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Abstract
Humans use heuristics to identify and use information relevant to the tasks at hand. For a planning
problem, the notion of landmarks refers to facts or actions that must appear in all solutions of the
problem. They are identified by analysing a reduced version of the problem. Many methods have
been developed to identify such landmarks and to use them to heuristically guide the search for
a solution to the planning problem. However, non-trivial landmarks may not exist in many prac-
tical problems. In this paper, we define a relevance score to identify facts or actions that appear
in most but not all plans to achieve any given goal. We describe an approach to compute and use
this relevance score in the search for a plan. We experimentally compare the performance of our
approach with that of a state of the art landmark-based heuristic planning approach using bench-
mark planning problems. While the original landmark-based heuristic leads to better performance
on problems with well-defined landmarks, our approach substantially improves performance on
problems that lack non-trivial landmarks.

1. Introduction

The use of heuristics to guide search is a key feature of cognitive systems research (Langley (2017)),
and computer science more broadly (Müller-Merbach (1981)). Heuristics are particularly useful in
task planning (Shleyfman et al. (2015)), due to its combinatorial nature. The concepts of rele-
vance, attention, or saliency have also been studied extensively in neuroscience. Research into
attention aims to understand how the context of a task or situation filters the sensory inputs of an
animal (Treisman & Gelade (1980)), and has inspired computer vision applications (Mnih et al.
(2014)). There is also evidence that attention applies to multiple layers of the decision making
process beyond sensory filtering (Grossberg (2019)). Applying attention to a planning problem al-
lows appropriate techniques to be applied to different parts of the problem (Sridharan et al. (2019)).
Saliency is a closely related concept that identifies parts of an input likely to contain useful infor-
mation (Kayser et al. (2005); Walther & Koch (2006)).

One successful heuristic for task planning is a count of the landmarks that remain to be reached
from a given state (Zhu & Givan (2003); Hoffmann et al. (2004); Richter & Westphal (2010); Key-
der et al. (2010)). A landmark is a fact, action, or logical formula over these, that must be present in
all valid solutions of the problem. They are identified from a reduced version of the planning prob-
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Figure 1: Example planning problem: An example planning domain in which a student has to submit
their assignment. Facts F and move-actions A are implied by the description. Left: Example map
connections between rooms or corridors (C[1, 2, 3]) are shown as arrows, representing a move action
with the precondition at(?from) and the effects [at(?to),not at(?from)], where ?from and ?to
are the rooms at the front and end of the arrow. The Library provides keycard access (square at end
of arrows). The corresponding move(?from,Library) actions have the additional precondition
has(Keycard). Right: Example actions each directed graph depicts an action (middle row), with
preconditions (top row) and effects (bottom row) in a model planning problem.

lem, such as the delete relaxation. This leads to a preference for actions (in plans) that either are a
landmark, or achieve one. While complex logical formulae may serve as landmarks, it can be chal-
lenging to compute and use them in a heuristic. Additionally, the task of computing all landmarks
for a planning problem is known to be PSPACE-complete (Porteous et al. (2001)). Systems that use
landmarks thus identify a subset of single fact landmarks, but the cost of computing landmarks is
still significant.

Figure 1 shows an example planning problem in which a student has to overcome obstacles to
print and submit their assignment, e.g., their office computer is unreliable, their printer frequently
runs out of paper, the environment is distracting, and IT services will provide support only if they
are given their favorite snack! Figure 2 depicts two plans applicable to an initial state in this domain.
A known limitation of methods that use landmarks to guide planning is that such landmarks must
exist for the corresponding planning problem. In many complex domains with multiple routes to
the goal, the only simple (single-fact) landmarks may be trivial, i.e., those in the goal or initial state.
Other plans exist in the example domain, e.g. nothing prevents the student from wasting time before
completing the assignment. Other than trivial landmarks, the only fact true in both plans in Figure 2
is has(Doc). This is required by all actions (printlibaction, printofficeaction) that can achieve
the goal fact has(Hardcopy), and so is a landmark. Suppose has(Computer) were removed from
the initial state. The only action that could achieve it is fixcompaction, which has preconditions
[at(IT ), has(Biscuit)]. at(IT ) is reachable, but no action achieves has(Biscuit). This makes
the bottom strategy from Figure 2 inapplicable. Removing a fact from the initial state thus had the
unintuitive effect of creating new landmarks. Because all plans must now follow the top strategy,
they must achieve at(library) at some point. Our approach avoids this limitation, and considers
at(library) to be relevant for either initial state. It does so using a relevance score, which considers
the value of achieving facts (or actions) that appear in many but not necessarily all plans.
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Figure 2: Example plans to illustrate landmarks: Two plans applicable to the same initial state (far
left). Boxes show states, defined by the facts that are true in them. Actions are represented by the
arrows between states. In each new state, facts that were made true by the preceding action are
preceded with a *. Facts that are preconditions of the next action are appended with − >.

The key contribution of this paper is to define and describe an approach for computing a novel
Relevance Score heuristic (hΞ). This heuristic evaluates facts or actions according to how often they
appear in plans under delete relaxation, a reduced version of the planning problem (defined later).
As the baseline planner, we use LAMA (Richter & Westphal (2010)), which uses a combination
of landmark counting and the Fast Forward heuristic (Hoffmann & Nebel (2001)). It has been
considered state of the art at planning competitions for over a decade. For ease of comparison
with the baseline LAMA planner, we limit our focus to facts as the landmark-like entities. We
use individual and combinations of benchmark planning problems to demonstrate experimentally
that while the original landmark-based heuristic leads to better performance on problems with well-
defined landmarks, our approach substantially improves performance on problems that lack non-
trivial landmarks.

2. Related Work

Landmarks were originally (Porteous et al. (2001); Zhu & Givan (2003); Hoffmann et al. (2004))
found using a relaxed planning graph (RPG Hoffmann & Nebel (2001)), which performs reacha-
bility analysis under delete relaxation conditions, and checks that the landmarks found and their
order are sound. Since then, other ways to compute landmarks have been explored. One example
is the translation of Relaxed Planning Graphs (RPGs) into AND/OR graphs for which landmarks
are unique maximal solutions computed using Bellman-Ford methods (Keyder et al. (2010)). The
AND/OR algorithm does not permit negative action effects, so is either used alongside the delete
relaxation of the original planning problem or by compiling groups of facts into a domain descrip-
tion that maintains the information of negative preconditions and effects without containing those
features. Landmarks have also been used in several fields related to task planning, such as goal
recognition (Pereira et al. (2020)) and contingent planning (Maliah et al. (2018)).

3. Definitions and Background Knowledge

We will now formally define the concepts and notation necessary to define the relevance score.
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3.1 Classical Planning Problem

Classical task planning is the problem of finding a sequence of actions that go from an initial state
to a state that satisfies some goals. We use notation based on Keyder et al. (2010).

Definition 1 (Classical planning problem, Π ). A classical planning problem is defined by the tuple:

Π = ⟨F,A, I,G⟩ (1)

Where F is a finite set of ground predicates representing facts; A is a finite set of actions; I ⊆ F is
the set of facts true in the initial state; and G ⊆ F is the set of facts representing goals. A state σ, is
a set of facts that are true at a particular time. Facts that are not specified in σ are considered false.
An action a ∈ A has preconditions pre(a) and effects eff(a), each of which is subdivided into sets
of positive and negative facts: pre+(a), pre−(a), eff+(a), eff−(a).

If an action’s positive (negative) preconditions are true (false) in a particular state, it is ap-
plicable in that state: Applicable(a, σ) ⇐⇒ σ |= pre+(a) ∩ ¬pre−(a). When an action
is applied to a state in which it is applicable, the resultant state is given by: Result(a, σ) |=
σ ∪ eff+(a) \ eff−(a). A sequence of actions [a1...an] is applicable in a state if each action
is applicable in the state resulting from the previous sequence of actions, i.e., Applicable(a1, σ),
Applicable(a2, Result(a1, σ)) etc. The result of applying a sequence of actions to a state in which
it is applicable is the result of applying each action in that sequence, i.e., Result([a1...an], σ)
= Result(an, Result(an−1, ...Result(a1, σ)). A plan πΠ for problem Π = ⟨F,A, I,G⟩ is a se-
quence of actions [a1...an] that is applicable in I and results in a state where all facts in G are true,
i.e., Result(πΠ, I) |= G.

3.2 Delete Relaxation

A classical planning problem can be simplified for computing heuristics that will assist in solving
the original problem. One such simplification is the delete relaxation, which removes all negative
preconditions and negative effects from all actions. This makes it strictly easier to find a plan, as
once a fact has been made true, it will remain true.

Definition 2 (Delete relaxation, Π+ ). The delete relaxation transforms a planning problem:

Π = ⟨F,A, I,G⟩ → Π+ = ⟨F,A′, I, G⟩ (2)

Where each action in the original problem ∀a = {pre+(a), pre−(a), eff+(a), eff−(a)} ∈ A is
replaced with {pre+(a), ∅, eff+(a), ∅}. This removes all negative preconditions and effects.

3.3 Landmarks

Definition 3 (Landmark). A landmark is a propositional formula of facts that is true at some point
in the execution of all valid plans. Here, we only make use of single fact landmarks.

Definition 4 (Trivial landmark). Each fact in the goal and the initial state is a landmark, but is of
little use to a planner; these are referred to as trivial landmarks.

4



RELEVANCE SCORE

Definition 5 (Non-trivial landmark). Facts that must be true at some point other than at the start or
end of a plan execution are considered non-trivial.

Definition 6 (Landmark counting heuristic, hLC). The landmark counting heuristic (Richter &
Westphal (2010)) calculates a set of landmarks in the initial state. This is propagated through states
as they are explored, removing landmarks as they are accepted (ie become true in that state), and
adding them back if the ordering information requires it:

hLC(σi) = |LC(σi)| (3)

LC(σi) = (LC(σi−1) \Accepted(σi)) ∪RequiredAgain(σi) (4)

3.4 Backtracking Tree

A tree is a standard representation of a planning problem. A tree consists of nodes n and edges e.
A node n = ⟨l, E⟩ consists of a label label(n) = l ∈ F ∪ A, which references a fact f or action
a, and a set of edges E. An edge e = (n → c) links a parent node n to a child node c. Given an
edge e = (n→ c), the function parent(c) yields n. The function children(n) yields a set of nodes
such that for each node c, parent(c) = n. The root of a tree is the only node with no parent, i.e.,
parent(root) = None.

In seeking to quantify relevance, we choose this representation of a tree as it models how each
fact or action relates to the goal, without necessarily relating them to the initial state. Backchaining
has been used to identify landmarks since their initial definition (Porteous et al. (2001)), although
more efficient methods have since been introduced (Keyder et al. (2010)).

To represent a planning problem with multiple goals, we modify all domains by adding action
achieveGoal that has a single positive effect eff+(achieveGoal) = {success}, and the problem’s
goals as preconditions pre+(achieveGoal) = G. Then, success is used as the goal for computing
heuristics, allowing all goals to be considered jointly.

Definition 7 (Tree: Backtracking tree, TΠ). A delete-relaxed planning problem Π, defines a tree
TΠ. Node root is the root of TΠ and has label(root) = success. An action node a, has children
whose labels are its preconditions {label(c)∀c ∈ children(a)} = pre(label(a)). A fact node f has
children whose labels are actions a such that label(f) ∈ eff(a).

The function L(l) maps a label l to all nodes in the tree that have that label:

L(l) = {∀n : label(n) = l} (5)

Definition 8 (Tree: Path of a node, T path
Π (n)). The path of a node is the sequence of alternating fact

and action nodes that is generated by adding the parent of the current node until the root is reached:

T path
Π (n) = [n, parent(n), ..., root] (6)

Definition 9 (Tree: Descendents of a node, T desc
Π (n) ). The descendants of a node n are all nodes

that have n in their path:

T desc
Π (n) = {∀d : n ∈ T path

Π (d)} (7)
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Figure 3: Example problem as a tree: The top 5 layers (3 fact, 2 action) of TΠ are shown.
The path of the red node, and descendents of the blue node are marked in the colours indicated.
Choices counter values ξ(n) are shown for each node (described in Section 3.7).

Figure 3 illustrates these concepts on the example we introduced earlier. Actions are excluded
from the children of a fact node f if any preconditions of that action appear as labels on any node
in T path

Π (f). This prevents cycles, which would represent unachievable requirements.
As with the search space for planning domains, TΠ can be very large, so we partially explore

it to yield TΠ. We select a node n from a frontier with probability proportional to ξ(n) before
recursively adding a child (chosen uniformly from children(n)) until a node is reached with no
children. Siblings of nodes explored in this way are also added to the frontier. This is procedure is

repeated until
∑

∀n∈frontier ξ(n)∑
∀n∈TΠ

ξ(n) ≤ ρ = 0.2. Values of Ξ(l) calculated on TΠ, are a lower bound on

those that would be calculated on the full tree TΠ. Nodes for which ξ(n) is small contribute less to
Ξ(l), and are found further from the root , causing this lower bound to converge quickly upwards
as the region of the tree close to the root is explored.

3.5 Non-Deterministic Agent (NDA)

The aim of the relevance score is to estimate how frequently a fact must become true in some
distribution of partial plans. We use the behaviour of a hypothetical non-deterministic agent (NDA)
to define this distribution.

Definition 10 (Tree: Sub-tree, SΠ). A sub-tree SΠ of TΠ, consists of some subset of nodes in TΠ

and their paths, chosen by an NDA according to Algorithm 1.

Applying the sequence of actions represented by the path of each leaf-node within SΠ will result
in the satisfaction of the goal. Thus, SΠ may be considered a partial plan under delete-relaxation
conditions. A high probability of being sampled by such an NDA indicates that a fact is highly
relevant to achieving the goal. Facts that appear in all partial plans that could be sampled must be
in all plans (if any exist), and so are landmarks.

3.6 Lowest Common Ancestors (LCAs)

Traversing the whole of a tree with a large number of nodes is costly. We will describe methods
to calculate the relevance score by visiting a small subset of nodes that can be identified once, and
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Algorithm 1 - An NDA sampling sub-tree SΠ from TΠ Lines 4 - 16 add required sub-goals and
actions that require them until either a sub-goal is TRUE in the state, or there is no action available
that could achieve it. Lines 6 - 9 choose one action that achieves the required fact. Lines 10 - 14
require all preconditions of an action.

1: Let SΠ ← {root}
2: Let frontier be a stack
3: frontier.push(root)
4: while frontier is not empty do
5: n← frontier.pop()
6: if label(n) ∈ F then
7: Let m← choose(children(n))
8: frontier.push(m)
9: Add m to SΠ

10: else
11: for m ∈ children(n) do
12: frontier.push(m)
13: Add m to SΠ

14: end for
15: end if
16: Remove n from frontier
17: end while

has(Hardcopy)
ξ = 1/1

printofficeaction
ξ = 1/2

printlibaction
ξ = 1/2

at(Office)
ξ = 1/2

has(Doc)
ξ = 1/2

has(Paper)
ξ = 1/2

at(Library)
ξ = 1/2

has(Doc)
ξ = 1/2

move(C1,Office)
ξ = 1/2

writelibaction
ξ = 1/4

writeofficeaction
ξ = 1/4

getpaperaction
ξ = 1/2

move(C3,Library)
ξ = 1/4

move(C2,Library)
ξ = 1/4

writelibaction
ξ = 1/4

writeofficeaction
ξ = 1/4

at(C3)
ξ = 1/4

has(Keycard)
ξ = 1/4

at(C2)
ξ = 1/4

has(Keycard)
ξ = 1/4

at(Library)
ξ = 1/4

at(Office)
ξ = 1/4

has(Coffee)
ξ = 1/4

has(Computer)
ξ = 1/4

at(C1)
ξ = 1/2

at(Library)
ξ = 1/4

at(Office)
ξ = 1/4

has(Coffee)
ξ = 1/4

has(Computer)
ξ = 1/4

at(Storeroom)
ξ = 1/2

Figure 4: Examples of LCAs: The top 5 layers (3 fact, 2 action) of TΠ are shown. The paths of the
two red nodes meet at the blue node, which is a fact. The paths of the blue node and the green
node meet at the cyan node, which is an action. This means that among the 3 red or green nodes,
there is 1 aLCA that is a direct descendent of the root. This aLCA has 2 children. The left-most
of which has no aLCAs , and its fLCAs are the two red nodes. The right-most of which has no
aLCAs, and just the green node as an fLCA.

reused each time a relevance score is calculated. This will rely on the identification of nodes at
which paths diverge.

Definition 11 (Lowest Common Ancestor (LCA)). The LCA of two nodes n and m is the low-
est node in the tree which is an ancestor of both nodes. This computation is associative and can
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Algorithm 2 - Find aLCAs Given a partially explored tree TΠ, and a list of nodes in that tree with a
given label TargetNodes = L(l), this algorithm yields a list of aLCAs(L(l)), and a structure link-
ing some members of fLCAs(L(l)) and aLCAs(L(l)) to the root of the tree. The implementation
details of registering aLCAs and fLCAs is ommited for clarity.

1: Let ListOfPaths = sorted(TargetNodes)
2: Let j = 0
3: while Some nodes unregistered do
4: for all i ∈ [0 : len(ListOfPaths)− 1] do
5: if ListOfPaths[i, j] ̸= ListOfPaths[i+ 1, j] then
6: if i and i+ 1 have been registered as linked then
7: continue
8: end if
9: if j is a fact layer then

10: Register ListOfPaths[i, j] and ListOfPaths[i+ 1, j] as linked by an aLCA
11: else
12: Register ListOfPaths[i, j] and ListOfPaths[i+ 1, j] as linked by a fLCA
13: end if
14: end if
15: end for
16: j ++
17: end while

generalize to any number of nodes.

LCA(n,m) = argmax
i∈T path

Π (n)∩T path
Π (m)

(|T path
Π (i)|) (8)

The backtracking tree consists of two types of node, those with a fact label, and those with an
action label. Because the NDA behaves differently at each of these, it will be useful to distinguish
which of these is the LCA for groups of nodes. For the purposes of calculating Ξ(l), these definitions
will apply to sets of nodes with the label being evaluated, K = L(l). Figure 4 illustrates the concept
of LCAs, and identifies the aLCAs and fLCAs for the red and green nodes.

Definition 12 (action Lowest Common Ancestors (aLCAs(K))). aLCAs are any action nodes that
are the LCA of any subset of K ∩ T desc

Π (f)

Definition 13 (nodes with facts for Lowest Common Ancestors (fLCAs(K))). fLCAs(K) is the
subset of nodes in K whose paths diverge at fact nodes below node f :

fLCAs(K) =
{
∀n ∈ K : LCA(li, lj) ∈ F ∩ T desc

Π (f)
}

(9)

Much research has gone into finding the LCA of a pair of nodes in a tree. The problem has
been translated into that of calculating Range Minimum Querys (Fischer & Heun (2006)). The
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complexity of this method is O(h) to pre-process the tree, where h is the height of the tree, and then
O(1) for each query on a pair of nodes. This approach would thus cost O(h+ n2) to find LCAs for
each pair of nodes, where n is the number of nodes whose LCAs we want to find.

Instead of this established procedure, we can take advantage of the fact that many LCAs will be
shared by multiple pairs; there are at most hn unique LCAs. We first sort the nodes by their paths
(with complexity O(hn log(n))). Traversing along the sorted paths (worst case complexity O(hn)),
checking for differences between nodes in paths (and whether they are action or fact nodes) that are
adjacent in the sort order yields an ordered list of action LCAs (aLCAs), and sets of the fLCAs and
aLCAs that are direct descendents of the root. Sets of aLCAs are computed once for each fact,
and then filtered by σ when hΞ(σ) needs to be calculated.

3.7 Choices Counter

Each time the NDA reaches a fact node, it makes a choice as to which branch to explore. If multiple
choices are available, then each branch represents a possible, but distinct partial plan. The probabil-
ity of a node being sampled by the NDA can be found by tracking how many choices must be made
in a certain way to reach it from the goal.

Definition 14 (Choices counter, ξ(n)). Let the choices counter ξ(n) be the probability of a node n
being sampled by the NDA:

ξ(n) = P (n ∈ SΠ) (10)

ξ(n) depends on the number of alternative action choices that could have been made instead
of those that reach that node. The tree’s root will always be sampled: ξ(root) = 1. Between an
action and its preconditions, the NDA has no choices to make, so ξ is passed down unchanged:
ξ(f) = ξ(parent(f)). The NDA chooses one action that could supply a fact from the set of actions
that make up children(f):

ξ(a) =
ξ(parent(a))

|children(parent(a))|
(11)

The choices counter is shown on the faces of nodes in Figures 3 and 4.

3.8 Relevance Score

This section defines a score that describes how relevant a fact or action is to a goal.

Definition 15 (Relevance score, Ξ(l)). Let the relevance score Ξ(l) represent the probability that a
node with label l would be sampled by the NDA:

Ξ(l) = P (∃l ∈ SΠ : label(l) = l) (12)

Definition 16 (Local relevance score, Ξ(l, n)). Let the local relevance score Ξ(l, n) represent the
probability that a node with label l would be sampled by the NDA, given that node n (and thus
Spath
Π (n)) has been sampled.

Ξ(l, n) = P
(
∃l ∈ Sdesc

Π (n) : label(l) = l|n ∈ SΠ

)
(13)

9



O. KIM, M. SRIDHARAN

Definition 17 (State aware relevance score Ξσ(l), Ξσ(l, n)). Facts in a state are true and do not need
to be achieved by planner. The state aware relevance score Ξσ(l) does not consider parts of TΠ that
achieve facts in σ .The relevance score applied to a state Ξσ(l) represents the probability that a node
with label l is sampled by the NDA if it stops at nodes that are true in state σ. Calculations that can
be performed on TΠ can be made state aware by performing them on TΠ/σ instead:

TΠ/σ = TΠ

/ ⋃
∀f∈L(f)
∀f∈σ

T desc
Π (f) (14)

Figure 3 illustrates the effect of this, where the green nodes are the descendents of the blue node,
and so would be excluded from calculations performed on a state consisting of the blue node.

3.9 Relevance Score Heuristic

Because of the conceptual similarity between them, and the success of landmarks as a planning
heuristic, it was hypothesised that the relevance score could be successfully employed as a heuristic
to guide a classical planner.

Definition 18 (The relevance score heuristic hΞ(σ)). The relevance score heuristic for a state hΞ(σ),
is defined as the sum over the state aware relevance scores of all facts:

hΞ(σ) =
∑
l∈F

Ξσ(l) (15)

4. Calculating the Relevance Score

Any nodes with no descendents with label(n) = l can be ignored: T desc
Π (n) ∩ L(l) = ∅ =⇒

Ξ(l, n) = 0. If a node has label l, then the NDA has already sampled such a node: label(n) = l =⇒
Ξ(l, n) = 1. Equation 13 allows us consider the descendants of a node independently of other
branches arising from its ancestors. This can be applied recursively to calculate the local relevance
score of the tree’s root: Ξ(l, root) = Ξ(l). The NDA chooses one action to achieve a fact (ie samples
one child of a fact node) with uniform probability:

if label(n) ∈ F =⇒ Ξ(l, n) = P
(
c ∈ Sdesc

Π (n)
)
× Ξ(l, c) (16)

=
∑

c∈children(n)

Ξ(l, c)

|children(n)|
(17)

The NDA requires all preconditions of an action (ie samples children of an action node), and so
any descendents having label(n) = l would count:

if label(n) ∈ A =⇒ Ξ(l, n) = 1−
∏

c∈children(n)

(1− Ξ(l, c)) (18)

Consider a node n and one of its descendants d such that all nodes with label l that are a
descendant of one are also a descendant of the other:

10
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T desc
Π (n) ∩ L(l) = T desc

Π (d) ∩ L(l) =⇒

Ξ(l, n) = P
(
d ∈ Sdesc

Π (n)
)
× Ξ(l, d) = P (d ∈ SΠ|n ∈ SΠ)× Ξ(l, d) =

ξ(d)

ξ(n)
× Ξ(l, d) (19)

Now, consider a scenario where each child c of a fact node f has a single descendant d with
label(d) = l. By combining Equations 11 and 17 , we get:

Ξ(l, f) =
∑

c∈children(f)

Ξ(l, c)∣∣children(f)∣∣ = ∑
c∈children(f)

Ξ(l, c)
ξ(f)

ξ(c)

=
∑

c∈children(f)

Ξ(l, c)× ξ(c)

ξ(f)
(20)

Next, using Equation 19, this can be rewritten as:

∑
c∈children(f)

l |=T desc
Π (c) ∩ L(l)

ξ(l)
ξ(c) × Ξ(l, l)× ξ(c)

ξ(f)
=

∑
l ∈ T desc

Π (f) ∩ L(l)

ξ(l)

ξ(f)
=

1

ξ(f)

∑
l ∈ T desc

Π (f) ∩ L(l)

ξ(l)

(21)

If all descendants of a node d ∈ T desc
Π (n) are such that either label(d) = l, or fact nodes for

which Equation 21 applies, this process can be repeated, causing further 1
ξ(c) terms to cancel. If

some nodes with label(di) = l have an LCA(d1, d2) = a that is an action (i.e., an aLCA ), then
Equation 19 does not apply between between ci and di. It will apply between ai and ci, but Ξ(l, a)
must be computed according to Equation 18. These can be combined to give:

Ξ(l, f) =
1

ξ(f)

∑
l∈fLCAs(T desc

Π (f))

ξ(l) +
∑

a∈aLCAs(T desc
Π (f))

ξ(a)

ξ(f)
× Ξ(l, a) (22)

=
1

ξ(f)

 ∑
l∈fLCAs(T desc

Π (f))

ξ(l) +
∑

a∈aLCAs(T desc
Π (f))

ξ(a)× Ξ(l, a)

 (23)

Equation 23 allows the local relevance score Ξ(l, f), for any fact node to be found from its
fLCAs(T desc

Π (f)) and aLCAs(T desc
Π (f)). As the root of the tree is a fact node, Ξ(l) can be found

by recursively applying equation 23 to fact nodes (starting at the root), and resolving the aLCAs
with Equation 18 applied to their children (which are fact nodes resolved by Equation 23 etc). These
calculations may be simplified by sorting the list of aLCAs by their depth in the tree, and resolving
them from the bottom up.

5. Experimental Setup and Results

To evaluate the performance of hΞ as a heuristic to guide a classical planner towards a plan, a
program to calculate Equation 15 was implemented in C++, using elements of the LAMA archi-
tecture (Richter & Westphal (2010)) to read and access planning problems/domains specified in

11
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PDDL (McDermott et al. (1998)). All problems were parsed using LAMA’s translate and prepro-
cess scripts, the outputs of which were then read by subclasses of LAMA’s search module. All code
used to implement and test hΞ has been made available.1

The LAMA planner can perform one of two search strategies: Best First Search (BFS) or
weighted A* (wA*, Pohl (1970)). Multiple heuristics can be used at the same time, by alternat-
ing between queues kept according to each, updating both each time a state is evaluated. Normally,
these would be the Fast Forward (hFF ) and landmark counting (hLC , see Definition 6) heuristics.
LAMA can make use of preferred operators that encode information about the order in which land-
marks need to be achieved to further guide the search for a plan. To isolate the effect of using
different heuristics, we did not use preferred operators.

We experimentally evaluated two hypotheses:

H1 The relevance score heuristic hΞ is slower than the landmark counting heuristic hLC at solving
standard planning problems, but is able to find a plan most of the time.

H2 The relevance score heuristic hΞ substantially improves the planner’s ability to find plans
compared to the landmark counting heuristic hLC in domains without non-trivial landmarks.

Each search attempt was evaluated using three measures: M1 measured whether or not a plan
was found; M2 measured the cost of finding the plan; and M3 measured the quality of the solution.
Heuristics are used because exhaustive search of the entire space is expensive in terms of both
memory and time. A practical meaning of failure to find a plan is that the available computational
resources are exceeded. All experiments were performed with an 8GB RAM limit and a two-
hour time limit, with failure reported if either limit was reached. When a limit was reached, it
was typically the RAM limit in under one hour. The program components that use a significant
amount of RAM are: the tree explored to calculate the relevance score (only for hΞ; typically under
500MB, even for large problems); and LAMA’s representation of its search history (which grows
linearly with time once the search begins; affects all heuristics). Failure to find a plan makes other
measures meaningless; M2 and M3 were assigned an infinitely high (i.e., worst possible) value.

Measure M2 was evaluated by recording how many times the heuristic was calculated for a
state before a plan was found. LAMA makes use of deferred heuristic evaluation, only calculating
a heuristic when a state is expanded. As a result, the number of states expanded is used as the
representative measure of search cost, rather than the number of states generated. Since the BFS
search strategy prioritises finding a plan quickly without concern for plan quality, it was used to
evaluate this measure. Evaluating fewer states before finding a plan is considered preferable.

Measure M3 was evaluated by the length of the plan found. The wA* search strategy balances
the competing priorities of finding a solution quickly and finding a solution of high quality. It does
so according to the weight w in its computation of the cost assigned to a state: c = w×h+g, where
h is the heuristic and g is the length of the shortest path to that state. LAMA’s default starting value
of w = 10 was used. Shorter plans are considered preferable.

1. https://bitbucket.org/Oliver_Kim/relevanceheuristic/
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5.1 Problems Without Non-Trivial Landmarks

We evaluted H1 on standard problems, specifically the 674 problems found in the examples folder
of the HSP2 repository.2 To evaluate H2, we generated new PDDL specifications for domains that
contain no landmarks other than facts in the goal and initial state. This was achieved by merging a
pair of problems, π1, π2 in such a way as to prevent them from interacting. This ensures that each
new problem can be solved by at least 2 plans that have no overlap between the facts or actions
involved in them. A total of 500 problems were generated in this way by randomly selecting a pair
of problems from the pool of those solved individually by both hΞ and hLC with a BFS strategy.
The problems generated in this way were also attempted by the same set of planner configurations
as the standard problems, and measured according to the same criteria.

Figure 5: These plots show the fraction of trials where the performance of hΞ was better , equal
to , or worse than hLC , according to the metrics shown on the x-axis. Top: Standard problems
(674 problems). Bottom: Landmark free problems (500 problems). Left: Single heuristic (hΞ or
hLC). Right: Heuristic (hΞ or hLC) paired with hΞ.

5.2 Results: Standard Problems

Table 1 shows the success rates of each heuristic on standard problems. hLC was able to solve
more problems than hΞ. Both heuristics solved more problems when paired with hFF than either
did alone. Figure 5 (top) shows how often each heuristic did better or worse on paired standard

2. https://github.com/bonetblai/hsp-planners/tree/master/hsp2-1.0/examples
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Table 1: Success rates of heuristics on standard problems

Problems solved
by hLC

Problems solved
by hΞ

Problems solved
by both

Problems solved
by neither

As only heuristic 70.33% 52.97% 51.48% 28.19%
Alongside hFF *84.92% 73.89% 71.71% 12.91%
All 3 combined 74.8%

Table 2: Success rates of heuristics on landmark-free problems

Problems solved
by hLC

Problems solved
by hΞ

Problems solved
by both

Problems solved
by neither

As only heuristic 24.80% 71.93% 23.33% 26.60%
Alongside hFF 70.33% *80.87% 68.60% 17.40%
All 3 combined 79.8%

problems. As the only heuristic, hLC finds plans faster than hΞ using BFS, and shorter plans using
wA* in the majority of trials. When paired with hFF , this difference is smaller, but still significant.

The relevance score heuristic hΞ calculated for a fully explored tree (TΠ = TΠ) is the number of
facts that are landmarks for plans originating from σ (for which Ξσ(l) = 1), added to the relevance
calculated for other facts. This additional information, on top of landmarks, seems to impair the
planners ability to find a plan within the resource limits imposed (M1) compared to hLC . Our
explanation for this is that the relevant but not essential facts, for which Ξσ(l) is high but less than
1, guide the planner towards potentially competing plans. This distraction causes it to find plans
that include elements of other partial plans that it could have found, leading to longer plans M3.
Exploring more of the available search space causes more resources to be spent expanding states
M2, which are therefore more likely to run out before a plan is found M1. There is less of a
difference in performance between hLC and hΞ when paired with hFF , but not enough to change
which would be preferred on standard problems. Both hLC and hΞ are assisted by hFF , although
all 3 together does worse than hLC with hFF .

5.3 Results: Problems Without Non-Trivial Landmarks

Table 2 shows the success rates of each heuristic on landmark-free problems. hΞ solved far more
problems than hLC . Again, both heuristics solved more problems when paired with hFF than alone.
Even when hLC was paired with hFF , it solved fewer than hΞ could as the only heuristic. Figure 5
(bottom) shows how often each heuristic did better or worse on paired landmark-free problems.
As the only heuristic, hΞ finds plans faster than hLC using BFS, and shorter plans using wA* in
the majority of trials, which is expected given that hLC failed to find a plan for most of this set of
problems. When paired with hFF , hΞ still finds a plan after expanding fewer states than hLC most
of the time.

14



RELEVANCE SCORE

For landmark-free problems, hLC can only tell that a partial plan might be good when it finds
one of the goal facts. Until then, it searches a flat surface, increasing the distance from the initial
state in all directions. This predictably does very poorly by all measures.

By contrast, hΞ is able to climb an informative surface that guides it toward potential plans,
allowing it to find a plan more reliably, after less searching. By rewarding the planner for finding
facts that are relevant to alternative, but potentially separate plans, it has a tendency to include some
actions in the final plan that did not contribute to achieving the goal. We believe this explains why it
finds longer plans than hLC , particularly on problems that are known to be solvable by disjoint plans.
This is an unintentional byproduct of the way these domains were created that may not be the case
on problems generated in other ways. It is significant that hΞ alone is able to solve more problems
than either configuration that does not include it (ie [hLC ] or [hLC , hFF ]). This demonstrates that
hΞ provides useful information that is not available to the other heuristics.

6. Conclusion

Overall, we observe that our new heuristic, based on the relevance score, is able to guide the LAMA
planner toward solving a class of planning problems for which landmark counting is ineffective.
This comes at the cost of being more expensive to compute, having worse performance on standard
problems, and a tendency to find longer plans. It can therefore only be recommended on the class
of problems for which it is superior; those with few or no non-trivial landmarks. The fact that land-
marks are identified before a plan search procedure begins (and the number of non-trivial landmarks
is reported by the LAMA architecture), allows for a cheap and simple way to leverage the benefits
of both hLC and hΞ: use hLC (and hFF ) on problems with well-defined landmarks, and use hΞ
(and hFF ) for problems that only have trivial landmarks.
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