is more ef-

ficient than the non-convolutional (i.e., baseline) policy while pro-

viding similar accuracy; (II) the POMDP hierarchy results in better

target localization in comparison to heuristic search strategies; and

(III) the belief merging strategy enables a team of robots to share

beliefs and collaborate robustly despite unreliable communication.

4.1 Experimental Setup
Before describing the experimental results, this section describes

the initial setup and the modifications necessary for experimental

trials on robots. The initial setup consisted of a semi-supervised

learning phase, where some objects with known labels were placed

in front of the robot. The robot applied different processing oper-

ators on images of these objects to learn object models and some

model parameters of the VS-POMDP and SP-POMDP (e.g., ob-

servation functions, reward specifications). Examples of learned

object models are described in Sections 4.3.1 and 4.3.2. The robot

also used data from a laser range finder to learn a domain map that

was revised continuously during experimental trials.

For any detected object, the robot computes the relative distance

and bearing using geometric transforms. However, including ori-

entation as a parameter in the observation set will destroy the local

symmetry in visual sensing. The belief update in Equation 4 was

therefore modified as:

if ¬ target (16)

B(s′) =
O(s′,a,o)∑s∈S T (s,a,s′)b(s)

Pr(o|a,b)
=

O(s′,a,o)b(s)

Pr(o|a,b)

else

B(s′) =
O(s′, â,o)∑s∈S T (s, â,s′)b(s)

Pr(o|â,b)
=

O(s′, â,o)b(s)

Pr(o|â,b)

where B(s′) is the updated belief for state s′ after action a. Since the

transition functions are identity matrices, the update equation can

be simplified as shown. The robot’s estimate of its own position and

the relative distance and bearing of a detected target are used to find

the target’s global location in the domain map. The belief is then

updated as if the action corresponding to this global location had

been executed: â. This belief update scheme also models the fact

that false positives are rare while false negatives are common when

sensing (or processing) actions are executed on mobile robots. Fur-

thermore, a robot moving between grid cells may receive sensory

inputs relevant to the current task, e.g., it may unexpectedly have

the target in its field of view. The robot therefore periodically pro-

cesses input images at low-resolution to update the current belief.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Number of Steps

A
cc

u
ra

cy

 

 

Baseline Policy

Convolutional Policy

Figure 3: CC policy performs as good as the baseline policy.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Covered Distance (Normalized by Number of Grids)

A
cc

u
ra

cy

 

 

Heuristic Strategy

Proposed Strategy

Figure 4: CC policy performs better than a heuristic strategy.

4.2 Simulation Experiments
All three hypotheses were evaluated extensively in simulation

using domain maps that represented different sections of the map

shown in Figure 8. Each data point in the figures in this section

is the average of 1000 simulated trials. To evaluate hypothesis I,

a baseline policy computed for a 5× 5 map was used to extract a

policy kernel that was used to compute policies for larger maps.

Figure 3 compares the CC policy against the baseline policy for a

7× 7 map—the x-axis shows the number of times the policy was

invoked, as a fraction of the number of states. In each trial, the

initial positions of the target and the robot were set randomly and

the trial was deemed successful if the target was localized correctly.

There is no statistically significant difference in the target localiza-

tion accuracies of the CC and baseline policies. However, it takes

a few hours to compute the baseline policy for the 7×7 map.

Hypothesis II was evaluated by comparing the CC policy’s per-

formance against a heuristic policy that makes greedy action choices

or selects random actions based on the presence/absence of prior

knowledge. The results shown in Figure 4 correspond to a 15×15

convolutional policy generated from a 5× 5 kernel. The locations

of the robot and the target were randomly selected for each trial.

Existence of prior knowledge was simulated by adding bias to the

initial belief—70% of the belief was uniformly distributed over

all grid cells, while the remaining 30% was Gaussian-distributed

around the target. To generate the data points in Figure 4, trials

were terminated after a certain distance had been traveled and the

grid cell with the largest belief value was taken to be the target’s lo-

cation. The robot’s performance is scored as the weighted distance

between the actual and detected locations of the target. Figure 4

shows that the CC policy significantly reduces the number of ac-

tion steps required to locate the target with high accuracy.

Experiments were conducted next to evaluate the multirobot col-

laboration capability, i.e., hypothesis III. Assuming that all robots

in a team move at the same speed, the average distance moved by

the robots in a team (in an episode/trial) was used as a measure

of the team’s performance. In each trial, robots and targets were

placed randomly in a grid map, with no more than one robot or tar-

get in each grid-cell. A Gaussian bias (20%) was added to the initial



1 2 3 4 5
0

100

200

300

400

Number of Robots

A
v
er

ag
e 

C
o
v
er

ed
 D

is
ta

n
ce

 

 

Number of targets: 1

Number of targets: 2

Number of targets: 3

Number of targets: 4

(a) Multirobot search.

0.1 0.3 0.5 0.7 0.9
0

50

100

150

200

Prior Knowledge on Belief

A
v
er

ag
e 

C
o
v
er

ed
 D

is
ta

n
ce

 

 

2 robots searching for 2 targets

3 robots searching for 1 targets

(b) Effect of Bias.

0 0.2 0.4 0.6 0.8 1
50

100

150

200

Communication Success Rate

A
v
er

ag
e 

C
o
v
er

ed
 D

is
ta

n
ce

 

 

Number of robots: 2

Number of robots: 3

Number of robots: 4

Number of robots: 5

(c) Effect of CSR.

Figure 5: (a) Belief merging and hierarchical POMDPs result in robust multirobot collaboration; (b) Performance improves if prior informa-

tion is incorporated; and (c)Performance is robust to dropped communication packages.

Table 1: Proposed algorithms enable a robot team to localize targets

more accurately than random and heuristic search strategies.

Algorithm Normalized covered distance

0.5 1.0 1.5 2.0

Random 0.033 0.171 0.382 0.537

Heuristic 0.079 0.334 0.549 0.817

Proposed 0.153 0.544 0.825 0.957

belief in a 3×3 area around every target—the belief vector was then

normalized. When the belief in a grid cell exceeded 0.9, the grid

cell was assumed to contain a target. To simulate unreliable com-

munication, a communication success rate (CSR) parameter was

introduced and set to 0.5, i.e., every other broadcasted package was

not received. Figure 5(a) shows results for different combinations

of robots and targets in a 15×15 grid map—the robots collaborate

effectively to find the targets. Similar results were obtained for grid

maps of different sizes (4× 4 to 25× 25) that represent different

sections of the real-world office domain shown in Figure 8.

Next, the ability of the proposed collaboration algorithm to in-

corporate prior knowledge of target locations was evaluated. Fig-

ure 5(b) shows examples of the team’s performance for a specific

number of robots and targets as a function of the bias in the initial

belief. As expected, the performance improves, i.e., the robots are

able to localize targets faster, as more information about the loca-

tions of targets is made available.

Next, the effect of communication uncertainty on multirobot col-

laboration was measured. Figure 5(c) shows results of experiments

as a function of varying CSR, where robot teams were asked to

locate two targets. Though a low likelihood of successful commu-

nication hurts the team’s performance, the target localization capa-

bility soon stabilizes and is then no longer sensitive to the CSR.

Table 1 shows results of an experiment where two robots local-

ized two targets in a 15×15 map. The initial positions of robots and

targets were randomly assigned in each trial. The POMDP-based

approach is compared to a policy that randomly selects actions and

assigns targets to robots, and a heuristic policy which selects targets

and actions based on the grid cell with the largest belief. To simu-

late more realistic scenarios, prior belief was assigned to multiple

areas in the map (including the target location). The proposed ap-

proach results in significantly better performance, with the robots

traveling a much smaller distance to localize targets with high ac-

curacy. Over extensive simulation experiments (and robot trials,

see below) in different maps (3×3 to 25×25), using the hierarchi-

cal POMDP and collaboration strategy enables a team of robots to

collaborate and localize target objects reliably and efficiently.

Figure 6 is a pictorial representation of the proposed approach

for multirobot collaboration, with two robots repeatedly localizing

two targets in a 20×20 map with obstacles. The robots had no prior

knowledge of target locations. Intuitively, each robot should first

look around its starting position and then explore other areas. Once

Figure 6: Simulated trials with 2 robots and 2 targets. Obstacles

are shown in blue, targets in dark red and robot starting positions

in red. Other cells show the number of times they were visited

using colors ranging from blue to red along the visible spectrum.

a target is sighted, the robot should localize the target accurately.

The actions taken by the robots are recorded over 100 simulated

trials—each trial ends when the targets are located. In Figure 6,

each grid cell’s color changes from blue to red along the visible

spectrum based on the relative number of visits by a robot—results

are shown separately for each robot. Figure 6 shows that obstacles

are avoided and grid cells near the targets are visited more often

than other grid cells. In the absence of prior knowledge, there is

no clear path from initial robot positions to the targets. The ra-

dius of the yellow region reflects the largest distance of effective

observation. The two robots start searching for different targets in

different trials, but there are hardly any trials when they both go for

the same target. Similar performance is observed for different grid

maps with different numbers of targets and robots.

4.3 Robot Experiments

(a) Erratic robot (b) Nao robots

Figure 7: Robot platforms used in experiments.

Experiments were conducted on a wheeled robot and a team of

humanoid robots to test the proposed algorithms for reliable, effi-

cient and autonomous sensing and collaboration.

4.3.1 Experiments on Wheeled Robot

The algorithms for POMDP-based visual sensing and process-

ing were evaluated on the Erratic robot platform shown in Fig-

ure 7(a). This robot is equipped with stereo and monocular cam-

eras, in addition to a laser range finder that can provide range in-

formation over an angular range of ±135o for a distance of 30m.



Figure 8: Occupancy-grid map of the third floor of the Computer Science department at Texas Tech University.

All processing is performed using an on-board dual-core 2.6GHz

processor. The robot was used to conduct experiments in an in-

door office domain—the corresponding occupancy-grid map was

generated using a SLAM algorithm, as shown in Figure 8. This

map corresponds to an entire floor of the CS department at Texas

Tech University—it has three research labs, 13 faculty offices and

a conference room. The experiments reported below were mostly

conducted over the shaded portion of this map, which includes all

research labs and nine rooms—this region was discretized into cells

to form the grid map.

Given the complexity of the domain, objects were characterized

using color distributions and the Binary Robust Independent El-

ementary Features (BRIEF) [5], i.e., local image gradients. Al-

though BRIEF features are not inherently rotation and scale invari-

ant, images of an object (captured during the learning phase) are

automatically rotated and scaled to generate a set of images that

encapsulate a range of rotations and scale changes—features ex-

tracted from these images are used to populate the object model.

Figure 9 shows a screenshot of local feature detection and match-

ing on a test object. Target objects consist of boxes, cups, books

and other robots in complex (i.e., cluttered) backgrounds.

Figure 9: BRIEF descriptor.

To enable modular software architecture, the popular Robotics

Operating System (ROS) [17] was installed on the robot and the

algorithms described above were implemented on top of ROS. Fig-

ure 10 presents an overview of the implementation—it is a sub-

set of the graph generated by the ROS command <rxgraph>.

The planning algorithms are placed within the vs_planner node

that is the control center of the system. It repeatedly accepts mes-

sages from the vs_vision node, which processes input images to

provide the ID of any detected object, in addition to relative dis-

tance, bearing and detection probability, in the <v_pack> pack-

age. Belief updates occur under two situations: (1) robot arrives

at a desired grid cell and processes some images of the scene—

updates consider presence or absence of the target object; or (2)

robot detects the target by processing images during navigation

to a desired grid cell. The planner node sends the coordinates of

any desired grid cell to the motion control node move_base and

then waits for a response from the node, which can be one of:

arrived, canceled or not-arrived. The not-arrived

response is usually caused by a dynamic change in the environment,

e.g., a door being closed, which makes an office unavailable to the

robot. The node of the platform driver erratic_base_driver moves

the robot platform based on the velocity command cmd_vel. The

hokuyo_node provides the laser (range) readings to the motion con-

trol node and the localization node amcl. The amcl node computes

the robot’s pos (position and orientation) and the map_server re-

vises the domain map continuously.

Figure 10: Node connections in ROS.

Over a sequence of 40 trials, the robot successfully identified the

desired target objects. The robot only fails when a valid path to

the target does not exist. The performance was significantly better

than the heuristic search strategy used in Table 1. Videos of the

robot’s performance can be viewed online: www.cs.ttu.edu/

~smohan/Movies/Planning/visplan_aamas12.mp4

4.3.2 Experiments on Humanoid Robots

The humanoid Nao robots [13] were used for multirobot col-

laboration experiments because multiple wheeled robots were not

available. Since stable navigation is a challenge on humanoids, ex-

periments were conducted in the robot soccer domain, where a team

of robots play a competitive game of soccer on a 4m× 6m indoor

soccer field. This moderately constrained domain still captures all

the collaboration challenges we seek to address. Each robot has

a domain map and localizes based on domain landmarks such as

goals and field corners (whose positions in the map are known) de-

tected in input images. All computation is performed on-board the

robots using a 500MHz processor.

Target objects include boxes and balls of different colors and

shapes, as shown in Figure 7(b). Since objects are composed of ho-

mogeneous colors, gradient features cannot be used to learn object

models. The robot has to process 30 frames/sec and computational

resources are limited. Algorithms that detect object color and shape

were hence used. Scene processing was modeled as a two-layered

POMDP, with a POMDP that selects operators to apply on each

salient region of interest in an image, and a POMDP that controls

the selection of image ROIs for processing. The transfer of con-



trol between SP-POMDP and VS-POMDP occurred as described

in Section 3.4. Obstacles were artificially introduced to force the

robot to walk around to see the desired targets.

Experiments consisted of 25 trials, where a team of robots had to

detect and localize one or more targets. The robots successfully lo-

calized all targets in all trials, and the performance was significantly

better than the heuristic (i.e. greedy) policy for target and action se-

lection, similar to the results reported in Table 1. The collaboration

strategy was also robust to sudden changes in the team composi-

tion. For instance, when a robot was suddenly introduced in an

existing team of robots, the new robot automatically (and quickly)

chose to search for a relevant target using the communicated beliefs

of teammates. Similarly, when a robot was removed from the team,

the remaining robots automatically distributed the targets among

themselves. These experiments show that the robots are able to

use visual cues to reliably, efficiently and autonomously sense the

environment and collaborate with teammates.

5. CONCLUSION
This paper described an approach for reliable, efficient and au-

tonomous visual sensing and multirobot collaboration. A hierarchi-

cal POMDP with convolutional policies, adaptive observation func-

tions, policy re-weighting and automatic belief propagation enables

each robot to adapt sensing and information processing to that task

at hand in dynamically changing environments. Each robot shares

its beliefs with teammates and the multirobot collaboration algo-

rithm enables the robot to merge its beliefs with the communicated

beliefs of teammates. As a result, a team of mobile robots is able

to collaborate robustly in simulation and in the real-world. The

experiments reported in this paper assumed that robots have simi-

lar actuation capabilities. One direction of further investigation is

to model and incorporate the sensing and actuation capabilities of

heterogeneous robot platforms in the collaboration algorithm. Ex-

periments will also be conducted using a larger number of physical

robots and targets. Furthermore, the proposed hierarchy will be

adapted to inputs from other sensors on mobile robot platforms.

The ultimate goal is to enable reliable, efficient and autonomous

multirobot (and human-robot) interaction in complex and dynamic

real-world application domains.

Acknowledgment

This work was supported in part by the ONR Science of Autonomy

award N00014-09-1-0658.

6. REFERENCES

[1] A. Atrash and J. Pineau. A Bayesian Method for Learning

POMDP Observation Parameters for Robot Interaction

Management Systems. In The POMDP Practitioners

Workshop, 2010.

[2] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein.

The Complexity of Decentralized Control of Markov

Decision Processes. Mathematics of Operations Research,

27(4), November 2002.

[3] O. Buffet and D. Aberdeen. The Factored Policy-Gradient

Planner. Artificial Intelligence, 173(5-6):722–747, 2009.

[4] N. J. Butko and J. R. Movellan. I-POMDP: An Infomax

Model of Eye Movement. In The IEEE International

Conference on Development and Learning (ICDL), 2008.

[5] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. BRIEF:

Binary Robust Independent Elementary Features. In

European Conference on Computer Vision, September 2010.

[6] G. Dissanayake, P. Newman, and S. Clark. A Solution to the

Simultaneous Localization and Map Building (SLAM)

Problem. Transactions on Robotics and Automation,

17(3):229–241, 2001.

[7] A. F. Foka and P. E. Trahanias. Real-time Hierarchical

POMDPs for Autonomous Robot Navigation. In IJCAI

Workshop on Reasoning with Uncertainty in Robotics, 2005.

[8] L. Kaelbling, M. Littman, and A. Cassandra. Planning and

Acting in Partially Observable Stochastic Domains. Artificial

Intelligence, 101:99–134, 1998.

[9] A. Krause, A. Singh, and C. Guestrin. Near-optimal Sensor

Placements in Gaussian Processes: Theory, Efficient

Algorithms and Empirical Studies. JMLR, 9:235–284, 2008.

[10] C. Kreucher, K. Kastella, and A. Hero. Sensor Management

using An Active Sensing Approach. IEEE Transactions on

Signal Processing, 85(3):607–624, 2005.

[11] J. Kwak, R. Yang, Z. Yin, M. Taylor, and M. Tambe.

Teamwork and Coordination under Model Uncertainty in

DEC-POMDPs. In The AAAI Workshop on Interactive

Decision Theory and Game Theory, 2010.

[12] L. Li, V. Bulitko, R. Greiner, and I. Levner. Improving an

Adaptive Image Interpretation System by Leveraging. In

Australian and New Zealand Conference on Intelligent

Information Systems, 2003.

[13] Nao. The Aldebaran Nao Robots, 2008.

http://www.aldebaran-robotics.com/.

[14] S. C. Ong, S. W. Png, D. Hsu, and W. S. Lee. Planning

Under Uncertainty for Robotic Tasks with Mixed

Observability. International Journal of Robotics Research,

29(8):1053–1068, July 2010.

[15] L. Panait and S. Luke. Cooperative Multi-Agent Learning:

The State of the Art. JAAMAS, 11(3):387–434, 2005.

[16] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun.

Towards Robotic Assistants in Nursing Homes: Challenges

and Results. In RAS Special Issue on Socially Interactive

Robots, 2003.

[17] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote,

J. Leibs, R. Wheeler, and A. Y. Ng. Ros: an open-source

robot operating system. In ICRA Workshop on Open Source

Software, 2009.

[18] S. Rosenthal, M. Veloso, and A. Dey. Learning Accuracy and

Availability of Humans who Help Mobile Robots. In

Twenty-Fifth Conference on Artificial Intelligence (AAAI),

San Francisco, USA, August 2011.

[19] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa. Online

Planning Algorithms for POMDPs. JAIR, 32:663–704, 2008.

[20] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern

Approach. Prentice Hall, New Jersey, USA, 2003.

[21] P. E. Rybski, A. Larson, H. Veeraraghavan, M. LaPoint, and

M. Gini. Communication strategies in Multi-Robot Search

and Retrieval: Experiences with MinDART. In Symposium

on Distributed Autonomous Robotic Systems, 2004.

[22] M. Sridharan, J. Wyatt, and R. Dearden. Planning to See: A

Hierarchical Aprroach to Planning Visual Actions on a Robot

using POMDPs. Artificial Intelligence, 174:704–725, 2010.

[23] S. Zhang, M. Sridharan, and X. Li. To Look or Not to Look:

A Hierarchical Representation for Visual Planning on

Mobile Robots. In International Conference on Robotics and

Automation, 2011.


