Advances in Cognitive Systems X (20XX) 1-6 Submitted X/20XX; published X/20XX

Toward An Architecture for Robots in the Era of Foundation Models

Mohan Sridharan M.SRIDHARAN@ED.AC.UK
School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK

Abstract

Robots are increasingly being used to assist humans in different application domains. The ready
availability of high-fidelity hardware and data has led to the development of deep networks and
foundation models that are now considered to be state of the art for many problems in robotics.
However, these methods and models are resource-hungry and opaque, and they are known to pro-
vide arbitrary decisions in previously unknown situations, whereas practical robot application do-
mains require transparent, multi-step, multi-level decision-making and ad hoc collaboration under
resource constraints and open world uncertainty. This essay argues that to leverage the full poten-
tial of robots, we need to revisit the fundamental principles that can be traced back to the early
pioneers of Al who had a deep understanding of cognition and control in humans. We also need to
embed these principles in the architectures we develop for robots, using deep networks as one of
many tools that build on this foundation. In addition, this essay briefly illustrates the benefits of this
approach by drawing on my work on core problems in robotics such as visual scene understanding
and planning, changing-contact manipulation, and ad hoc multiagent collaboration.

1. Motivation and Claims

Robots are increasingly being deployed in application domains such as navigation, healthcare, and
manufacturing. Although aided by the availability of high-fidelity hardware, this deployment has
largely been due to recent advancements in the form of deep networks and foundation models (FMs)
such as Large Language Models (LLMs), Vision Language Models (VLMs), and Vision Language
Action models (VLAs), which are considered state of the art for perception, reasoning, manipula-
tion, and interaction problems in robotics (Black et al., 2025; Doshi et al., 2024; Huang et al., 2023;
Schick et al., 2023; Zhao et al., 2023). There is a lot of hype (and fear) associated with these meth-
ods and models, with claims being made about their “planning”, “commonsense reasoning”, and
“artificial general intelligence” (AGI) capabilities. As a result, we are witnessing a rapid decline in
the diversity of formulations being pursued to address problems in robotics.

To motivate the exploration of different formulations, consider the key requirements of inte-
grated robot systems sensing and (inter)acting in the physical world, which include:

* making multi-step, multi-level decisions based on multimodal sensor inputs (e.g., vision,
speech, and touch) in the absence of comprehensive domain knowledge;

* operating under open world uncertainty, where the true optimal decisions may be unknowable
and probabilities may not always meaningfully model the uncertainty;
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* operating under (often strict) constraints on resources such as computation, storage, training
examples, and power;

* rapidly and incrementally revising (as needed) existing models for various tasks such as per-
ception, planning, and manipulation; and

* supporting transparency in decision making, and expressing decisions in terms of human
concepts such as beliefs and goals to promote understanding.

Next, consider the (by now) well-known characteristics of modern deep network methods and foun-
dation models (Guan et al., 2023; Kambhampati et al., 2024; Lu et al., 2024).

» They are excellent statistical predictors for well-defined tasks, but they are inconsistent and
may make arbitrary decisions in truly novel situations;

* Despite the development of architectures with different network structures, they are based on
a narrow set of representations and update processes;

* They are resource-hungry systems, making substantial demands in the form of computation,
data, storage, and energy; and

» They are batch learning systems whose operation remains opaque; even when we can attribute
decisions to specific nodes or layers, we are often unable to ascribe meaning to this finding.

There is thus a fundamental mismatch between the requirements of integrated robot systems and
the characteristics of the Al methods currently being developed and used in robotics. Attempts to
address this mismatch have led to sophisticated neurosymbolic (NeSy) Al methods (Besold et al.,
2022; Smet et al., 2023), methods for enhancing agency or autonomy in FMs by developing “Agen-
tic AI” and “Agentic LLMs” (Plaat et al., 2025; Wang et al., 2024), and methods for discovering
cognitive design patterns in LLMs toward AGI (Wray et al., 2025). In all such work, a narrow and
specific representational commitment is typically made a priori and well-known ideas are restated
in the context of this commitment. For example, logics, grammars, or probability distributions
are used to impose constraints on a deep network, which has a specific representation (nodes and
connections between them) and processes to update the weights associated with the connections.
Another example is the adaptation of established theories of agent-based systems to LLMs to create
the so-called agentic LLMs. In addition, even a “models vs. data” debate among leading robotics
researchers focuses on the relative importance of engineered or simulated models (constructed using
prior knowledge or data) compared with directly using data to make decisions. Such models are also
largely viewed as the means to reduce the “data gap”, i.e., to generate more data for the modern Al
methods to generalize to different situations (Amato et al., 2025). Furthermore, the focus on more
data and deep networks with many free parameters increases the need for large data and computing
centers with substantial funding, space, and energy requirements. Overall, the lack of diversity in
the representational and processing commitments continues to limit expressivity, efficiency, trans-
parency, reproducibility, and sustainability, whereas we still have not fully explored and understood
the consequences of a broader set of design choices.
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This essay builds on a recent paper (Sridharan, 2025) to advocate that we address the require-
ments of integrated robot systems by revisiting some key principles that can be traced back to the
early pioneers of Al, and are relevant to the design of cognitive architectures (Langley, 2017), but
are not fully leveraged in modern robotics research (Section 2). It also describes some specific
examples to illustrate how embedding these principles enables the exploration of a broader design
space for robot architectures, and summarizes the corresponding benefits (Section 3).

2. Key Principles

The early pioneers of Al were deeply inspired by, contributed to, and had a sound understanding
of related disciplines such as Psychology, Neuroscience, and Philosophy. Much of their work in Al
was inspired by insights into natural intelligence, i.e., cognition and control in humans and other
biological systems, leading to observations such as:

* Human behavior is jointly determined by internal cognitive processes and the environment.
We jointly explore the underlying perception, reasoning, control, collaboration and learn-
ing problems using different representations and processes at different abstractions (Minsky,
1986; Sloman, 2012; Turing, 1952), automatically directing attention to relevant representa-
tions and update processes as needed (Broadbent, 1957; Triesman & Gelade, 1980).

* Unlike the “batch learning” and optimization approach currently prevalent in Al and multi-
ple other disciplines, humans acquire skills cumulatively, interactively, and compositionally
through adaptive satisficing under resource constraints and open world uncertainty; humans
seek to make rational decisions instead of optimal ones, often based on simple models and
heuristic methods (Simon, 1956; Gigerenzer, 2021).

* Human skills, particularly our sensorimotor skills, have evolved jointly over different time
scales for some very hard and specific engineering problems (Moravec, 1990). Any attempt
to replicate these skills in robots needs to pursue an integrated systems approach comprising a
collection of agents (Minsky, 1986); just replicating some of our hardware will not lead to the
desired sensorimotor capabilities, e.g., robot arms and hands with soft materials or multiple
degrees of freedom will not automatically lead to dexterous manipulation.

These observations do not preclude the use of deep network or FMs; in fact, some of these observa-
tions have been rediscovered and used to improve the performance of deep networks. Instead, these
observations direct us to focus on certain key principles in the design of robot architectures, with
deep networks being one of many available tools. Here, we focus on three sets of such principles.

1. Refinement, Compositionality, Attention. The first set of principles advocate represent-
ing space, objects, actions, and change in the domain in the form of transition diagrams
at different abstractions, with the fine(r)-granularity description(s) being a refinement of the
coarse(r)-granularity description(s). Refinement is also related to compositionality, the hier-
archical representation of knowledge at different resolutions. These principles have played
a key role in computing and other disciplines over many decades (Fodor, 1975; Freeman
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& Pfenning, 1991; Dietterich, 1998), and have been grounded in different theories, e.g., an
information-theoretic grounding for compositionality (Elmoznino et al., 2025). Research has
also identified that these principles and related representations lead to a good computational
model for human cognition (Knoblich & Flach, 2001; Piantadosi et al., 2016), and for com-
puter vision and robotics tasks (Fidler & Leonardis, 2007; Zabkar & Leonardis, 2016).

To truly adapt these principles to robotics, we need to move beyond discovering decompo-
sitions in deep networks (Prasad et al., 2024), or trying to encode these principles in deep
network architectures. Instead, we need to return to designing architectures with different
levels of abstraction, support potentially different compositional representations and update
processes at each level of abstraction, and define formal relationships that link these abstrac-
tions. The relevant representations and processes can then be chosen automatically for any
given task and domain using the principle of selective attention (Broadbent, 1957) and de-
cision heuristics (more information below). In fact, even a limited exploration of attention
in the narrow context of deep networks has led to a performance improvement (Doshi et al.,
2024). Furthermore, the expanded set of compositional representations and update processes
will enable the robot to partially describe new objects and events, and to make decisions and
acquire previously unknown knowledge based on different information sources. It will also
enable the robot to interactively describe its decisions at different abstractions such that they
make contact with human concepts such as goals and beliefs.

. Ecological Rationality (ER) and Decision Heuristics. The second set of principles build
on Herb Simon’s definition of Bounded Rationality (Simon, 1956) and the related algorith-
mic theory of heuristics (Gigerenzer, 2020). Unlike the focus on optimal search in many
disciplines (e.g., finance, computing) in the presence of risk over a set of known scenarios,
ER studies decision making under open world uncertainty, i.e., when the space of possible
scenarios is not known in advance. It characterises the behavior of a human or an Al system
as a joint function of the internal cognitive processes and the environment, using adaptive
satisficing and decision heuristics such as tallying, sequential search, and fast and frugal (FF)
trees to rapidly learn (and revise) predictive models and make rational decisions.

Heuristics are often (incorrectly) considered as “hacks” or used to explain biases, e.g., in
the heuristics and biases program in Psychology. ER, on the other hand, considers decision
heuristics as a strategy to ignore part of the information in order to make decisions more
quickly, frugally, and accurately than complex methods with many free parameters (Gigeren-
zer & Gaissmaier, 2011). Also, modern Al methods are largely prescriptive; they lead to
models or policies that describe what should be done in specific situations or to achieve spe-
cific outcomes. Decision heuristics, on the other hand, are both prescriptive and descriptive,
i.e., they are designed to also capture what people or agents do under specific situations or to
achieve specific outcomes; in a way, they are more generative than the modern Al methods.
ER uses an adaptive toolbox of classes of such decision heuristics, and an algorithmic ap-
proach involving out-of-sample and out-of-population testing to identify heuristics that match
domain characteristics. Such decision heuristics are well-suited to make decisions under open
world uncertainty, where optimal decisions are unknowable and probabilities are not always
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a good model of the uncertainty. The descriptive design of these heuristics also supports the
automatic generation of process-level description as explanations of the decisions made.

3. Interactive Learning and Memory Consolidation. The third set of principles jointly refer
to different types of learning such as supervised (or unsupervised) learning and learning from
reinforcement (Laird et al., 2017). The difference lies in how this learning is achieved. Mod-
ern Al systems are increasingly focusing on learning a single model or policy that determines
decisions across different categories, situations, platforms, and/or application domains. Such
an approach and the associated large models with many (often billions of) free parameters are
considered to be essential for generalization. There is not much appreciation for the inherent
mismatch between the underlying design choices and the desired functional capabilities, often
creating the very problems that we then struggle to solve. For example, the learned model or
policy is by design hard to understand, explain, or revise in a meaningful manner, but we then
devote considerable resources trying to make the decisions consistent and understandable.
Such approaches can lead to impressive performance under suitable conditions, e.g., for tasks
or domains in which the space of possible options or situations is reasonably well-defined a
priori, and there are no strict resource constraints. They are not really suitable for decision
making in the wild, i.e., under true open-world uncertainty (Katsikopoulos et al., 2021a).

Interactive learning, on the other hand, focuses on learning as needed to adapt to any given
domain and set of tasks. It advocates reasoning with prior knowledge and decision heuristics
to trigger, inform, and constrain the learning, using the learned knowledge for reasoning. It
also enables cumulative learning through memory consolidation, revising the learned knowl-
edge and discovering high-level (i.e., more abstract) concepts and theories offline (Stickgold,
2005; Wolpert et al., 2011) to update the existing knowledge for subsequent reasoning. Such
an approach is known to be an essential enabler of knowledge acquisition, information stor-
age, and information retrieval in humans (Baddeley, 2012). It also leads to simpler models
that are amenable to rapid revisions, even in situations that were previously unknown to the
robot, particularly when used in conjunction with the other principles outlined above.

3. Architectural Examples

This section provides examples of embedding the principles outlined above in robot architectures
to address problems in reasoning, control, collaboration, and learning. Many of these examples are
based on the author’s work to draw attention to the benefits of leveraging the interplay between the
principles, but some examples of other related work are also presented.

3.1 Refinement for knowledge representation and reasoning

There have been multiple examples of refinement in robotics. A good example in the context of
robot exploration and map building is the spatial semantic hierarchy. It is defined as a model of
knowledge of large-scale space in robots and humans, based on different interacting qualitative and
quantitative representations at different levels (Kuipers, 2000). These ideas have also been extended
to learn object ontologies (Modayil et al., 2004). Another example of refinement in the context of an
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agent’s action theories is based on situation calculus, with a smooth transfer of information and con-
trol between two abstractions (Banihashemi et al., 2018). This work makes the strong assumption of
a bisimulation relation between these action theories, which limits expressivity for robot domains.
There has also been related work on task and motion planning (TAMP) in robotics (Garrett et al.,
2021; Kokel et al., 2023). This work combines discrete-space task planning and continuous-space
motion planning at different resolutions, e.g., using first-order propositional logic to compute a se-
quence of abstract tasks to achieve a given goal, and using probabilistic motion planners (Srivastava
et al., 2013) to compute a sequence of movement actions to complete each task in the abstract task
plan. This can also involve learning feature-based state and action abstractions towards general-
ized TAMP for continuous control tasks (Curtis et al., 2022). However, existing methods do not
fully: (a) support the bidirectional flow of relevant information between the different abstractions;
(b) handle uncertainty, particularly the effect of non-stationarity and future state uncertainty on the
associated models; and (c) address the discontinuities in the interaction dynamics in the form of
sudden changes in forces and the resultant acceleration experienced by the robot when it makes or
breaks contact with different objects and surfaces (Garrett et al., 2021).

The limitations mentioned above can be attributed to not leveraging the principles outlined
above in building an integrated (cognitive) architecture that jointly addresses the underlying rea-
soning and learning problems. For example, we developed a refinement-based architecture that
supported different representations (logics, probabilities) and processes (non-monotonic logical
reasoning, probabilistic sequential decision making) for reasoning with any given domain’s tran-
sition diagrams at two different resolutions (Sridharan et al., 2019). The fine-resolution description
was defined as a refinement of the coarse-resolution description, which included theories of inten-
tion (Gomez et al., 2021), affordance (Langley et al., 2018; Sridharan et al., 2017), and explainable
agency (Langley et al., 2017; Sridharan & Meadows, 2019; Sridharan, 2024). For any given goal,
each abstract action in the plan created by non-monotonic logical reasoning in the coarse resolution
was implemented as a sequence of fine-resolution transitions obtained by automatically identifying
and reasoning probabilistically with the relevant part of the fine-resolution description. In addi-
tion, the use of decision heuristics helped learn and revise the model parameters to achieve more
reliable and efficient operation compared with baselines that reasoned with comprehensive domain
knowledge or used deep network architectures. Furthermore, such an architecture can be extended
to support other representations and processes. For example, we can include latent (space) embed-
dings of perceptual inputs obtained using deep networks. These embeddings may not directly make
contact with human concepts, e.g., they may be representing states and actions that are not assigned
human-understandable labels, but they can be used with a developmental learning approach to map
target actions (e.g., moving an object to a desired location) to repeatable transitions between states
defined in the latent space (Juett & Kuipers, 2019).

3.2 Decision heuristics for multiagent collaboration and robot manipulation

Although ER and decision heuristics have provided good performance on prediction problems in
application domains such as finance, healthcare, and law (Brighton & Gigerenzer, 2012; Durbach
et al., 2020; Gigerenzer, 2016; Katsikopoulos et al., 2021b), there is hardly any use of these methods
in robot architectures, except in some related work in the cognitive systems community (Langley &
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Katz, 2022). This lack of uptake is potentially because the successes of decision heuristics do not
receive the attention they deserve, and because their inherent simplicity makes researchers doubt
their suitability for addressing complex practical problems.

As one example of the use of decision heuristics, consider the problem of agents (Al systems,
robots, and humans) collaborating with other agents without prior coordination; this “on the fly”
collaboration with previously unknown agents is called ad hoc teamwork (AHT) (Mirsky et al.,
2022). Research in AHT has evolved from using predefined protocols that direct the ad hoc agent
to execute specific actions in specific situations. Methods considered state of the art for AHT learn
probabilistic or deep network models to estimate the behavior of other agents or agent “types”,
and optimize the ad hoc agent’s actions, based on a long history of prior interactions with these
agents (Rahman et al., 2021; Liu et al., 2024). As discussed in Section 1, such methods do not sup-
port transparency or rapid adaptation to new situations, and the necessary resources (e.g., training
examples, computation) are often not available in practical (robotics) domains. We instead adapted
our refinement-based architecture to pose AHT as a joint reasoning and learning problem, incor-
porating decision heuristics for reliability and computational efficiency. Each ad hoc agent chose
its actions based on non-monotonic logical reasoning with (a) prior domain knowledge in the form
of action theories at two abstractions; and (b) an ensemble of FF trees learned rapidly to predict
the behavior of other agents. We experimentally demonstrated the ability to collaborate in complex
environments, adapting to previously unknown changes in the environment or team composition.
We also documented better performance than state of the art baselines while using orders of mag-
nitude fewer resources, e.g., 5K training examples instead of several hundred-thousand, supporting
scalable reasoning and learning (Dodampegama & Sridharan, 2025, 2023).

As a very different example of the use of decision heuristics, consider the problem of changing-
contact robot manipulation, which involves a robot manipulator (i.e., arm) making and breaking
contacts with different objects and surfaces. Many robot and human manipulation tasks are such
changing-contact manipulation tasks. The dynamics of these tasks are piecewise continuous, with
abrupt transitions, i.e., sudden changes in force and acceleration, which can damage the robot or
the domain objects the robot is interacting with. Existing methods considered state of the art for
changing-contact manipulation build analytical models of these interactions based on comprehen-
sive knowledge of the objects and surfaces, or attempt to explore the space of possible transitions
in advance. They then pose the problem of smooth motion as an offline optimization problem or an
online learning problem (Khader et al., 2020). In a departure from such methods, we drew inspi-
ration from well-known insights into human motor control (Kawato, 1999; Flanagan et al., 2003).
Specifically, we enabled the robot to use a single initial demonstration of the desired motion trajec-
tory, or run-time observations, to rapidly learn and revise simple forward models (e.g., a mixture
of Gaussians in our work) that predict the end-effector sensor observations in each upcoming time
step. During run-time, any mismatch between the predicted values and the actual sensor measure-
ments incrementally and automatically revised the predictive models and the gain parameters of a
force-motion PD (proportional-derivative) control law. We used extensive experiments conducted
in different simulation domains and on a physical robot manipulator to demonstrate the ability to
provide smooth motion during changing-contact manipulation tasks with changes in surfaces and
contacts that the robot was not aware of before (Sidhik et al., 2024).
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3.3 Interactive learning for visual scene understanding and planning

To further illustrate the benefits of leveraging the interplay between reasoning and learning in robot
architectures that embed the outlined principles, consider two other examples. These examples also
illustrate how modern deep networks and FMs can be used effectively in such architectures.

The first example focuses on vision-based scene understanding, vision-based planning, and vi-
sual question answering, which are fundamental problems in computer vision and robotics. Meth-
ods considered state of the art for these problems are based on deep networks and FMs that are
trained or tuned, for example, with a large dataset of images, potential questions, and answers to
these questions. We, on the other hand, developed a refinement-based architecture to determine
the occlusion of objects and the stability of object structures in images, arrange objects in desired
configurations, and to answer questions about the decisions made. With this architecture, the robot
first attempted to make the desired decisions (e.g., about stability and occlusion of objects) through
non-monotonic logical reasoning with domain knowledge available a priori. When the robot could
not make a decision or made an incorrect decision on training examples, learning was triggered.
The robot automatically identified training examples in the form of relevant images and regions of
interest in these images. These training examples were used to learn models that were then used
to make the desired decisions. In addition, the examples used for learning were also used as input
to a decision-tree induction method driven by decision heuristics to acquire new knowledge in the
form of objects, actions, and axioms governing change in the domain. As described in Section 2,
our architecture also supported consolidation of existing and new knowledge, which was then used
for subsequent reasoning. We experimentally demonstrated: (a) better performance than baselines
that were based just on deep networks, while using orders of magnitude fewer resources; (b) faster
and more effective training by automatically identifying and using only the relevant examples; and
(c) performance improvement directly attributable to reasoning and learning bootstrapping off of
each other (Riley & Sridharan, 2019; Sridharan & Mota, 2023). We also demonstrated the ability
to provide relational descriptions on-demand at different abstractions as explanations in response to
different types (causal, contrastive, counterfactual) of questions (Sridharan, 2024).

The second example illustrates the effective use of FMs in architectures based on the principles
outlined above. Specifically, we developed an architecture that enabled an embodied (Al) agent' to
collaborate with other agents in completing assigned tasks in a home environment. Instead of mak-
ing unsubstantiated and incorrect claims about the planning or commonsense reasoning capabilities
of FMs, our architecture was similar (in spirit) to the work on LLM-Modulo frameworks (Guan
et al., 2023; Kambhampati et al., 2024). It prompted a pretrained LLM with a recent history of
executed task routines (if any) to obtain a sequence of abstract tasks likely to be assigned in the near
future. The current and anticipated tasks were considered as joint goals by the robot, which used
logic-based and/or probabilistic planning methods to compute action sequences that would accom-
plish the current task and prepare to complete the anticipated task in collaboration with one or more
other agents. In addition, decision heuristics were incorporated in the decision making, e.g., in the
design of reward functions and the predictive models. We experimentally demonstrated substantial
improvement in the accuracy and computational efficiency of task completion compared with base-

1. The phrase “embodied agent” is a reference to an agent in a physically-realistic simulation environment or a robot
operating in the physical world.
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lines that just used FMs (or deep networks) or knowledge-based reasoning, and baselines that did
not reason about anticipated tasks tasks (Arora et al., 2024). We also demonstrated the ability to
use different knowledge structures, identify and reason with contextual knowledge, and to support
“human in the loop” reasoning and learning (Singh et al., 2025; Fu et al., 2025).

4. Summary

The objectives of this essay were two-fold. The first objective was to highlight the mismatch be-
tween the characteristics of modern Al methods and the requirements of integrated robot systems
that sense and interact in the physical world. The second objective was to promote appreciation of
the fact that this mismatch can be addressed by revisiting some fundamental principles that can be
traced back to the early pioneers of Al, but are not being leveraged in the design of modern archi-
tectures for robots. Using examples of problems in visual scene understanding, reasoning, robot
manipulation, and ad hoc multiagent collaboration, we demonstrated the practical benefits of de-
signing robot architectures that embed these principles. Many of the choices made in the design of
these robot architectures also arise in the design of cognitive systems and architectures. We thus
hope that this paper will encourage researchers in the cognitive systems research community to
explore and understand the capabilities of a diverse set of robot architectures and the underlying
principles, leading to more robust solutions for open problems in robotics.
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