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Abstract
Despite well-known limitations, human cognition exhibits remarkable abilities for scaling to factors
like task complexity and knowledge base size. In this paper, we revisit a recently proposed theory
of explanatory inference and its implementation in the PENUMBRA system, which we hypothesize
will support similar properties. We examine – analytically and empirically – the computational
costs associated with the architecture’s basic inference cycle, which alternates between selecting a
focus belief, elaborating current explanations, and repairing violated constraints. At a higher level,
we study PENUMBRA’s effectiveness at searching the space of alternative explanations for a set of
observations. We conclude with comments on related work and proposals for future research.

1. Introduction

Decades of research have established that humans are inherently limited information processors.
People have imperfect memories, they can focus on only one thing at a time, and they have difficulty
with long chains of reasoning. Yet despite these limitations, they are remarkably effective at many
complicated cognitive tasks, and their performance improves further as they gain experience in an
area, with experts outperforming novices substantially in terms of both speed of processing and
quality of results. Any complete computational theory of high-level intelligence must account for
these intriguing and important phenomena. Human cognition shows an amazing ability to scale well
to both the complexity of tasks and the size of knowledge bases, due at least partially to its reliance
on heuristics to mitigate its processing constraints.

In this paper, we address the general task of explaining observations, in which an intelligent sys-
tem, human or otherwise, attempts to understand events it encounters in terms of available knowl-
edge. Many instances of such explanation involve abductive reasoning (Peirce, 1878), in that they
require one to introduce plausible assumptions. There is a substantial literature on abductive and
explanatory inference that we will not review here. Some of this tradition has examined issues of
efficiency, but there have been few efforts to draw links to human cognition. For example, we know
that, as people acquire domain expertise, their increased knowledge does not slow down their pro-
cessing. Often they can also construct complex, highly interconnected explanations without much
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difficulty. Moreover, when confronted with many possible explanations (e.g., different parses for a
sentence), people find the best alternative as rapidly as when there are fewer choices (Carroll, 2008).

In the sections that follow, we present a promising account of such scalable explanatory rea-
soning. We start by reviewing an earlier theory of associative abduction and its implementation
in PENUMBRA, an architecture for plausible inference. After this, we examine the computational
costs of the system’s basic cognitive cycle, both formally and empirically, in terms of factors like
the number of rules and their complexity. Next we consider the effort required to construct com-
plete explanations, focusing specifically on scaling to increasing numbers of consistent alternatives.
In closing, we discuss related work on the efficiency of complex cognitive tasks and proposals for
future research on this important topic.

2. A Theory of Explanatory Inference

Consider an everyday example of explanatory reasoning. We hear that Abe has some cash and Bob
possesses an automobile, but that later Abe possesses the same car. Even though we did not observe
any interaction, we might reasonably assume that one of two transactions took place. Abe may
have used his money to buy the car from Bob, but it is also possible that Abe threatened Bob and
stole the car. We know that purchases and robbery are two distinct ways to transfer possession of
objects, so these two accounts are mutually exclusive. To reason about the situation effectively, we
must not only make plausible assumptions about unobserved events, but also keep the competing
explanations separate. If we later hear that Abe had actually given his money to Bob, then we would
abandon the theft account as inconsistent with the available facts and conclude that an automobile
purchase had indeed occurred.

More complex scenarios would involve multi-step inference chains through hierarchical struc-
tures, but this simple example clarifies some key points about human reasoning. People are able to
explain observations by connecting them through available knowledge, introduce plausible assump-
tions about relations or events that are not directly observed, process observations incrementally
and incorporate them into existing explanations, detect and address conflicting beliefs that keep
them from being consistent, and generate alternative accounts when more than one is plausible.
In a recent article, Langley and Meadows (2019) presented a theory of explanatory inference that
addresses these abilities. They distinguished between derivational abduction, in which observed
facts serve as the roots of proof graphs, and associative abduction, in which they are terminal nodes
of such graphs, along with assumptions. The theory falls into the second paradigm and incorpo-
rated a number of postulates about representation and processing, which we review in this section.
We also summarize PENUMBRA, an implemented architecture that reflects these theoretical ideas.
Additional details about the research are available in the earlier article.

2.1 Representational Postulates

Langley and Meadows’ account distinguishes between stable knowledge and dynamic beliefs, much
as other theories of complex cognition (Langley, Laird, & Rogers, 2009), The framework posits two
forms of generic knowledge structures. A definition specifies a higher-level relation in terms of other
more basic ones; these are often organized hierarchically, much as in a logic program or context-free
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grammar, with defined terms serving as nonterminal symbols. In our example, there would be high-
level definitions for purchasing and robbery, along with low-level rules for transferring property. A
constraint comprises a set of relations that are mutually exclusive, so they indicate inconsistency
when they are satisfied jointly. The main constraint in the example is that one cannot both buy
and steal an item. A separate, dynamic working memory contains three types of structures that
differ in their origins. Observed beliefs come from the external environment, abduced beliefs are
introduced as assumptions, and derived beliefs are deduced from other beliefs using knowledge.
In the example, some beliefs about possession are observed, others are abduced from definitional
rules, and the beliefs about buying and stealing the car are derived.

The theory also states that justifications – instances of applied definitions – are stored and or-
ganized into higher-level explanations. The latter structures take the form of proof graphs, with
observed and abduced beliefs appearing as terminal nodes and with beliefs that are derived from
them serving as nonterminals. A classic case involves parse trees, in which observed words are
terminal nodes and nonterminal symbols are derived, with different parses having distinct justifi-
cations. Moreover, although beliefs are stored in a single working memory, each of them is also
associated with one or more distinct worlds. These are stored in a distributed manner by annotating
each belief with the worlds in which it does not hold, so that a given justification can contribute to
competing accounts. For instance, two parses of a given sentence typically share many subtrees,
each of them associated with multiple worlds. Finally, the framework organizes worlds into a phy-
logenetic tree that traces their evolution, with closed worlds containing known constraint violations
and active ones, at the frontier, thought to be internally consistent.

2.2 Processing Postulates

This theory of explanatory reasoning also includes tenets about processing. The most basic claim
is that this mental activity involves two cognitive cycles: an outer observation loop that accepts
new facts from the environment and an inner inference loop that extends and revises explanations
of these facts. The inference cycle alternates among selecting an existing belief on which to focus
attention, invoking definitional rules to elaborate explanations, and using constraints to detect and
repair inconsistencies in these accounts. The chosen focus belief mediates retrieval of relevant
knowledge, in that processing only considers definitions and constraints with an antecedent which
unifies with it. When applying a retrieved definition, the elaboration process generates a derived
belief for its head and creates abduced beliefs for any unmatched antecedents. Thus, explanations
are constructed from the bottom up, as inference introduces higher level derivations.

In contrast, if retrieval reveals that a constraint is violated – because incompatible beliefs reside
in the same world – then a repair process deactivates this inconsistent world and generates new, ac-
tive children in which the conflict does not arise. The repair mechanism examines the justifications
that underlie the incompatible relations, separates all beliefs that support one but not the other into
two consistent sets, and then uses them to populate revised worlds. In the prior example, when the
buying and stealing interpretations come into competition, this would spawn two worlds, one in
which Abe retains his money after stealing the car and another in which Bob possesses they money
after selling the vehicle. Elaboration through definitional rules is a monotonic process, whereas the
repair of violated constraints is a nonmonotonic activity.
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At a higher level, the process of explanation construction is aided by knowledge but driven
by data, in that it responds to observations that arrive incrementally. Because multiple accounts
of the same observed facts may be possible, this involves a search through a space of alternative
explanations that are consistent with the data. Heuristics for selecting focus beliefs, definitions,
and constraints determine the order in which candidates are generated, and thus guide the search
process. However, because worlds are encoded in a distributed manner, this activity also exhibits a
form of implicit parallelism, in that each inference step can elaborate or repair multiple worlds that
share the beliefs involved. The earlier article describes these mechanisms in detail, along with the
similarity to, and difference from, earlier approaches to other reasoning paradigms.

2.3 The PENUMBRA System

Langley and Meadows (2019) also reported PENUMBRA, an implemented system that embodies
these theoretical ideas. This comes with a programming language for specifying definitions, con-
straints, and beliefs that follow the representational postulates mentioned earlier. PENUMBRA’s
syntax is similar to Prolog (Clocksin & Mellish, 1981), with definitions having a head and an-
tecedents, each comprising a predicate and arguments, with the latter being variables that may be
shared across relations. Constraints include a head and a set of antecedents, each having a predicate
and arguments, that are mutually exclusive and thus should never appear in the same explanation.
Observed, derived, and abduced beliefs are analogous to ground facts in Prolog, with arguments of
predicates being constant terms or Skolems. The language does not include a notation for specifying
worlds, as processing always starts with a root world and new ones are generated automatically.

The architecture also includes an interpreter, implemented in Steel Bank Common Lisp, for
running programs stated in this syntax. This follows the theory by incorporating an observation
cycle that accepts external input and an inner inference cycle that constructs explanations. On each
inference cycle, PENUMBRA selects a focus belief, checks for violations of constraints linked to
this focus, and, if it detects any, deactivates the inconsistent worlds and creates active children that
eliminate the problem. If the system detects no violations, it selects a definition with an antecedent
that unifies with the focus, then applies the rule to elaborate worlds in which the matched conditions
hold. This produces a derived belief based on the rule’s head and abduced beliefs based on its
unmatched antecedents. Both cycles continue until no more observations are available and no focus
belief is selected. PENUMBRA includes eight parameters that determine selection of focus beliefs,
constraints, and definitions, with different settings producing different search for explanations.

Langley and Meadows presented evidence that the system behaves as desired in two arenas that
involve explanatory reasoning. The first dealt with plan understanding: inference of an agent’s
intentions from its observed behavior and knowledge about activities. The second addressed the
construction of parse trees for given sentences based on knowledge about syntax. Demonstration
runs showed that PENUMBRA can construct plausible explanations in these domains, process obser-
vations incrementally and incorporate them into existing accounts, introduce default assumptions
when needed, detect inconsistencies and revise beliefs in response, and track competing accounts as
new evidence becomes available. These results were promising, but they failed to address an issue
important to any multi-step reasoning system: its ability to handle complexity. In the remaining
sections, we combine formal analysis and controlled experiments to tackle this matter.
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Table 1. Variables that denote (a) processing times for different stages of PENUMBRA’s inference cycle and
factors that influence them, including (b) those related to total counts and (c) those involving average counts.
The cost term TD should be constant throughout a run because the knowledge base is fixed, whereas TF

should increase during a run as the number of beliefs grows.

(a) TF is the processing time per cycle to select a focus
TC is the processing time per cycle to check constraints
TD is the processing time per cycle to select a definition

(b) NR is the number of distinct relational predicates
NC is the number of constraints
ND is the number of definitions
NB is the total number of beliefs

(c) AC is the number of alternatives per constraint
CP is the number of constraints per predicate
AD is the number of antecedents per definition
DP is the number of definitions per predicate
BP is the number of beliefs per predicate

3. Scalability of the Inference Cycle

Like many cognitive systems, PENUMBRA operates in discrete cycles, with the main work occurring
during the inference loop. If we want to ensure that its construction of explanations is efficient, then
we must first show that its cycle-level processing scales well to complicating factors. This was
the motivation for early research on efficient matching in production system architectures, which
led to successful techniques like Rete (Forgy, 1982) and TREAT (Miranker, 1987). In this section,
we examine analogous issues for our explanatory reasoning architecture, which we can partition
into the computational expenses of selecting focus beliefs, checking for violated constraints, and
selecting definitional rules. We start with a formal analysis and then report empirical studies for
selecting among definitions, the more expensive activity.

We are interested in components of PENUMBRA’s processing time per cycle and the factors
that influence them. Table 1 (a) shows the three dependent variables: the time per cycle to select
focus, TF ; the time per cycle to check constraints, TC ; and the time per cycle to select a definitional
rule, TD. We can divide the independent factors into two broad groups. One set (b) concerns
the total numbers of different types of structures, such as: the number of relational predicates,
NR; the number of constraints, NC ; the number of definitions, ND; and the number of beliefs,
NB . Another set of influences (c) involve relations between two types of structures, including: the
number of alternatives per constraint, AC ; the number of constraints per predicate, CP ; the number
of antecedents per definition, AD; the number of definitions per predicate, DP ; and the number of
beliefs per predicate, BP . Because PENUMBRA adopts a distributed representation, the number of
beliefs per world is also relevant to processing time, but we will not consider it here.
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3.1 Processing Costs of the Inference Cycle

We can analyze separately the three stages of PENUMBRA’s inference cycle – choosing a focus
belief, checking for constraint violations, and selecting a definition to apply. The computational
cost of the first stage is most straightforward. The time for focus selection should be affected only
by the number of beliefs NB in working memory. For a naive strategy, this gives

TF = j ·NB ,

but we must add a few caveats. One is that NB will grow over time, as the system applies definitions
and elaborates its explanations. However, if alternative worlds share many of their beliefs, as we
have observed in practice, this growth will be sublinear in the number of consistent accounts. Also,
we can limit the number of beliefs considered, say by ignoring all but the k most recently added
elements. Older beliefs would still be available for matching, but they would not compete for
attention unless they are refreshed, say when they are inferred again.

The computational expense of constraint checking is somewhat more complicated. Because
PENUMBRA indexes constraints by predicates that appear in them, and because it checks them
only after it has selected a focus, it must consider only CP candidate rules. The total number
of constraints, NC , should not affect processing time. Each of the retrieved constraints has AC

mutually exclusive antecedents, one of which has already matched the focus belief, so the system
must consider the remaining AC − 1 of them. Each of these, in turn, can potentially unify with BP

beliefs that share their predicate, which gives the expression

TC = i · CP · (AC − 1) ·BP .

Because the average number of mutually exclusive relations per constraint, AC , will typically be
small, the important factors are CP and BP . Note that, on a given cycle, PENUMBRA may well
overlook some related constraints because they do not involve the focus belief, but it may detect
them later, when its attention shifts. We have not discussed the cost of repairing violated constraints
once detected because the system stores the rule instances that produced each belief, so it can remove
the sources of an inconsistency by a simple retrieval process.

Finally, we can analyze PENUMBRA’s retrieval and matching mechanisms to calculate the cost
of selecting a definitional rule instance on a given cycle. Again, we can assume the system has
already selected a focus belief that involves some predicate. Because definitions are indexed by
predicates that occur in their antecedents, it will only retrieve the DP rules in which they appear;
the total number of definitions, ND, will not affect processing time. The cost of matching each
retrieved rule is influenced by the average number of beliefs, BP , that contain the focus predicate,
and the average number of antecedents, AD, in the definition. Because PENUMBRA allows partial
matching in support of abductive reasoning, it considers all ways that antecedents (other than the
one that unifies with the focus) can match or fail to match.

For each antecedent, it retrieves on average BP beliefs with the same predicate. The system
considers all combinations of these belief-antecedent pairs, as well as the possibility that each an-
tecedent has no match, giving (BP + 1)(AD−1) candidate partial matches. It will reject many can-
didates because their variables do not bind consistently, but it must still consider them. Multiplying
this expression by the number of retrieved definitions gives the equation
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TD = k ·DP · (BP + 1)(AD−1)

as the computation time required to find all partial matches of definitions that unify with a given
focus belief. The constant k includes the time needed per cognitive cycle to evaluate each of these
candidates and to select the best-scoring one. This analysis assumes that the factors DP , AD, and
BP remain constant for a particular run, when in fact the last term will vary, but the equation offers
a reasonable approximation with implications for PENUMBRA’s scaling behavior.

3.2 Experimental Studies of Rule Selection

The analyses above suggest a number of hypotheses that are subject to empirical test. We decided
to focus on one subprocess, selecting a definition to use in elaboration, because it is substantially
more expensive than choosing a focus or checking constraints. The analytical equation for TD

includes three factors, so we designed and carried out controlled experiments that varied each of
them separately, along with a fourth important variable, the number of definitions, ND. We devised
a set of synthetic knowledge bases and working memories that would let us vary these factors
systematically, and thus check the analysis’ predictions experimentally.

Table 2 presents abstract versions of the rules for six different values of DP and AD. Each
definition’s antecedent takes two arguments, at least one of which is shared with another condition,
to ensure relevance to the relational character of many explanatory tasks. For instance, the first rule
for the AD = 2, DP = 2 condition is (d1 ?x ?y ?z)← (p1 ?x ?y) (p2 ?y ?z), which matches against
beliefs like (p1 a b) and (p2 b c). The table does not show beliefs, which we can vary independently
of the definitions by creating multiple copies of element sets like those above that have disjoint
arguments. Note that the rules are not organized in a hierarchy, such as that for a context-free
grammar; they specify a flat set of connected relations. However, this structure should not affect the
results of experiments, which should depend only on the factors from the analysis.

We designed and ran four experiments using these synthetic knowledge bases. For each experi-
mental condition, we ran PENUMBRA 30 times in nonincremental mode, in that all observed beliefs
were available at the outset, letting it continue until the system made no further inferences. The
number of inference steps in these ranged from 18 to 144. The knowledge bases did not include
any constraints, which meant that the only processes in operation were focus and definition selec-
tion. Also, we specified that PENUMBRA should only apply rules when all their antecedents were
satisfied, so it never introduced any default assumptions, although the mechanism still considered
partial matches. For each run, we measured TD, the time to select a definition to apply, in CPU
seconds. We averaged the observed values for TD across cycles within each run and across runs for
each condition, which lets us calculate both means and standard errors.

The first and most important conjecture deals with the implication, according to the TD equation,
that the number of definitions does not affect the time needed to select a definitional rule:

• Processing time per rule selection TD is independent of the number of definitions ND.

To test this claim we varied the number of definitions while holding other variables constant (AD

= 3, DP = 3, BP = 3). We started from six definitions (ND = 6) and introduced new rules with
the same structure but different predicates for other conditions (ND = 12, 18, 24, 36, 48). Figure 1
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Table 2. Synthetic knowledge structures that vary two factors – the number of antecedents per definition,
AD and the number of definitions per predicate, DP , that should influence the cost of rule selection. Each
antecedent takes two arguments, at least one of which it shares with another condition. The parameter DP

ranged from 2 to 10 and AD ranged from 2 to 8, but the table shows only the simplest knowledge bases.

AD = 2 AD = 4 AD = 6

DP = 2 D1← P1 P2 D1← P1 P2 Q1 Q2 D1← P1 P2 Q1 Q2 R1 R2
D2← P2 P3 D2← P2 P3 Q2 Q3 D2← P2 P3 Q2 Q3 R2 R3
D3← P3 P4 D3← P3 P4 Q3 Q4 D3← P3 P4 Q3 Q4 R3 R4
D4← P4 P5 D4← P4 P5 Q4 Q5 D4← P4 P5 Q4 Q5 R4 R5
D5← P5 P6 D5← P5 P6 Q5 Q6 D5← P5 P6 Q5 Q6 R5 R6
D6← P6 P1 D6← P6 P1 Q6 Q1 D6← P6 P1 Q6 Q1 R6 R1

DP = 4 D1← P1 P2 D1← P1 P2 Q1 Q2 D1← P1 P2 Q1 Q2 R1 R2
D2← P2 P3 D2← P2 P3 Q2 Q3 D2← P2 P3 Q2 Q3 R2 R3
D3← P3 P4 D3← P3 P4 Q3 Q4 D3← P3 P4 Q3 Q4 R3 R4
D4← P4 P5 D4← P4 P5 Q4 Q5 D4← P4 P5 Q4 Q5 R4 R5
D5← P5 P6 D5← P5 P6 Q5 Q6 D5← P5 P6 Q5 Q6 R5 R6
D6← P6 P1 D6← P6 P1 Q6 Q1 D6← P6 P1 Q6 Q1 R6 R1
E1← P1 P2 E1← P1 P2 Q1 Q2 E1← P1 P2 Q1 Q2 R1 R2
E2← P2 P3 E2← P2 P3 Q2 Q3 E2← P2 P3 Q2 Q3 R2 R3
E3← P3 P4 E3← P3 P4 Q3 Q4 E3← P3 P4 Q3 Q4 R3 R4
E4← P4 P5 E4← P4 P5 Q4 Q5 E4← P4 P5 Q4 Q5 R4 R5
E5← P5 P6 E5← P5 P6 Q5 Q6 E5← P5 P6 Q5 Q6 R5 R6
E6← P6 P1 E6← P6 P1 Q6 Q1 E6← P6 P1 Q6 Q1 R6 R1

(left) shows the results of this experiment, which are consistent with the predictions. The CPU
time required to select a rule instance generally seems unaffected by the number of definitions in
long-term memory. There is a slight upturn at the curve’s end, but this falls within the 95 percent
confidence interval. Experiments with larger knowledge bases would clarify the situation further,
but the evidence to date is that this aspect of the analysis is correct.

A second hypothesis relates the processing time needed to select a rule to the ‘branching factor’
of definitions from the predicates that appear in their antecedents:

• Processing time per rule selection TD is a linear function of the average number of definitions
per predicate DP .

To check this prediction we varied the number of definitions per predicate (DP = 2, 4, 6, 8, 10)
while holding the beliefs per predicate constant at BP = 3. We repeated this at four settings for the
number of antecedents per definition. Figure 2 (right) presents the results with separate curves for
AD = 2, 4, 6, and 8, the first three corresponding to columns in Table 2. These generally support
the hypothesis, as each of the four curves are approximately linear in DP . The lowest curve looks
flat, but inspection of the numbers reveals that it increases as well, although slowly.
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Figure 1. The processing time per inference cycle in CPU seconds as a function of (left) the total number of
definitions (ND) and (right) the number of definitions per predicate (DP ). For the first plot, we set AD = 3,
DP = 3, and BP = 3; for the second graph, we set the factor BP = 3.

A third implication of the formal analysis is that the time needed to select an instance of a
definitional rule grows exponentially with the average rule complexity:

• Processing time per rule selection TD is an exponential function of the average number of an-
tecedents per definition AD.

We tested this claim by varying the number of antecedents per definition (AD = 2, 4, 6, 8) while
holding the beliefs per predicate constant at BP = 3. We examined PENUMBRA’s behavior at
different settings for the number of definitions per predicate. Figure 2 (left) displays the CPU time
per inference cycle, giving separate curves for DP = 2, 4, 6, 8, and 10, which we obtained by
extending the rule patterns in Table 2. These differ in the number of definitions, which we could
not hold constant in this study. All five curves are nonlinear, which is consistent with the prediction
of exponential growth in AD, the antecedents per definition. This is not especially concerning, as
PENUMBRA’s definitions should typically have fewer than eight antecedents.

A final hypothesis states that the computation time needed for rule selection is polynomial in
the number of beliefs in working memory that involve the same predicate as the focus belief:

• Processing time per rule cycle TD is a polynomial function of the average number of beliefs per
predicate BP .

To evaluate this conjecture, we varied the beliefs per predicate (BP = 1, 2, 3, 4, 5) while holding the
other factors constant (AD = 6, DP = 3, ND = 6). As Figure 2 (right) reveals, the increase in CPU
time per inference cycle with BP seems approximately linear, which is better than the polynomial
growth predicted by the analysis. However, we should extend the curve with higher settings to in-
crease confidence in this conclusion. This relationship is a greater concern than exponential growth
in AD, as the number of beliefs per predicate can increase over an extended run.
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Figure 2. The processing time per inference cycle in CPU seconds as a function of (left) the number of
antecedents per definition and definitions per predicate and (right) the number of beliefs per predicate. For
the first plot, we set the factor BP = 3; for the second graph, we set ND = 6, AD = 3, and DP = 3.

In summary, the results from our experimental studies of definition selection were generally
consistent with the predictions that follow from our formal analysis. They indicate that processing
time is either constant or grows slowly with the number of definitions, the number of definitions
per predicate, and the number of beliefs per predicate. As expected, the only factor that causes
exponential growth is the number of antecedents per definition, which results from the need to
consider partial matches in support of abductive inference. However, we can bound this cost by
limiting the number of antecedents associated with each rule, which suggests an important role for
the hierarchical organization of such knowledge.

4. Scalability of Explanation Construction
Although efficient behavior at the level of the inference cycle is important, it is not enough on its
own. The process of generating full explanations must also operate in a scalable manner. For exam-
ple, we would like the time needed to construct a good account to increase slowly with the number
of observations and with the complexity of the resulting structures. Informal analysis suggests that
the number of inference cycles should grow as a linear function of both factors, but we will not
address them here. Instead, we will focus on an even more important matter – scalability to the
number of alternative explanations – that arises because the task involves combinatorial search.

Consider a phenomenon well known in human language processing. Some sentences have many
possible parses, yet we take little if any more time to understand them than ones with fewer parses.
Given what we know about human cognition, the natural conclusion is that this occurs because
people draw on effective heuristics to guide their choices. Such heuristics can occasionally mis-
lead processing, as demonstrated by the existence of garden path sentences (e.g., The old man the
boats), but these are exceptions that prove the rule of thumb. PENUMBRA relies on heuristics at
two key choice points: selection of focus beliefs and selection of definitions. This suggests another
hypothesis about the system’s behavior:
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• Given effective heuristics, the time needed to find the best explanation is independent of the
number of consistent worlds.

In other words, during its search through the space of explanations, PENUMBRA should find the
best candidate first and should not be distracted by competing accounts that have lower quality.
However, before we can test this claim, we must first make it operational. This means that we must
specify what we mean by the term ‘best’ and which heuristics are likely to be effective.

4.1 Explanation Quality and Heuristics

The notion that one explanation is ‘best’ implies some criterion for determining their quality.1 A
classic criterion is simplicity, which favors accounts that involve fewer reasoning steps or that rely
on fewer assumptions (e.g., Peng & Reggia, 1986). However, Ng and Mooney (1990) have argued
instead for using coherence, which they defined in terms of the number of ways that beliefs are
linked to each other through available knowledge. Another approach associates numbers with in-
dividual rules, possible assumptions, or both. For instance, Hobbs et al.’s (1993) abduction system
assigned weights to each possible assumption and ranked alternative explanations by the summed
weights of their assumptions, with lower totals being better, while Appelt and Pollack (1992) took a
similar approach. Parsers that rely on probabilistic context-free grammars instead assign probabil-
ities to each rule, then compute a posterior probability for candidate parse trees by multiplying the
scores for each rule involved in them (e.g., Charniak & Shimony, 1990; Gordon, 2018).

We will not take a position here about which of these criteria is more desirable, but, for the sake
of illustration, we will adopt a variant of Hobbs et al.’s scheme in testing our hypothesis. Suppose
that each PENUMBRA definition comes with a score between zero and one, and that the quality
of an explanation is the average score of its component rule instances. This suggests that we use a
criterion that favors selection of candidate rules with higher scores. This is similar in spirit to conflict
resolution strategies in production system architectures that prefer rules with higher strengths (e.g.,
Anderson & Lebiere, 1998). Given that PENUMBRA can apply rules with unsatisfied antecedents,
we might modulate this score, say multiplying it by the fraction of matched conditions. This will
not be relevant to the experiments reported later, which involve purely deductive reasoning, but it
could play a role in our future work.

However, an effective heuristic for rule selection is not enough for PENUMBRA to generate
high-quality accounts earlier than it considers low-quality ones. For this ability, the system must
also carry out depth-first search through the space of explanations by applying definitional rules
that elaborate on the most promising world before turning to others. This strategy will sometimes
lead it to extend worlds that were not the best choice in hindsight, as occurs with garden path
sentences, but that is the nature of heuristics. Nevertheless, they often recommend the right option,
in this context leading the elaborative inference to construct the highest-quality explanation before
the search process begins to consider alternatives.

PENUMBRA’s criterion for selecting focus beliefs is the mediator that determines whether it be-
haves in a depth-first manner. If the system selects a focus at random, then it will tend to switch

1. Some authors (e.g., Eckroth & Josephson, 2014) have defined abduction as ‘inference to the best explanation’, but
not all explanations need be abductive and finding the best should not be part of the task’s definition.
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Table 3. A simple subset of English syntax stated as a context-free grammar, each with an associated score,
and five parses of the sentence A dog chased the cat with a stick on the roof with this grammar.

Grammatical Rules Score Allowed Parses Score

S→ NP VP 1.0 ((A dog) (chased (the cat (with (a stick))) (on (the roof)))) 0.726
VP→ V NP 0.4 ((A dog) (chased (the cat) (with (a stick)) (on (the roof)))) 0.716
VP→ V NP PP 0.9 ((A dog) (chased (the cat (with (a stick)) (on (the roof))))) 0.721
VP→ V NP PP PP 0.5 ((A dog) (chased (the cat) (with (a stick (on (the roof)))))))) 0.721
NP→ ART N 0.5 ((A dog) (chased (the cat (with (a stick (on (the roof)))))))) 0.679
NP→ ART N PP 0.2
NP→ ART N PP PP 0.8
PP→ P NP 0.9

between elaborating one world and extending others, approximating breadth-first search. In con-
trast, if it prefers to focus attention on more recently generated beliefs, then it will elaborate on the
current world before it extends others.2 Such a bias has been a common method for conflict reso-
lution in production system architectures, and Young (1982) has noted that it offers a natural way
to model depth-first strategies. To keep this scheme from producing infinite loops, it is often com-
bined with a ‘refraction’ technique that forbids reapplying the same rule instance until its matched
elements are refreshed. PENUMBRA mimics this mechanism by decreasing a belief’s score once it
has served as the focus, redirecting attention to unused elements instead.

Recall that applying a definitional rule, even in the purely deductive case, produces at least one
new belief: its instantiated head. If the system focuses on more recent elements, then it will first
consider rules that match it and extend the current explanation. An example should clarify this
effect. Table 3 presents a context-free grammar for a subset of English that includes prepositional
phrases, which are an important source of ambiguity. PENUMBRA encodes this syntactic knowledge
differently in that it includes explicit constraints (e.g., the same prepositional phrase cannot be
attached to both a noun and a verb), but the traditional notation will simplify our discussion. Also,
each definition has an associated weight that indicates its preference relative to others. Suppose we
provide PENUMBRA with this knowledge and with the sentence A dog chased the cat with a stick
on the roof. Table 3 shows five parses supported by the grammar, along with the average score of
rules used to construct them and the resulting scores for each interpretation.

For the sake of argument, assume that we present PENUMBRA with the entire sentence at once,
rather than incrementally. On each inference cycle, the system focuses on the most recently created
belief that has not led to a rule application. Combined with a heuristic for selecting the retrieved
(through connection with the focus) and matched definition with the highest score, this bias should
generate the first parse tree in the table before it considers the others. PENUMBRA should first
produce beliefs for the four noun phrases and then embed the latter two in prepositional phrases.
Next, the system would decide to include (with (a stick)) in (the cat (with (a stick))), after which
it would include this noun phrase and the prepositional phrase (on (the roof)) into the verb phase

2. Because PENUMBRA represents worlds in a distributed fashion, each inference can extend more than one explanation.
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(chased (the cat (with (a stick))) (on (the roof)). Finally, it would combine this constituent with the
noun phrase (a dog) to produce the first parse tree in the table.

Of course, PENUMBRA would not encode this parse tree as a list structure, but rather as as a set
of beliefs, including nonterminal predicates, that are connected through rule instances. Moreover,
the system can reuse many of these elements (especially those at lower levels) in other parses that
it would consider later, since they would share many constituents. Each alternative parse would be
associated with a distinct world, but these would be stored as markers on working memory elements,
so that common beliefs need only be inferred once. However, we are concerned here not with how
PENUMBRA can generate all parses, but with how it can arrive at the best-scoring explanation before
even considering these other sentence interpretations.

4.2 Experiments on Explanation Scalability

We can build on this informal analysis to to test our hypothesis about the scalability of explanation
construction in PENUMBRA. This predicts that, as we increase the number of different accounts
that are internally consistent, the time taken to find the best candidate will be unaffected. Whether
the two heuristics we discussed earlier – recency for the selection of focus beliefs and definition
score for the selection of rules – are effective enough to produce this result is an empirical question,
but the parsing example gives reasonable cause for hope. Because we have already examined the
scaling of computational costs per inference cycle, we will use here number of inference steps as
the dependent variable rather than CPU time.

Again, the main independent factor is the number of consistent explanations for a given set of
observations that are supported by PENUMBRA’s knowledge base. However, we also want to hold
constant other possible influences on processing time. We have already addressed factors like the
number of rules, their number of antecedents, and the number of beliefs per predicate in our study
of cycle time. The two remaining influences are the number of observations to be explained and the
complexity of explanations. The parsing task is a convenient setting to test the hypothesis because
it is familiar, it avoids complications raised by the need to introduce default assumptions during
abduction, and it lets us easily control the number of observations (sentence length). Moreover,
different parse trees require approximately the same number of inferences to construct them.

However, it would seem difficult to vary the number of explanations without also altering these
two factors. Fortunately, we can use a simple strategy to vary the number of alternative parses while
holding the others constant. Briefly, we can start with a general grammar like the one in Table 3 and
restrict it by removing rules or by splitting nonterminal symbols. For example, deleting the third
VP rule will eliminate one of the five parses. Similarly, replacing PP with PP1 in some cases and
PP2 in others, along with replacing PP→ P NP by PP1→ P1 NP and PP2→ P2 NP, allows only
two parses. This change also requires modifying rules that associate parts of speech with particular
words like with and on, which we have omitted from the table.3 We used this approach create three
variations on the initial grammar that accepted different subsets of the original five parses of the
sentence A dog chased the cat with a stick on the roof, which we held constant across the study.

3. The approach does require altering the number of definitional rules, and possibly the number of constraints, but we
are not concerned with time per cycle here, only the number of inferences needed to find the best explanation.
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Figure 3. Number of cycles (left) to find the best parse with variants of the grammar in Table 3 and (right) to
find all consistent parses using as heuristics both belief recencies and rule scores, only rule scores, and only
belief recencies to guide the search process.

We should also note that our core hypothesis comes with a corollary. Because the ability to find
the best explanation before others depends on use of effective heuristics, this should not occur when
PENUMBRA instead selects focus beliefs or definitions at random. The earlier informal analysis
suggests that both are prerequisites for finding the best account earlier than its competitors. Thus,
our experiment should vary two factors: the number of consistent explanations (in this case the
number of parses) and whether the system relies on the plausible heuristics described earlier to
select focus beliefs and rule instances. We should note that other measures of explanation quality,
say ones that revolve around coherence, are definitely possible, but we will postpone examining
their empirical behavior until future research.

Because PENUMBRA stores beliefs in a distributed manner, by marking them with worlds in
which they do not hold, it is not obvious at first glance how to determine when it has found the
best explanation. However, the system stores with each world the inference cycle on which it was
modified most recently. If we run it until completion, that is, until it makes no more inferences
and thus has found all consistent worlds for the given observations, then we can find both the
best-scoring world and the cycle on which it was last elaborated. We can use this number as the
dependent measure of when the system found the best explanation. Of course, running PENUMBRA

until it exhaustively finds all consistent explanations goes against the purpose of heuristic guidance,
but we are relying on it only to test our hypothesis. If that claim holds, then in future studies it can
halt after finding the first few explanations, since we will know they are high quality.

We followed this strategy using four variants of the grammar in Table 3, running the system
30 times and averaging the results. Figure 3 (left) presents the findings for this experiment. The
x axis denotes the number of parses that are possible for the observed word sequence and the y
axis encodes the inference cycle on which PENUMBRA found the best-scoring parse. The graph
shows three separate curves. One line represents the system’s behavior when it uses a recency
heuristic to select focus beliefs and rule scores to select which rule instance to apply. Contrary to
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predictions, the number of inference cycles needed to find the best parse grows slowly with the
number of alternatives, although there is an encouraging dip on the final point. Inspection of system
traces revealed that it encountered constraint violations midway through the runs, indicating that it
was not pursuing the full depth-first search as intended. Another line shows PENUMBRA’s behavior
when it instead selected focus beliefs at random and the third line shows when it chose rule instances
at random. In both conditions, the number of inferences needed to find the best parse increases at
about the same rate as when using both criteria. This suggests that the two heuristics are doing no
better than chance, so developing more effective ones should have high priority.

We also recorded the number of inference steps needed to find all parses for the sentence. The
heuristics should play no role here, as the system must generate all possible accounts, regardless
of their order. Figure 3 (right) shows that these curves fall only slightly above that for the cycles
needed to find the best interpretation. The reason is that, when multiple parses were possible, they
shared most of their constituents, which meant that only a few inferences remained to generate
alternative parses after PENUMBRA found the first one. Thus, although the two heuristics provided
less assistance than predicted for finding the best explanation before other candidates, this ability
may be less important than expected in many practical settings.

5. Related Research

The research we have reported here draws on ideas from a variety of traditions in artificial intelli-
gence. We have already mentioned some prior work on explanatory inference, but we have been
influenced the most by PENUMBRA’s direct predecessors – AbRA (Bridewell & Langley, 2011)
and UMBRA (Meadows et al., 2014) – that share its alternation between selecting a focus belief
and deciding which rule to apply. As discussed elsewhere (Langley & Meadows, 2019), the main
differences revolve around the use of constraints to handle inconsistencies and related support for
multiple worlds. Our concern with scalability has its origins in work on efficient matching in pro-
duction systems, which led to algorithms like Rete (Forgy, 1982) and TREAT (Miranker, 1987).
However, these assumed all-or-none matching, which does not suffice for abduction scenarios that
involve partial satisfaction of rules’ antecedents. PENUMBRA’s use of focus beliefs is a direct re-
sponse to this issue, and our analysis of inference cycle costs took it into account, even though our
experiments addressed purely deductive tasks.

Within the literature on cognitive architectures, the closest relative is ACT-R (Anderson &
Lebiere, 1998), which provides a small set of buffers, each of which can hold a single element.
On each cycle, the content of a buffer leads to the retrieval of some production rule, which on ap-
plication produces new short-term structures. Thus, the buffers act as bottlenecks through which
information must pass, effectively focusing cognitive attention on their elements. The motivations
behind this buffer mechanism are different from the ones that led to PENUMBRA’s analog, and our
framework allows only one focus belief per cycle, but at an abstract level the similarities are striking.
We are not aware of any analyses that characterize the computational cost of ACT-R’s processing,
but many of the same factors should be relevant. In contrast, the Soar architecture (Laird, 2012)
ensures efficient processing on each cycle by constraining the organization of working memory and
the conditions of rules that match against its elements.
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At a higher level, research on abductive reasoning has dealt extensively with search through
the space of explanations. Some approaches, including answer set programming (e.g., Baral, 2003)
and probabilistic parsing (e.g., Charniak & Shimony, 1990), have relied on exhaustive generation of
alternatives, ranking candidates only afterwards. Other techniques have combined numeric heuris-
tics with more selective methods, from beam search (e.g., Gordon, 2018; Ng & Mooney, 1990)
to branch and bound (Hobbs et al., 1993). However, these have lacked PENUMBRA’s alternation
between focus and rule selection, which offers greater opportunities for search guidance, but more
chances to be led astray. As noted earlier, the distributed representation of competing worlds also
supports a form of implicit parallelism that reduces reliance on error-free heuristics. This idea bears
a close resemblance to the approach used in assumption-based truth maintenance systems (de Kleer,
1986, 1994). These adopt a similar encoding to consider multiple interpretations of observations
during an abduction-like process and some variants scale very well to large problems.

6. Closing Remarks

In this paper, we reviewed a computational account of explanatory inference that distinguishes be-
tween two forms of long-term knowledge – definitions and constraints – and between three types
of dynamic beliefs – observed, abduced, and derived. The theory further posits that beliefs are or-
ganized into linked justifications and associated with one or more worlds in which they hold. The
framework includes roles for three primary mechanisms: focusing attention on an existing belief,
applying definitions to generate new beliefs, and repairing violated constraints when they are de-
tected. We also reviewed PENUMBRA, an implemented system that incorporates these theoretical
assumptions about the representation and processing of explanatory structures.

After this, we examined how the system scales to complexity. We presented a formal analysis
of the computational costs that arise within PENUMBRA’s three processing stages and reported
empirical studies of the most expensive module, which selects a definition to apply. Results from
controlled experiments with a synthetic knowledge base agreed with predictions from the analysis,
show that processing time scales well on every factor except antecedents per definition, which we
can bound in practice. We also reported tested qualitative hypotheses about the system’s ability to
search through the space of explanations, in particular that it would find the best account before
considering alternatives. However, PENUMBRA’s behavior on an ambiguous parsing task showed
its heuristics for selecting foci and definitions to apply were less effective than we had expected.

In summary, the empirical studies to date support some of our hypotheses about PENUMBRA’s
scalability, they have called others into question. Future research should analyze in greater detail
the reasons why the system has difficulty finding good accounts before poor ones, and we should
attempt to replicate the positive findings with more complex reasoning problems. Our next exper-
iments should include explanation tasks that require the introduction of plausible assumptions and
they should examine scaling issues for selecting focus beliefs and constraint processing to comple-
ment our initial results on choosing definitions. Moreover, we should test the system’s abilities on
large knowledge bases that some researchers have developed, such as the Monroe corpus (Blaylock
& Allen, 2005), and extended behavior streams that others have collected, such as the Triangle-
COPA problem set (Maslan, Roemmele, & Gordon, 2015).
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In addition, we should explore other criteria for explanation quality and associated heuristics.
One approach would calculate probabilities for alternative accounts and use them to guide search
through the space of candidates. Another would adopt Ng and Mooney’s (1990) notion of explana-
tory coherence, which reflects people’s preference for narratives that are tightly interconnected. We
should also examine other heuristics for selecting the focus beliefs that serve as mediators for rule
application. One promising idea involves favoring candidates that hold in approximately half of
the active worlds, as rules that chain off them may provide more information. The PENUMBRA

architecture, with its user-modifiable parameters, offers a promising computational framework for
further exploration of strategies for scalable explanatory inference.
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