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Flexible, general-purpose robots need to autonomously tailor their sensing and information
processing to the task at hand. We pose this challenge as the task of planning under
uncertainty. In our domain, the goal is to plan a sequence of visual operators to apply
on regions of interest (ROIs) in images of a scene, so that a human and a robot can
jointly manipulate and converse about objects on a tabletop. We pose visual processing
management as an instance of probabilistic sequential decision making, and specifically
as a Partially Observable Markov Decision Process (POMDP). The POMDP formulation
uses models that quantitatively capture the unreliability of the operators and enable a
robot to reason precisely about the trade-offs between plan reliability and plan execution
time. Since planning in practical-sized POMDPs is intractable, we partially ameliorate this
intractability for visual processing by defining a novel hierarchical POMDP based on the
cognitive requirements of the corresponding planning task. We compare our hierarchical
POMDP planning system (HiPPo) with a non-hierarchical POMDP formulation and the
Continual Planning (CP) framework that handles uncertainty in a qualitative manner. We
show empirically that HiPPo and CP outperform the naive application of all visual operators
on all ROIs. The key result is that the POMDP methods produce more robust plans than
CP or the naive visual processing. In summary, visual processing problems represent a
challenging domain for planning techniques and our hierarchical POMDP-based approach
for visual processing management opens up a promising new line of research.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

One significant challenge on the path towards widespread deployment of flexible general purpose robots is the lack of
general purpose vision systems. This inability to exploit the rich information encoded in visual input is primarily due to
the fact that work in machine vision has predominantly focused not on the design of visual systems, but on solutions to
specific sub-problems such as object categorization or surface reconstruction. There is hence no convincing candidate theory
that explains how to put together the pieces of a flexible and robust machine vision system. In the past, the goal of robot
vision was seen by some as being the production of a general purpose world model that is suitable to support a variety of
tasks [1]. This approach of creating a world model and querying it for specific tasks, has largely been abandoned due to the
unreliability of visual operators and the infeasible computational load associated with producing such a model. Roboticists
have instead built small special-purpose visual systems that make strong assumptions about the task and the environment
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Fig. 1. Image of the typical tabletop scenario—salient regions of interest (ROIs) bounded by rectangular boxes.

[2–4]. This approach of creating task-specific vision systems has been advocated by some as the desirable way to build robot
vision systems [5]. The downside is that the goal of creating general-purpose visual systems has been abandoned. Our work
is a significant step towards answering the following question: how can we create robot vision systems that are computationally
lightweight, robust and flexible, all at the same time?

One solution is to enable a robot to retain visual operators to support a variety of tasks, and choose a subset that is
relevant to a given task. We call this approach of enabling a robot to autonomously tailor visual processing to the task at
hand as planning to see. Such a formulation is influenced by the following features and requirements of robot vision systems:

• Features:� Non-deterministic actions: visual operators are unreliable.� Partial observability: the true state of the world is not directly observable. The robot can only update its beliefs about
the state of the world by applying operators and observing the outcomes.� Computationally intensive: state of the art visual processing operators are often computationally expensive.

• Requirements:� Performance: robots interacting with a changing environment or humans need to respond in real-time.� Reliability: the visual system has to operate with a high degree of overall reliability despite the unreliability of
individual visual operators.

These features and requirements suggest that visual processing on a robot should take into account the reliability of the
operators, the accumulation of evidence from several operators to provide high overall reliability, and the computational
complexity of the operators. An approach based on sequential decision making under uncertainty captures most of these
features and requirements [6]. We therefore formulate planning to see as a probabilistic sequential decision making problem
and enable a robot to simultaneously decide where to look, i.e., which region in the scene or image to focus on, and what to
look for, i.e., what processing to perform on the chosen region.

1.1. Our domain

We study visual planning in a specific domain that captures many of the characteristics we would ultimately like to ad-
dress. In our domain, a robot and human jointly converse about and manipulate objects on a tabletop [7]. Though seemingly
simple, the domain represents the state of the art in cognitive robotics [8]. Several modules operating in parallel process the
visual and speech inputs to create goals that are achieved by other modules such as manipulation. Typical visual processing
tasks in this domain require the ability to find the color, shape, identity or category of objects in the scene to support
dialogues about their properties; to see where to grasp an object; to plan an obstacle-free path to do so and then move it
to a new location; to identify groups of objects and understand their spatial relations; and to recognize actions the human
performs on the objects. Each of these tasks is a hard problem in itself, but we are faced with the formidable challenge of
building a vision system capable of performing all of them.

Consider the scene in Fig. 1 with rectangular regions of interest (ROIs) extracted from the background. The robot has at
its disposal a range of visual processing and sensing actions, in order to execute commands and answer a variety of queries
about the scene: “is there a blue triangle in the scene?”, “what is the color of the mug?”, “move the mug to the right of
the circle”. However, in a complex scenario such as the one described above, it is neither feasible nor efficient to run all the
operators on an image, especially since the robot has to respond dynamically to queries and commands.

1.2. Contributions

Though there exists a body of impressive work on planning of visual processing [9–11], AI planning [12] and probabilistic
planning on robots [3,13,14], none accommodates all the features and requirements of the problem identified above. Most
such methods are used for image analysis, require specialist domain knowledge to perform re-planning and plan repair, or
have only been extended to robot systems in limited ways.
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We push the field of planning of visual processing in a new direction by posing it as an instance of partially observ-
able probabilistic sequential decision making. Specifically, we pose visual processing management as a partially observable
Markov decision process (POMDP) [6] thereby incorporating quantitative models of the unreliability of visual operators. We
represent the visual operators as actions that produce stochastic observations. Most actions considered in this paper gather
information but do not change the actual contents of the visual scene, i.e., they do not change the state. However, in order
to address scenes with partially overlapping or occluding objects (a common occurrence in practical scenes), we incorpo-
rate actions that change the perceived state of the system during planning. In other words, we demonstrate the ability of
the proposed system to represent actions that change the state. The initial uncertainty about the scene is captured by the
POMDP’s belief state, a probability distribution over the underlying state space. A reward function is used to quantify the
trade-off between processing time and reliability, by penalizing wrong answers and assigning costs to operators based on
their run time complexity.

The POMDP formulation however quickly grows too large to be tractable, even with state of the art approximate solution
methods. We therefore reduce the complexity of planning by defining a novel hierarchical POMDP that decomposes the
visual planning problem into two sub-problems: choosing which region-of-interest (ROI) to perform processing on; and
deciding what processing to perform on the chosen ROI. This decomposition is achieved by defining one POMDP at the
higher level (HL) where actions consist of choosing the ROI to process, and one POMDP per ROI at the lower level (LL)
for choosing the operators to apply on the corresponding ROI. The LL-POMDPs are treated as actions at the HL and return
observations to the HL-POMDP. Many of the LL-POMDPs can also be cached and reused in different scenes, resulting in a
significant speed up.

In addition to the POMDP formulation, we present a formulation based on the Continual Planning (CP) framework [15].
CP can be thought of as a contingency planning algorithm where only a single branch of the contingency tree is fully
planned, and replanning is triggered if the execution finds itself on an unplanned branch. CP provides significant improve-
ments over classical planning methods, and it has been implemented successfully on real robot domains [7]. We show
empirically that incorporating either planning method significantly speeds up the performance in comparison to the naive
approach of applying all visual operators on all ROIs, even if the planning times are taken into account. The key benefit of
the hierarchical POMDP planning approach is that the plans, while taking slightly longer to generate and execute than those
produced by CP, result in more reliable performance than CP or naive visual processing.

POMDP planning requires probabilistic models of action effects. We use learning with minimal human feedback to ac-
quire these models offline. During online execution, the user-specified queries are converted into query-specific hierarchical
POMDPs. An off-the-shelf POMDP solver [16] is used to solve these POMDPs to produce policies that provide the sequence
of operators best suited to address a given query. Policies are executed without re-planning, except when an action changes
the underlying state space, as described later in the paper. The goal is not to create a POMDP solver or improve the vi-
sual processing operators. Instead, the key consequence of the work described here is a hierarchical probabilistic planning
scheme that automatically tailors visual processing to the task at hand.

1.3. Structure of the paper

The remainder of the paper is organized as follows. Section 2 briefly reviews a representative set of modern planning
methods, including those designed specifically for visual processing. We then pose planning of visual processing in two
ways: as a probabilistic planning problem (Section 3.1), and as a continual planning problem (Section 3.4). We show how
visual operators can be modeled using planning operators in each framework. Next, we define our hierarchical planning
system (HiPPo) that makes the POMDP formulation more tractable (Section 3.3), and differentiate it from other approaches
that impose a hierarchy in POMDP formulations (Section 3.2). We then present detailed experimental results in our test
domain (Section 4) and conclude with a discussion of future research directions (Section 5).

2. Related work

AI planning and cognitive planning architectures have been extensively researched [12,17–19]. Most classical planning
methods however require prior knowledge of states, action outcomes, and all contingencies [12], which cannot be provided
for robot systems that interact with the real-world through noisy sensors and effectors. The focus here is on a specific
sub-category of the planning problem: the joint planning of sensing (where to look) and information processing (what to
look for) actions to achieve a desired goal. Here, we review a set of methods for planning of visual processing, including
general planning algorithms. These methods are evaluated in terms of their ability to satisfy the requirements of the visual
planning task, as described in Section 1.

2.1. Visual planning

There is a significant body of work in the image processing community on planning sequences of visual operations [9,20–
23]. These methods typically use a classical AI planner that takes a user-specified high-level goal and constructs a pipeline
of image processing operations. The planners use deterministic models of information processing, handling operator pre-
conditions and effects using propositions that are required to be true a priori or are made true by the application of the
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operator. Unsatisfactory results are detected by evaluating output images using hand-crafted rules [9,10,23] and addressed
by re-planning the operator sequence or modifying the operators’ parameters [10,23].

The representation of the actions (i.e., the image processing operators) has received considerable attention. One approach
is to use a modeling language similar to STRIPS operators [24], where the preconditions and effects of operators are pre-
specified [10]. The rules mainly decide the legal sequences of image processing operators—there is typically little or no
attempt to predict the non-deterministic characteristics of output images because it is very difficult to estimate the likely
output of an operator [9]. Another challenge is to create a domain-specific set of rules for evaluating the output of each
operator, a process that requires expert knowledge. These planning and program supervision methods have been used for
automating image processing in fields such as astronomy [10,20] and medicine [9]. There has also been work on perception
for autonomous object avoidance in vehicles [25], and interpretation of 3D object structure [26]. Extensions to general
computer vision tasks have however proven difficult.

In the field of computer vision, probabilistic sequential decision processes, i.e., Markov Decision Processes (MDPs) and
Partially Observable MDPs (POMDPs), have been used for image interpretation. Darrell use memory-based reinforcement
learning and POMDPs to learn to foveate salient body parts in an active gesture recognition system [27]. The problem is
formulated as a POMDP using an action set consisting of foveation actions and a special recognition action. During the
learning phase, execution of the recognition action is followed by manual feedback on the target object’s presence in the
scene, so that each action sequence can be assigned a reward. Instance-based hidden-state reinforcement learning is used to
learn what foveation actions to execute, and when to execute the terminal recognition action. Since the learned recognition
policies can consume significant memory, the action-selection policy is transformed into an augmented Finite State Machine
for online recognition. Such approaches that require manual feedback to generate the reward signal on each trial, are too
time consuming to use on a robot operating in a dynamic domain. It would instead be desirable to autonomously generate
the models and policies.

More recently, Li et al. [11] posed image interpretation as an MDP. All possible sequences of image operators are applied
on human-annotated images in an offline process to determine the reward structure. The states are abstracted into a set
of image features. Dynamic programming methods are used to determine the value function for the explored parts of the
state space, which is then extrapolated to the entire state space using an ensemble learning technique. Online execution
consists of repeatedly extracting image features and choosing an action that maximizes the learned value functions. Similar
approaches using MDP-based approximations such as the most-likely-state MDP [28] have been proposed for tasks such as
robot navigation [29]. However, such an approximation is not suitable for information gathering actions that do not change
the physical state.

Sequential decision processes have also been used for gaze planning, i.e., to plan a sequence of gaze locations (im-
age ROIs) to analyze in order to identify the desired target. In recent work, Vogel and de Freitas [30] have posed gaze
sequence selection as a finite-horizon sequential decision process that elegantly combines bottom–up saliency, top–down
target knowledge and spatial target context. The proposed gaze planning strategy was tested on image databases to de-
termine the location of computer monitors. Open-loop feedback control was used for re-planning based on observations.
Though a prior distribution over object locations is difficult to compute for multiple objects in practical scenes, this method
can be incorporated in our POMDP framework as a processing routine for tasks such as viewpoint planning.

In addition to computer vision tasks, POMDP-based approaches have been utilized for tasks such as preference elicitation,
i.e., to infer user preferences through repeated interactions with the system [31,32]. Though similar in some aspects to the
visual processing management task considered here, preference elicitation assumes that user preferences do not change as a
result of the interaction, i.e., that actions do not change the state of the system: this assumption is not valid in human–robot
interaction scenarios.

A POMDP can be solved by ignoring the observation model and finding the Q -function for the underlying MDP. This
QMDP approach yields a set of action values that can be weighted by the belief to estimate the action values in the belief
states [33]. However, this method assumes that the uncertainty in the underlying state disappears in one step. QMDP
policies will not take actions to gain information and are hence poorly suited for domains where the information gain of
actions is the source of reward.

There has been considerable work in the related field of active sensing, where sensor placement and information process-
ing are decided based on the task at hand [34,35]. Kreucher et al. [34] presented an active sensing approach that combines
particle filtering, predictive density estimation and relative entropy maximization for scheduling sensors in order to learn
the number and states of a group of moving targets. The particle filter estimates the joint multitarget probability density.
A sensing action is chosen based on the Renyi divergence entropy measure, following which the system updates the proba-
bility density on the number and states of the targets. Though estimating the joint probability density requires considerable
prior information, this approach can be used to determine the region in space where our planning approach should focus
during a surveillance task.

Recently, submodular functions have been used for sensor placements in spatial phenomena modeled as Gaussian pro-
cesses [36,37]. In domains where the objective function can be represented using submodular functions, the greedy policy
provides performance that is at least 63% of optimal performance, thereby providing a strong lower bound [36]. Krause and
Guestrin have shown that many observation planning problems are submodular, and can therefore be efficiently solved ap-
proximately [37]. A problem is submodular if it exhibits diminishing returns—each additional observation is worth less than
the previous one. Unfortunately, this does not apply in our domain. Consider the query “where is the red circle?” If we run
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the color algorithm on an ROI and it returns the value red, the expected value of running the shape detection algorithm on
the same ROI is higher than it was previously. Hence the problem is not submodular. In general, submodularity applies in
domains where the value is in making the observation regardless of its result. In our domain, the eventual reward received
depends on the result of the observation so submodularity is not present.

Our POMDP-based approach does have similarities with the existing schemes for visual planning in that we are comput-
ing a sequence of operations for a specific task. The difference lies in the fact that our approach encapsulates the features
and requirements of the visual planning task in robot domains (Section 1). We automate belief propagation and the com-
putation of the associated models, thereby making it easier to add more actions and address a range of queries in the
domain.

2.2. Observation planners

Several modern planning schemes relax some of the constraints of classical planning methods in order to apply the
machinery of classical planning to practical tasks, and we review a few methods below.

Draper et al. proposed C-BURIDAN, a planning scheme that incorporates a probabilistic model of the noisy sensors and
effectors, while retaining a symbolic STRIPS-like representation of action effects [38]. The plan-assessment phase treats
actions as probabilistic state transitions, while the plan-refinement phase links the symbolic action effects to the symbolic
sub-goals of the desired goal state. Similar to our POMDP-based approach, they reason about the best action to perform
based on prior belief about the world and the observations made by executing actions. However, their approach: requires
the preconditions and effects of actions to be manually specified; does not incorporate action costs; and requires a manual
ordering of actions to accumulate belief from repeated execution of the same action.

In contrast to the C-BURIDAN system, Petrick and Bacchus’s PKS planner describes actions in a first order language,
in terms of their effect on the agent’s knowledge rather than their effect on the world [39]. The model is hence non-
deterministic in the sense that the true state of the world may be determined uniquely by the actions performed, but the
agent’s knowledge of that state is not. For example, dropping a fragile item will break it, but if the agent does not know
that the item is fragile, it must use an observational action to determine its status. PKS captures the initial state uncertainty
and constructs conditional plans based on the agent’s knowledge. In our domain, we can say that the target object is in one
of the ROIs, but that we do not know which one. The planner will then plan to use the observational actions to examine
each ROI, branching based on what is discovered.

More recently, Brenner and Nebel proposed the Continual Planning (CP) approach, which interleaves planning, plan exe-
cution and plan monitoring [40]. Unlike classical planning schemes that require prior knowledge of state, action outcomes
and all contingencies, an agent in CP postpones reasoning about uncertain states until more information is available. The
agent allows each action to assert that its preconditions will be met when the agent reaches that point in the execution
of the plan. If these preconditions are not met during execution, or are met earlier, replanning is triggered. CP is therefore
quite similar to PKS in representation but works by replanning rather than constructing conditional plans. There is however
no representation of the uncertainty in the observations and actions. CP is based on the FF planner [41] and uses the PDDL
syntax introduced by McDermott [42]. Section 3.4 describes how our domain can be modeled in the CP framework.

In applications with noisy observations, the optimal behavior may be to increase confidence in the image interpretation
by accumulating the evidence obtained by running the operators more than once on several images of the scene. None of
the approaches mentioned in this section can readily represent this belief accumulation.

3. Probabilistic problem formulation

As mentioned in Section 1, visual processing on robots is characterized by partial observability and non-determinism.
We capture these features by posing the problem as an instance of probabilistic sequential decision making. Specifically, we
pose the planning of visual sensing and information processing as a partially observable Markov decision process (POMDP)
and explicitly model the unreliability of the visual operators. This formulation enables the robot to maintain a probability
distribution over the true underlying state: the belief state. The belief state maintenance in turn requires an observation
model that predicts the likelihood of all possible action outcomes. The robot can learn this observation model, as described
in Section 4.1. Our POMDP formulation models the effects of actions that gather information and actions that change the
system state. This ability to model actions that change the state is essential for achieving a long-term goal of our work: to
enable a robot to interleave perception with environmental object interactions (e.g., pushing an object) in order to obtain
new views.

For ease of understanding, we use the example of an input image from the tabletop scenario that is pre-processed to
yield two regions of interest (ROIs), i.e., two salient image regions that are different from the immediate background—see
rectangular bounding boxes in Fig. 2. Fig. 1 shows additional examples of ROIs extracted from the background.

Consider the query: “which objects in the scene are blue?” Without loss of generality, assume that the robot has the
following visual operators at its disposal: a color operator that classifies the dominant color of the ROI it is applied on;
a shape operator that classifies the dominant shape within the ROI; a sift operator that uses SIFT features [43] to detect
objects whose feature models have been trained; and a set of region-split operators that split an ROI into smaller regions
based on each of the operators listed above: rSplitcolor , rSplitshape and rSplitsift . The color operator characterizes ROIs based
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Fig. 2. Image of a tabletop scenario with two objects that result in two ROIs.

on color-space histograms, while the shape operator characterizes the dominant contour within the ROI using invariant
moments. The sift operator characterizes target objects with local image gradients that are robust to scale, orientation and
viewpoint changes. The region-split operators split the ROIs and change the perceived state of the system during planning,
and are used to tackle scenes with partially overlapping objects. The goal is to plan a sequence of operators that would
answer queries with high confidence. Throughout this paper, we use the following terms interchangeably: visual processing
actions, visual actions and visual operators.

3.1. POMDP formulation

As mentioned in Section 1.2, our hierarchical POMDP planning system (HiPPo) consists of two levels. Given a specific
query about a scene represented by image ROIs, the POMDP at the higher level chooses the ROI to process next. One
POMDP per ROI at the lower level chooses the sequence of operators to apply on the ROI in order to reliably predict its
contents. We begin with the POMDP framework at the lower level.

The POMDP framework at the lower level requires a suitable representation of action outcomes. Each action considers the
true underlying state to be composed of the class labels (e.g., red(R), green(G), blue(B) for color; circle(C), triangle(T), square(S)
for shape; picture, mug, box for sift); a label to denote the absence of any valid object—empty (φ); and a label to denote the
presence of multiple classes (M). The corresponding observation function is a probability distribution over the set of possible
action outcomes. The set of action outcomes consists of the class labels; the label empty (φ) which implies that the match
probability corresponding to the class labels is very low; and unknown (U ) which implies that multiple classes are equally
likely and the ROI may therefore contain multiple objects. While U is an observation, M is part of the underlying state:
they are not the same since they are not perfectly correlated. In the formal definition, we make this distinction clear for the
other class and observation variables.

Since visual operators only update belief states, we include “special actions” that cause a transition to a terminal state
where no further actions are applied, i.e., these query-specific actions terminate processing to answer the query. The answer
could report or “say” (not to be confused with language-based communication) which underlying state is most likely to be
the true state, or it could simply state the presence or absence of the target object. In the description below, without loss
of generality and for ease of explanation, we only consider two operators: color and shape, each of which provides three
class labels. The operators are denoted with the subscripts c, s respectively. The approach generalizes to sift, other vision
algorithms and more outcomes. True states and observations are distinguished by the superscripts a, o respectively.

Consider a single ROI in the scene. The POMDP that answers specific queries about the ROI is defined by the tuple
〈S, A, T , Z, O, R〉:

• S : Sc × Ss ∪ term is the set of states. It is a Cartesian product of the variables describing different aspects of the
underlying state (e.g., color, shape) and includes a terminal state (term). Sc : {φa

c , Ra
c , Ga

c , Ba
c , Ma

c }, Ss : {φa
s , Ca

s , T a
s , Sa

s , Ma
s }.

The subscript denotes the aspect of the state being modeled, and the superscript denotes that it is the actual state.
• A : {color, shape, Asp} is the set of actions. The first two entries are the visual processing actions. The rest are query-

specific special actions that represent responses to the queries. For a query such as “is there a circle in the scene?”
Asp = {sFound, sNotFound} describes the presence or absence of the target object, while a query such as “what is the
color of the ROI?” would lead to Asp = {sRed, sGreen, sBlue}, i.e., actions such as “say blue”. All the special actions lead
to term.

• T : S × A × S → [0,1] represents the state transition function. It is an identity matrix for visual processing actions such
as color and shape whose application does not change the underlying state of the world. For special actions, it represents
a transition to term. For actions that change the state, the transition function needs to be suitably modified—an example
is described later in this section.

• Z : {φo
c , Ro

c , Go
c , Bo

c , U o
c , φo

s , Co
s , T o

s , So
s , U o

s } is the set of observations, a union of the observations of each visual action,
i.e., Z = Zc ∪ Zs . The use of the superscript o denotes an observation.

• O : S × A × Z → [0,1] is the observation function, a matrix of size |S| × |Z| for each action. It is learned offline by
the robot for each visual action (Section 4.1) and it is a uniform distribution for the special actions.
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Fig. 3. Example of splitting an input ROI to analyze overlapping objects.

• R : S × A → � specifies the reward, mapping from the state-action space to real numbers. In our case:

∀s ∈ S, R(s, shape) = −1.25 · f s(ROI-size)

R(s, color) = −2.5 · fc(ROI-size)

R(s, special actions) = ±100 · α (1)

The cost for visual actions depends on the relative computational complexity of the operator and the size of the ROI.
For instance, the color operator is twice as costly as shape, and this information is used to experimentally assign a cost
factor such that the least expensive operator is assigned a value close to one. The dependence on ROI-size is captured
using a polynomial function—see Eq. (8) in Section 4.1. For special actions, a large positive (negative) reward is assigned
for making a correct (incorrect) decision for a given query. For instance, for the query “what is the color of the ROI?”:
R(Ra

c T a
s , sRed) = 100 · α and R(Ba

c T a
s , sGreen) = −100 · α, i.e., we receive a reward of 100 · α for detecting the color

correctly and a punishment for answering incorrectly. On the other hand, for the query “is there a red object in the
scene?”: R(Ra

c T a
s , sFound) = 100 ·α and R(Ba

c T a
s , sFound) = −100 ·α. The variable α trades-off the computational costs

against the reliability of query responses. When α is large, the special action is taken after executing a larger number
of visual operators, resulting in higher reliability.

In the POMDP formulation, given the probability distribution over the underlying state at time t: the belief state bt , the
belief update proceeds as:

bt+1(st+1) = O(st+1,at,ot+1)
∑

s∈S T (s,at , st+1) · bt(s)

P (ot+1|at,bt)
(2)

where P (ot+1|at ,bt) = ∑
s′∈S {P (ot+1|s′,at) · ∑

s∈S P (s′|at, s)bt(s)} is the normalizer, O(st+1,at ,ot+1) = P (ot+1|st+1,at),
bt(s) = P (st = s), and T (s,at , st+1) = P (st+1|at , st = s). Our visual planning task for a single ROI now involves solving this
POMDP to find a policy that maximizes reward over a range of belief states. Plan execution corresponds to using the policy
to traverse a specific path of a policy tree, repeatedly choosing the action with the highest value at the current belief state,
and updating the belief state after executing that action and receiving an observation. Fig. 4 shows a policy tree pictorially:
it represents the result of applying all possible visual operator sequences on an ROI. In order to ensure that the observations
are conditionally independent of each other given different snapshots of the same scene from the same view, a new image
of the scene is taken if an action is to be repeated on an image ROI. This independence assumption is required for the belief
update in Eq. (2). Though the images are not strictly independent, the assumption works in practice to account for small
changes in environmental factors such as illumination. In situations where this independence assumption is violated, the
POMDP will need to be reformulated before the appropriate models can be learned.

In most real-world scenes, overlap between objects is a common occurrence as a result of occlusion or camera viewpoint.
Two or more objects can hence be contained in a single ROI. An ROI may also contain an object with multiple feature values
(e.g., multiple colors). Such ROIs need to be split into smaller ROIs for analysis, based on one or more features of the ROI
such as color or shape. Fig. 3(a) shows an example of an ROI containing two objects (R1), which can be split into two ROIs
based on the shape feature to result in ROIs R1 and R3 in Fig. 3(b).

Such region-splitting actions pose a challenge because they modify the perceived state space of the POMDP. The new
state space has additional state variables for the new ROIs that have been created. It is not computationally feasible to
plan through a split in advance, since each application of a split operator will lead to several other POMDPs. Each of these
POMDPs must be solved, but crucial information such as the size of the new ROIs will not be known in advance. It is also not
easy to estimate the transition probabilities for the new POMDPs. Our approach uses an analytic model that approximates
the likelihood of transitioning to each new POMDP, and the value to be garnered from each such transition.
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Fig. 4. Policy Tree for processing of an ROI—each node represents a belief state and specifies the action to take. All leaf nodes specify a terminal action.

Our strategy is explained using the example of the region-splitting action that segments the input ROI into one or more
ROIs based on color: rSplitcolor . If the true state of the ROI consists of just one color, rSplitcolor should not change the state.
On the other hand, if there is more than one color in the ROI, we make the optimistic assumption that the action rSplitcolor
will isolate the color we are looking for in the ROI (blue for the query: “which objects in the scene are blue?”). In addition,
the execution of an rSplit operator is accompanied by an application of the operator corresponding to the feature used to
perform the split, i.e., the execution of rSplitcolor is followed by the application of color on each resultant ROI. The rSplitcolor
operator can hence be characterized as:

• The number of ROIs resulting from a split action is assumed to follow a geometric distribution. The maximum number
of possible ROIs is equal to the number of labels provided by the underlying feature (five for color).

• The operator cost is the sum of three values. The first is the cost of performing rSplitcolor , i.e., segmenting the ROI based
on color. The second is the cost of re-applying the color operator on the expected number (d) of ROIs created by the
split. Each of the d ROIs is only 1/d the size of the ROI being split: for linear action costs, this cost is equivalent to
applying the action once on the original ROI. The third value is the cost of solving the POMDPs corresponding to the
new ROIs.

• The observation function (O) is the same as that of the underlying operator (color). It is used to perform the belief
update on each ROI resulting from the execution of rSplitcolor .

• The transition function (T ) needs to ensure that the split operation is feasible only in the state where it is justified,
i.e., Ma

c . We assume that applying the split operator in Ma
c results in well-separated ROIs, i.e., we cannot transition back

to Ma
c after the split. Assume that the feature being split on has n possible labels. Each of the ROIs created by the split

can have a label relevant to the query with probability 1
n . The geometric distribution sets the probability of producing i

ROIs after the split to 1/2(i−1) , assuming that a split action results in at least two ROIs. The special case of i = n occurs
with probability: 1/2(n−2) so that the geometric distribution-based probabilities sum to one. The expected probability
that one of the ROIs has the appropriate label, is then given by:

p =
n−1∑
i=2

1

2i−1

i

n
+ 1

2n−2
(3)

The transition is hence as follows: if (and only if) the underlying state has multiple colors (i.e., Ma
c ), with probability p

we move to a state where one ROI has the relevant label, and with probability (1 − p) we move to one of the states
where all of the ROIs have some other label. For the current example of searching for blue objects, Table 1 shows T for
rSplitcolor while considering just the color states.

This formulation of region-splitting allows us to plan the effects of the split operators in the current POMDP model even
though a split will increase the number of ROIs and change the model. We are replacing the solution of several new POMDPs
with one in which we compute the likelihood that one of the resultant ROIs has the desired feature value. During execution,
we will have to replan with a new POMDP after a split action (see Section 4.2).
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Table 1
Transition function for rSplitcolor while considering just the color states.

p(init|fin) φa
c Ra

c Ga
c Ba

c Ma
c

φa
c 1.0 0 0 0 0

Ra
c 0 1.0 0 0 0

Ga
c 0 0 1.0 0 0

Ba
c 0 0 0 1.0 0

Ma
c

1−p
3

1−p
3

1−p
3 p 0

When we generalize this POMDP formulation to scenes with multiple ROIs, the state space grows exponentially. For a
single ROI with m features (e.g., color, shape) each with n values (e.g., Ra

c , Ga
c , Ba

c , φa
c and Ma

c for color), the POMDP has
an underlying space of size nm + 1. Actual scenes will contain several objects and hence several ROIs—for k ROIs we have
nmk + 1 states. Solving a POMDP in the joint space of all ROIs soon becomes intractable even for a small set of ROIs and
actions—with three ROIs and two actions we get ≈ 15 000 states. The rest of this section focuses on possible solutions to
this problem.

3.2. Prior work on leveraging structure

Our visual processing problem when modeled as a POMDP has a state space whose dimensionality rises exponentially
in the product of the number of features and the number of ROIs. Since the worst case time complexity of POMDPs is
exponential in the number of dimensions in the state space, our problem becomes particularly formidable. In this paper, we
propose a hierarchical decomposition to partially ameliorate this intractability. However, we first review recent approaches
that exploit the structure in POMDP formulations in order to make such formulations more tractable.

Pineau et al. [3,44] proposed a hierarchical POMDP approach for high-level behavior control on a robot, similar to the
MAXQ decomposition for MDPs [45]. They imposed an action hierarchy, with the top level action being a collection of sim-
pler actions represented by smaller POMDPs. The planning algorithm operates in a bottom–up manner such that complete
solutions for the smaller POMDPs are combined to provide the policy for the entire problem. The execution proceeds in a
top–down manner: invoking the top-level policy traverses the hierarchy invoking a sequence of local policies until a primi-
tive action is reached. Model parameters at all levels are defined over the same space of states, actions and observations, but
the relevant space is abstracted for each POMDP using a dynamic belief network. Similar systems have been proposed for
autonomous robot navigation [13,14,46]. In the actual application, however, a significant amount of data for the hierarchy
and model creation has to be hand-coded.

Hansen et al. [47] proposed a programmer-defined Task Hierarchy (TH) for planning with POMDPs, where the policies
are defined as finite-state controllers (FSCs). It is similar to Pineau’s work in terms of the hierarchy, with exact dynamic
programming (DP) solutions for each sub-problem and a bottom–up traversal of the TH. The DP policy of a sub-problem is
treated as an abstract action in the next higher level POMDP. The difference lies in the fact that each policy is represented
as an FSC to build exact models for each abstract action. In addition, each POMDP in the hierarchy is an indefinite-horizon
POMDP in order to allow FSC termination without recognition of the underlying terminal state. Furthermore, policy iteration
is used instead of value iteration to solve POMDPs. As a result these changes, the representation provides guarantees on
policy quality.

There has been considerable work on exploring representations for hierarchical POMDPs that allow for tractable per-
formance in practical applications. Theocharous et al. [48] represented hierarchical POMDPs as dynamic Bayesian networks
(DBNs) for the specific task of using multi-resolution spatial maps for indoor robot navigation. They have shown that the
DBN representation can train faster and with fewer samples than the hierarchical POMDP or the joint POMDP, and that their
formulation extends to factoring of the underlying variables. More recent work by Toussaint et al. [49] aims to learn the
hierarchical representation of a POMDP based on maximum likelihood estimation. It uses a mixture of DBNs and parameter
estimation based on Expectation-Maximization.

The proposed hierarchical POMDP approach has some similarities with the existing approaches for hierarchical decompo-
sition in POMDPs. Similar to [13,44], the model parameters at the higher level of our proposed hierarchy are functions of the
policies computed at the lower level. The key difference lies in the fact that we do not require manual encoding of domain
knowledge to abstract the relevant state space at different levels. The automatic belief propagation is achieved by having the
different levels of our hierarchy operate over different state-action spaces that are based on a functional decomposition. Im-
ages of specific regions in space, and the corresponding image ROIs, are considered at different levels. Analyzing additional
operators or image ROIs is hence significantly easier. In addition, the lessons learned from the hierarchical decomposition
of the specific visual processing domain are applicable to other domains. Furthermore, the proposed hierarchy enables an
automatic trade-off between reliability and efficiency (see Appendix A), which is very useful in robot applications.

3.3. Hierarchical POMDP planning: HiPPo

In the proposed hierarchical decomposition, each ROI is modeled with a lower-level (LL) POMDP as described in Section 3.1,
and a higher-level (HL) POMDP chooses, at each step, the ROI whose policy is to be executed. This decomposes the overall
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problem into one POMDP with state space 2k + 1 and k POMDPs with state space nm + 1 (as before, m is the number of
features, each with n values). The problem of what information to process is hence separated from how to process it. For the
example of two ROIs and the query: “which objects in the scene are blue?”, two LL-POMDPs are defined as in Section 3.1
and the HL-POMDP is given by 〈S H , A H , T H , Z H , O H , R H 〉:

• S H = {R1 ∧ ¬R2,¬R1 ∧ R2,¬R1 ∧ ¬R2, R1 ∧ R2} ∪ termH is the set of states. It represents the presence or absence of
an object satisfying the query in one or more of the ROIs: R1 ∧ ¬R2 means the object exists in ROI R1 but not in R2. It
also includes a terminal state: termH .

• A H = {u1, u2, A H
sp} are the actions. The sensing actions (ui) denote the choice of executing one of the LL ROIs’ policy

trees. Similar to the LL-POMDPs, the special actions (A H
sp) are query-specific. For queries such as “is there a circle in the

scene?”, A H
sp = {sFoundH , sNotFoundH }. However, for queries such as “where is the blue circle?”, A H

sp identifies an entry

of S H as the answer. All special actions lead to termH .
• T H is the state transition function, which leads to termH for special actions and is an identity matrix for other actions.
• Z H = {F R1,¬F R1, F R2,¬F R2} is the set of observations. It represents the observation of finding or not-finding the

target object when each ROI’s policy is executed.
• O H : S H × A H × Z H → [0,1] is the observation function, which is a uniform matrix for special actions. For sensing

actions, it is obtained from the policies of the LL-POMDPs as described below.
• R H is the reward specification. For each sensing action, it is the “cost” of running the policy of the corresponding

LL-POMDP, computed as described below. For a special action, it is a large positive (negative) value if it predicts the
true underlying state correctly (incorrectly): R(R1 ∧ R2, sR1 ∧ R2) = 100 and R(R1 ∧ ¬R2, sR1 ∧ R2) = −100.

An important aspect of our hierarchical formulation is the relationship between the HL-POMDP and the LL-POMDPs. The
observation function and reward specification for each HL sensing action are defined as a function of the corresponding
LL-POMDP’s policy. As seen in Fig. 4, root node of the LL-POMDP’s policy tree represents the initial belief. At each node,
the LL-POMDP’s policy is used to determine the best action, and all possible observations are considered to determine the
resultant beliefs and hence populate the next level of the tree.

Consider the computation of F R1, i.e., the probability that the target object is “found” in R1 on executing the LL-POMDP’s
policy. The probability of ending up in a leaf node corresponding to the desired terminal action (sFound) is computed by
charting a path from each such leaf node to the root node and computing the product of the corresponding transition
probabilities (the edges of the tree). These individual probabilities are summed up to obtain the total probability of obtaining
the desired outcome in the HL-POMDP. While looking for blue objects (“which objects in the scene are blue?”) let L be the
set of leaf nodes in R1’s LL-POMDP policy tree π1 with the chosen action of sFound. Then:

P (F R1) =
∑
in∈L

Pπ1(in)

Pπ1(in) =
1∏

k=n

P
(
ik|Parent(i)k−1

)
(4)

where ik denotes the node i at level k, Parent(i)k−1 is the parent of node i at level k − 1 and π1 is the policy tree
corresponding to the ROI R1. The entries within the product term in Eq. (4) are the normalizers of the belief update in
Eq. (2):

P
(
ik|Parent(i)k−1

) =
∑
s′∈S

{
P
(
oik

Parent(i)k−1
|s′,aParent(i)k−1

)

·
∑
s∈S

P
(
s′|a, s

)
bParent(i)k−1(s)

}
(5)

where oik
Parent(i)k−1

is the observation that transitions to node ik from its parent Parent(i)k−1, while aParent(i)k−1 is the action
taken from the parent node and bParent(i)k−1 (s) is the belief state at Parent(i)k−1. The other entries of the HL observation
function are computed by parsing the corresponding LL policy trees with appropriate initial beliefs.

During execution, we restrict the action choice to the set of terminal actions after N steps in order to speed up plan
execution on the robot. It is possible to pose the problem as a finite-horizon POMDP by including the time step constraint in
the state description. However, we use an off-the-shelf infinite-horizon POMDP solver that is efficient [16] but only provides
the belief space discretization as a control parameter, i.e., the LL policies can be computed up to a desired regret bound.
Hence, we use the infinite-horizon solver with a reasonable regret bound and restrict the depth of the policy tree for online
execution on the robot. The LL actions are therefore not necessarily optimal, but reasonable solutions are obtained if N is
set heuristically based on the query complexity:

N = Nmin + k · x (6)
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where x represents the number of object features being analyzed. In our experiments, we set k = 2 and Nmin = 2 because
we consider at least two visual actions and allow for each visual action to be applied twice to improve the reliability of
the response. This constraint is not an essential component of our approach: it is a robot-specific trade-off for efficient
operation.

The cost of an HL sensing action, say u1, is the average cost of executing the actions represented by the corresponding
LL-POMDP’s policy tree: π1. The cost is computed by a recursive process starting from the root node:

Croot =
∑

n1∈Nroot,1

Cn1

Cik =
∑

jk+1∈Nik ,k+1

P ( jk+1|ik)
{

C
jk+1
ik

+ C jk+1

}
(7)

where n1 is the nth node of the Nroot,1 nodes at level 1 that are the children of the root node; Cik is the cost of the node
i at level k; while C jk+1 is the cost of the jth node among the Nik,k+1 nodes at level k + 1 that are children of node ik .

The term P ( jk+1|ik) is the transition probability from node ik to child node jk+1 (Eq. (5)). The term C
jk+1
ik

is the cost of
performing the action at node ik that created the child node jk+1—it is the reward or cost of the action, as given by Eq. (1).

An observation function has to be computed conditioned on the underlying state, and this must be done for every pos-
sible underlying state. Parsing the LL-POMDP’s policy tree for computing the observation function and reward specification
for the HL-POMDP model is hence different from the normal belief update performed when computing or executing the
LL policy. For instance, when π1 is evaluated for computing the probability of F R1 for the query: “which objects in the
scene are blue?”, we are computing the probability of finding a blue object in R1 conditioned on the fact that it exists in the
ROI, information that is not available when the LL policy is computed or executed. The initial beliefs of the LL-POMDPs
are hence modified (based on the query) while generating the HL-POMDP model. For instance, while searching for “blue”
objects, states Ba

cφ
a
s , Ba

c Ca
s , Ba

c T a
s , Ba

c Sa
s , Ba

c Ma
s are equally likely in the initial belief, while other states have zero probability.

The LL observation function is re-weighted based on the modified initial belief. The HL observation function and reward
specification are then computed by parsing the corresponding LL policy trees with the belief states corresponding to the
elements of the HL observation set. However, these LL changes are used only for building the HL-POMDP. Normal belief
updates in the LL-POMDPs use an unmodified O and an appropriate initial belief: for e.g., it is uniform if nothing is known
about the contents of the ROI.

Once the HL-POMDP’s model parameters are computed, it can be solved to yield the HL policy for a specific query.
During execution, the HL-POMDP’s policy is queried for the best action choice. The chosen action causes the execution of
one of the LL policies, resulting in a sequence of visual operators being applied on one of the ROIs. The answer provided by
the LL policy execution causes a belief update in the HL-POMDP and the process continues until a terminal action is chosen
in the HL to answer the query. Here it identifies all blue objects in the image.

The transfer of control between the HL and the LL is different when the LL actions change the state. Such a change in the
state may require the HL model to be reformulated. For instance, the execution of rSplitcolor splits the target ROI into smaller
ROIs by color segmentation (i.e., by clustering image regions with similar color) and the operator color is applied on each of
these ROIs. However, each of these ROIs is not evaluated up to N levels. Instead, the current belief states of all the LL ROIs,
including those created as a result of the split, are used to create a new HL-POMDP model with appropriate parameters.
The new HL model is solved to get the new HL policy, which is used to select subsequent HL actions. Section 4.2 provides
an illustrative example. A similar procedure can be used when the robot changes the state by interacting with the objects
(e.g., pushing an object), but our current system does not yet incorporate such actions.

Algorithm 1 describes the overall planning algorithm for our domain. Based on the given query, the available visual
actions and the number of ROIs, the LL-POMDPs are created and solved (line 1). The LL policies are parsed to build the HL-
POMDP and solve it (line 2). During execution, invoking the HL-Policy (line 3) results in the analysis of the corresponding
ROI (line 5). Under normal circumstances, the ROI is analyzed until a terminal action is reached in the LL (lines 7–8, 15–18).
However, the execution of some LL actions can change the underlying state space dimensions (line 9), leading to a change
in the execution cycle. For instance, if rSplitcolor is executed and new ROIs are created, new POMDP models are created and
solved for the resulting ROIs (line 11). The color operator is applied on all the ROIs created as a result of rSplitcolor in order
to update their beliefs (line 12), and the processing is terminated in the LL (line 13).

In the HL, the beliefs are typically updated based on the LL response (line 24) and a new action is chosen. However, if the
most recent LL action to be executed causes a state change, a new HL-POMDP is created based on all existing LL-POMDPs
and the current beliefs (line 21). This HL-POMDP is solved to obtain the updated HL policy. A new HL action is chosen using
the modified HL policy (line 26) and the process continues until a terminal action is executed in the HL to answer the input
query (line 28).

In summary, we propose a hierarchy in the (image) state and action space. Instead of manually encoding the hierarchy,
abstractions and model parameters across multiple levels, our hierarchy only has two levels whose models are generated
automatically. In the LL, each ROI is assigned a POMDP, whose states, actions and observations depend on the query and
the available visual operators. The approximate (policy) solutions of the LL-POMDPs are used to populate an HL-POMDP
that has completely different states, actions and observations. The HL-POMDP maintains the belief over the entire image
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Algorithm 1 HiPPo algorithm for the tabletop scenario.
Require: Q = Input query/command, visual actions to apply on the ROIs, learned observation and reward functions for each action.
Require: M = number of ROIs in image after initial visual processing.

1: Create and solve POMDPs for each ROI (i.e., LL-POMDPs) based on input query, and learned observation and reward functions.
2: Create and solve HL-POMDP based on query and LL policy trees.
3: aHL = bestAction(HL-Policy). {Choose HL action based on HL policy}
4: while !terminalAction(aHL) do
5: Ri = ROI corresponding to aHL .
6: aLL = bestAction(LL-PolicyRi

). {Choose visual operator based on LL policy of Ri }
7: while !terminalAction(aLL) do
8: Execute aLL . {Apply visual operator on Ri }
9: if stateChanged then

10: {Region-splitting may create new LL ROIs and change state dimensions}
11: Create and solve new LL-POMDPs.
12: Update beliefs of all relevant POMDPs.
13: break;
14: else
15: Update belief of Ri based on observation obtained by executing aLL .
16: aLL = bestAction(LL-PolicyRi

).
17: end if
18: end while
19: if stateChanged then
20: {The new LL ROIs created by region-splitting need to be included in the HL}
21: Create and solve HL-POMDP.
22: Reset HL beliefs based on the belief state that existed before region-splitting.
23: else
24: Update HL belief based on LL response.
25: end if
26: aHL = bestAction(HL-Policy).
27: end while
28: Answer input query.

and chooses the ROI that is most appropriate for further processing. The execution of the HL and LL policies eventually
provides an answer to the input query. As a result of the automatic belief propagation, the proposed hierarchy can be used
unmodified for a range of queries. Furthermore, all reward and observation models are learned: in the LL they are modeled
based on the collected statistics (see Section 4.1), and in the HL they are inferred from the LL policies.

3.4. Continual planning

As described in Section 1, we compare our hierarchical POMDP approach against a modern planner that handles un-
certainty in a qualitative manner: Continual Planning (CP) [40]. This section describes how the visual planning task can be
formulated in the CP approach. As mentioned in Section 2.2, CP interleaves planning, plan execution and plan monitoring.
It postpones reasoning about uncertain states by allowing actions to assert that the preconditions for the action will be met
when the agent reaches that point in the execution of the plan. Replanning is triggered if these preconditions are not met
during execution, or are met earlier. As an example, consider the specification of a color operator in the CP framework:

(:action colorDetector

:agent (?a - robot)

:parameters (?vr - visRegion ?colorP - colorProp )

:precondition (not (applied-colorDetector ?vr) )

:replan (containsColor ?vr ?colorP)

:effect (and
(applied-colorDetector ?vr)
(containsColor ?vr ?colorP) ) )

The operator aims to determine the color label of the input ROI, the same function performed by the color operator in
the POMDP framework described in Section 3.1. The variable names are prefixed by ‘?’ and each variable’s type or category
is specified when the variable is used for the first time. For instance, ?vr is a variable of type “visual-region” (visRegion),
which can be bound to an existing image ROI at run-time. The parameters of the operator are an ROI that is currently
being analyzed and a color-property (colorProp) that can take any of the possible labels provided by the operator (e.g.,
red, green,blue for color). The operator can be applied on any ROI that satisfies the “precondition”, i.e., any ROI that has not
already been analyzed by this operator. The expected result (“effect:”) is that the color of the ROI is found. The “replan:”
condition ensures that if the effect is produced by another process (for e.g., a human or another visual operator adds the
ROI’s color to the known state information), the current plan is terminated. Replanning generates a new plan that includes
the containsColor fact in the known state information—colorDetector will therefore not be applied on this ROI again. In
addition, if the results of executing a plan step are not as desired (for e.g., the color of an ROI is found to be red while
searching for blue objects), execution monitoring triggers replanning to ensure that other ROIs are considered.
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Other operators for determining shape or object category (equivalents of shape and sift in the POMDP formulation) are
defined in a similar manner. Based on the goal state definition, the planner chooses the sequence of operators whose effects
provide parts of the desired goal state—an example of the planning and execution cycle in CP is provided in Section 4.2.

The CP approach to the problem is more responsive to an unpredictable world than a non-continual classical planning
approach—it can significantly reduce planning time in the event of deviations from expected performance. CP provides an
efficient and appealing option because it does not require an analysis of all possible contingencies in advance. In addition,
it has been used successfully for the tabletop domain (Section 1.1) and other human robot interaction scenarios [8]. Fur-
thermore, the key contribution of the proposed work is a hierarchical planning framework for efficient and reliable visual
processing—the goal is not to develop a POMDP planner or improve the visual operators. In the next section, the proposed
HiPPo approach is hence compared experimentally against CP in the tabletop domain. We show that the ability to model
action outcomes and accumulate belief enables HiPPo to perform more reliably than CP in domains with uncertainty, while
still having comparable computational efficiency.

4. Experimental setup and results

In this section, we first describe the learning of LL-POMDP observation functions and then summarize the experimental
results.

4.1. Learning observation functions and reward specifications

As described in Section 3.3, building the LL-POMDP models requires the observation functions and reward specifications
of the visual operators. Unlike existing POMDP-based applications where these model parameters are manually specified [13,
44], we explicitly model the uncertainty in the performance of the different visual operators. The observation and reward
functions are hence learned by the robot before planning and execution.

Objects with known labels (“red circular mug”, “blue triangle” etc.) are put in front of the robot. The robot applies each
operator several times to estimate the probability of obtaining different outcomes (φ, class labels and U ) given the actual
state information (φ, class labels and M). The collected statistics are used to populate the observation functions of the
individual visual operators, assuming that the observations produced by different actions are mutually independent.

In parallel, the reward specifications are also learned. The rewards (i.e., costs) of the operators are a function of two
factors: the relative run-time complexity of the operators and the size of the visual region (ROI) that the operator is applied
on—Eq. (1) in Section 3.1. The relative run-time complexity is determined experimentally based on the operator run-time
statistics collected during observation function learning. The least expensive operator is assigned a run-time complexity
value close to one and the values for other operators are multiples of this base value. The dependence on ROI-size is
modeled as:

f (r) = a0 +
N∑

k=1

ak · rk (8)

where r is the ROI-size (in pixels), i.e., a polynomial of a specific degree is used to approximate the dependence on the
size of the ROI being processed. The coefficients of the polynomial are estimated by performing Gaussian elimination [50]
on the statistics of operator performance collected by the robot while learning the observation functions. The robot chooses
the degree of the polynomial such that it best fits the collected statistics—for e.g., values of N = 3,1,5 were estimated for
color, shape and sift respectively. The robot is hence able to learn the action costs used in Eq. (1).

During the initial learning phase, the robot also learns a model for the scene background in the absence of the target
objects. This background model is represented as a Gaussian mixture model whose parameter values are estimated based
on images of the background. During online operation, this background model is used to generate contours corresponding
to the objects introduced in the scene. The contours are enveloped within rectangular boundaries to obtain the salient ROIs.
Our system includes techniques such as saliency computation [51] and sophisticated image segmentation [52], which may
be used to generate the ROIs. However, background subtraction is computationally efficient and suffices for our experimental
domain.

4.2. Experimental setup and examples

The experimental setup is as follows. The robot uses a color camera to observe the tabletop scene. Any change from the
learned model of the background is identified as a salient region, and all such regions of interest (ROIs) are extracted. The
goal is to answer queries by applying a sequence of operators on one or more of the ROIs. For the first illustrative example,
assume that there is no overlap between objects in the image, and that the robot can choose from color, shape and sift.
Consider the query: “where are the blue circles?”, i.e., the robot has to determine the location of one or more blue circles
in the image.
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Fig. 5. Example query: “Where are the Blue Circles?” Appropriate LL-POMDP reward specification results in early termination when negative evidence is
found.

In the HiPPo approach, the robot creates an LL-POMDP model file for each ROI based on the query and the available
visual operators. The model file is in the format required by the ZMDP planning package.3 A point-based solver in the
same package is used to determine the LL-policies [16]. The LL policies are used to create policy trees, which are parsed
to determine the observation functions and costs for the HL-POMDP model. The HL model is solved to get the HL policy.
Figs. 5(a)–(d) show intermediate steps in the execution of the proposed method on an image with two ROIs.

The task is to determine the location of one or more blue circles in Fig. 5(a). No prior information is available about either
ROI, i.e., both ROIs have uniform initial belief. Hence, the HL-POMDP first chooses to execute the policy of the smaller ROI
R1 because it has smaller action costs associated with it: action u1 in Fig. 5(b). The corresponding LL-POMDP runs the color
operator on the ROI. The outcome of applying an operator is one of the possible observations: φo

c , Ro
c , Go

c , Bo
c , U o

c for color.
Here, the outcome is red (Ro

c ), which is used to update the subsequent belief state. Despite being more costly than the shape
operator, the color operator is applied first because the observation function of color indicates a higher likelihood of success
in comparison to shape. When the outcome increases the belief of the states representing the “red” property, the likelihood
of finding a blue circle is reduced significantly. The reward specification (α = 0.2 in Eq. (1)) ensures a trade-off between
computation and reliability, and there is no further analysis of R1. In the next step, the best action chosen for analyzing
R1 is a terminal action: sNotFound. The HL-POMDP obtains an observation that the target object (blue circle) is not found
in R1, leading to a belief update and subsequent action selection: u2 in Fig. 5(c). Then R2’s LL policy is invoked, causing
color and shape to be applied in turn on R2. The higher uncertainty of shape is the reason why it is applied twice, and a
different image used for each execution to ensure failure independence. Once the uncertainty in the LL belief for ROI R2 is
reduced sufficiently, a terminal action (sFound) is chosen—the increased reliability therefore comes at the cost of execution
overhead. This response from R2’s LL-POMDP is used to update the HL belief. In the next step, a terminal action is chosen
in the HL-POMDP: (s¬R1 ∧ R2), thereby stating that a blue circle exists in R2 and not R1—Fig. 5(d).

One significant advantage of the POMDP-based approach is that it provides the means to include prior knowledge in the
decision-making, whenever such knowledge is made available. Consider the scene in Fig. 5(a) and the query: “where is the
blue circle?” For instance, if there is some prior bias for the existence of the blue circle in R2, the initial belief distribution of
R2 can be modified to represent this information. Then, the cost of executing R2’s policy will be lower in the HL-POMDP—R2
will hence be analyzed first, thereby leading to a quicker response to the query.

3 See http://www.cs.cmu.edu/~trey/zmdp/.

http://www.cs.cmu.edu/~trey/zmdp/
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In the HiPPo framework, each HL-POMDP action chooses to execute the policy of one of the LL-POMDPs until termination,
instead of executing just one action. It can be argued that the best option is to choose a new HL action at each step based
on the current belief, instead of waiting for the LL-POMDP to terminate. However, the challenge is to develop a scheme
that translates from the LL belief to the HL belief and allows for planning. In addition, this belief propagation has to take
into account the different states, actions and observations at the LL and the HL. The proposed hierarchy addresses this
challenge and automates the belief propagation between the LL and HL for a range of queries and commands. Furthermore,
the example above shows that our approach still does the right thing, i.e., it stops early if it finds negative evidence for
the target object. Finding positive evidence only increases the posterior of the ROI being explored—even if the HL-POMDP
chooses the next action, it will choose to process the same ROI.

Next, consider posing and answering the query: “where is the blue circle?” using the CP framework. The states and
actions are defined in the appropriate format, as described in Section 3.4. The goal state is defined as the PDDL string:

(and (exists ?vr - visRegion) (and (containsColor ?vr Blue)(containsShape ?vr Circle) ))

i.e., the goal is to determine the existence of an ROI which has the color blue and shape circle. The state of the system
consists of:

(newDeclaration “vr0”, “visRegion”)
(newDeclaration “vr1”, “visRegion”)

i.e., there are two ROIs in the scene. The types are defined as:
(:types
;; Types for general variables...
agent boolean - object
;; Define visual regions and their properties...
visRegion colorProp objectType shapeProp - object

)

where the agent, ROI and its properties such as color are defined as valid variables (i.e., objects). The variables can take the
following values:

(:constants
;;;Possible color labels...
red green blue - colorProp
;;; Possible shape labels...
circle triangle square - shapeProp
;;; Possible object types detectable by SIFT...
picture mug box - objectType
;;; Boolean values that variables can take...
true false - boolean
;;; Dummy agent to use for the operators...
robot - agent

)

where the valid outcomes of each action are defined, along with the fact that a robot is a valid agent in the system. There
is no representation of uncertainty in the definition of actions or observations.

The task of the planner is to find a sequence of operators to satisfy the goal state. In the current example, the following
plan is created:

(colorDetector robot vr0 blue)
(shapeDetector robot vr0 circle)

i.e., the robot (the agent in the system) is to apply the color operator followed by the shape operator on the first ROI. There
is a single execution of each operator on the ROI. Even if an operator determines an incorrect class label as the closest match
with a low probability, there is no mechanism to incorporate the uncertainty. Any thresholds will have to be carefully tuned
to prevent mis-classifications. If the color operator works correctly, it would classify the ROI’s color as red. Since the desired
outcome (blue) is not achieved, the plan monitoring phase triggers replanning to create a new plan. The state after the
execution of the first plan includes the fact that the first ROI’s color has been examined:

(vr0 visRegion)
(vr1 visRegion)
(applied-colorDetector vr0)
(containsColor vr0 red)

Though the new plan consists of the same visual operators as before, it directs the robot to apply the operators on the
second ROI. Executing this plan results in the recognition of a blue circle in R2, assuming the operators work correctly. The
CP framework hence provides a mechanism to plan visual actions on a robot platform. It is representative of a modern
planning scheme that has been used in human robot interaction scenarios [7,40]. It is possible to incorporate a notion of
probability in the definitions of operators. However, CP does not have the ability to exploit the probabilistic action outcomes
or to propagate beliefs. HiPPo is therefore able to provide significantly more reliable performance, as described in Section 4.3.

Most real-world scenes involve overlap between objects as a result of occlusion or the camera viewpoint. In such cases it
makes sense to split an ROI into smaller ROIs based on one or more of the ROI’s features. Such a region-splitting operation
would result in a modified state space for the HL-POMDP. We present an illustrative example that includes such actions.
Consider the image shown in Fig. 6(a) with three objects, two of which overlap to create two ROIs. The query is: “where
are the blue circles?” Since both ROIs are equally likely target locations, the HL-POMDP first chooses to execute the policy
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Fig. 6. Example query: “Where are the Blue Circles?” Region-splitting operators allow for the creation of appropriate ROIs to answer the query.

of the smaller ROI R2 because of its smaller action costs: action u2 in Fig. 6(b). The corresponding LL-POMDP applies the
color operator on the ROI, leading to the outcome of green. As in the previous example, the likelihood of finding a blue
circle is reduced significantly and the best action chosen at the next step is a terminal action: sNotFound. The HL-POMDP
receives the input that the target object was not found in R2, leading to a belief update and subsequent action selection:
u1 in Fig. 6(c). The LL policy of R1 is invoked, causing color and shape to be applied in turn on the ROI. Both operators
come up with outcomes of unknown because the ROI has two different colors and shapes. At this point, rSplitshape is chosen
as the best action and R1 is split into R1 and R3 on the basis of the shape contours within the ROI—Fig. 6(d). Our system
includes other algorithms that can be invoked to split an ROI on the basis of color [52] or clustering of image features
[50]. As described earlier, rSplitshape is followed by the application of shape on each sub-region, leading to the observations
triangle and circle in R1 and R3 respectively—Fig. 6(c). The current beliefs are used to create and solve a new HL-POMDP
for three ROIs. The subsequent action selection in the HL (u3) results in the execution of the LL-policy of R3, whose initial
belief reflects the previous application of the shape operator. Hence, color and shape are applied just once before a terminal
action is chosen—sFound in Fig. 6(e). The subsequent belief update and action choice in the HL leads to the processing of R1
since the goal is to find the locations of all blue circles. The terminal action sNotFound in R1 results in the terminal action
s¬R1 ∧ ¬R2 ∧ R3 in the HL—Fig. 6(f).
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Similar actions that change the state (for e.g., camera zoom) can be modeled using the HiPPo framework. It is also
possible to use visual routines that characterize objects containing multiple colors and shapes. Posing and solving such
problems in the CP or other non-probabilistic frameworks would be difficult. Even with probabilistic and other POMDP-
based methods, achieving the automatic belief propagation of HiPPo would be a challenge.

4.3. Quantitative comparison

In this section, we provide a quantitative comparison between CP and HiPPo. The goal is to test the following hypotheses:

1. HiPPo is more efficient than the (standard) POMDP formulation without the proposed hierarchical decomposition.
2. Using policy-caching to trade-off accuracy and efficiency (Appendix A) makes HiPPo’s plan-time complexity comparable

to CP.
3. HiPPo and CP are significantly more efficient than the naive approach of applying all available visual operators on the

images.
4. HiPPo has higher execution time than CP but provides significantly more reliable performance.
5. HiPPo can represent operators that change the state, and hence handle scenes with partially overlapping objects.

These hypotheses were subjected to thorough experimental evaluation on the robot in the tabletop scenario. Objects of
interest were placed on the table, and the robot had to analyze images of the scene in order to answer input queries and
execute commands. The robot is equipped with a manipulator arm that can be used to grasp and move objects placed on
the tabletop. The execution of input commands typically involves the robot identifying and moving the target objects to
desired positions. The following categories of queries and commands were considered:

• Occurrence queries: the robot has to determine the presence or absence of the desired object(s) in the image. Examples
include: “is there a blue mug in the scene?” and “is there a red triangle on the table?”

• Location queries: the robot has to determine the location of the target object. Examples include: “where is the blue circle
in the image?” and “what is the location of the green object?”

• Property queries: the robot has to compute specific properties of specific objects. Examples include: “what is the color
of the mug?” and “what is the shape of the red object?”

• Scene queries: the robot has to answer queries about the scene that could be a combination of the queries listed above.
For instance: “How many green squares are there in the scene?”

Unlike our prior work on HiPPo [53], the experiments reported here included images of scenes with partially overlapping
objects, which required the robot to plan with several additional operators that change the state dimensionality (see Sec-
tion 3.1). In addition, the computed policies were tested on the robot, while our initial results involved several tests that
were conducted offline. Furthermore, we included queries and commands of the form: “move the red circle to the left”
that require the robot to confirm the occurrence of the target object and compute its location before performing the action.
The translation of queries and commands to an internal representation is done using an existing natural language process-
ing system [54]. As a result of these additional capabilities, we had to repeat our earlier experiments and run additional
experiments to test the hypotheses listed above.

For each query category, we ran experiments over 20 different queries, with 20 trials for each such query. The tabletop
scenario consisted of objects of different colors, shapes and other properties of interest (e.g., different object categories
such as box, mug for sift). Example objects on the tabletop include red square, blue mug, green triangle, red box—some of
these objects are shown in Fig. 1. Each query focused on an appropriate combination of the object properties—for instance,
red circle, blue, green triangle, red square box etc. The set of queries hence represents different combinations of the object
properties under consideration. In order to test the ability to tackle operators that change the state, some of the scenes
were specifically designed to contain overlapping objects. The object arrangement was also modified to conduct experiments
for different number of ROIs in the image (ranging from one to seven). These experiments and the tabletop domain may
appear simplistic, and one could argue for running experiments with more natural scenes. However, the application domain
represents the state of the art in cognitive robotics [8]. In addition, the goal is to develop an approach that automatically
tailors visual processing to the task at hand. The lessons learned in this domain can hence be applied to more complex
domains with other sophisticated operators.

In addition to HiPPo and CP, we also implemented the naive approach of applying all the visual processing operators on
each image ROI. The naive approach trusts the operator outputs and does not propagate beliefs or uncertainty. It terminates
when an ROI with the desired properties (to match the query) is found or all image ROIs are analyzed. The results of these
experiments are summarized in Figs. 7(a)–(d), where the naive approach is denoted by the term “no planning”.

Fig. 7(a) compares the planning complexity of HiPPo against the standard POMDP approach that operates in the joint
space of all the ROIs and actions. The “joint POMDP” suffers from the exponential state explosion problem and soon be-
comes intractable, even with the state of the art approximate solvers. The hierarchical approach significantly reduces the
planning time, as observed in Fig. 7(a). However, the hierarchical representation does not provide the optimal solution (i.e.,
policy). Executing the hierarchical policy involves the use of approximate (i.e., heuristic) solvers that compute policy solu-
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Fig. 7. Experimental results: comparing planning and execution times of HiPPo and CP against no planning. HiPPo and CP reduce processing time.

tions only up to the desired regret bounds or number of levels in the policy tree. As a result of these approximations, the
computed policies are not optimal except in some limited cases. For instance, while searching for a red region, the hier-
archical representation is optimal if (and only if) every image ROI is colored red. Though the solutions are not necessarily
optimal, the hierarchical decomposition provides reasonable policies that result in reliable and efficient performance.

Fig. 7(b) compares the planning times of HiPPo and CP as a function of the number of ROIs in the image. The default
hierarchical approach takes more time than CP. The computationally intensive part of HiPPo is the computation of the
policies for all the image ROIs at the LL of the hierarchy. However, the LL-POMDP models typically differ only in terms of
the operator costs, and this difference in operator costs is primarily due to the difference in the ROI-sizes (Eqs. (1), (8)).
If all the image ROIs were of the same size, a specific query would result in similar LL policies for all the ROIs, and the
policies can hence be cached and reused after being computed once. Though the image ROIs, as expected, are not of the
same size, several image ROIs have similar sizes. In order to reduce the computational load, the ROI sizes are discretized
and all ROIs whose sizes fall within a particular size range are assigned the same operator costs. This discretization allows
us to cache computed policies and re-use them for similar ROIs, thereby drastically reducing the planning time of HiPPo.
With the cached policies, HiPPo has planning times comparable to CP, as seen in Fig. 7(b). However, such an approximation
introduces value estimation errors. Appendix A describes how this error can be estimated theoretically and experimentally
in order to trade-off accuracy against efficiency.

Next, Fig. 7(c) compares the execution time of HiPPo and CP against the naive approach of applying all the visual
operators on each ROI until the desired result is found or all image ROIs are analyzed. HiPPo has a larger execution time
than CP because it occasionally applies the same operator multiple times on an ROI, using different images of the same
scene in order to reduce the uncertainty in its belief. However, the execution time of HiPPo is still comparable to that of CP.

Finally, Fig. 7(d) compares the planning approaches against the naive approach in terms of their combined planning and
execution times. Planning provides benefits even on scenes with just two ROIs, and the benefits are much more significant as
the number of ROIs increase. In simple cases with a small number of ROIs and visual operators, it may be possible to write
simple rules that determine the operator sequence for each task. However, for a reasonable number of visual operators and



722 M. Sridharan et al. / Artificial Intelligence 174 (2010) 704–725
Table 2
Reliability of visual processing.

Approach Reliability

Naive 76.67
CP 76.67
HiPPo 90.75

in situations where there are multiple operators for a feature (e.g., two actions that can find color), planning is an appealing
option.

In all these experiments, the algorithms were tested on-board a robot that has multiple modules operating in parallel
to analyze the inputs from different modalities (vision, tactile, speech etc.) and set up goals for other modules to achieve.
Hence, though the individual operators represent optimized state of the art visual processing routines, recognizing changes
and triggering appropriate operators may take some time. This parallelism partially accounts for the times reported in
Figs. 7(a)–(d).

As mentioned earlier, the proposed approach aims to perform visual processing efficiently and reliably. HiPPo was there-
fore compared against CP and the naive approach in terms of its reliability. Over the range of queries and commands, the
ground-truth labels of the target objects were provided manually and compared against the answers provided by HiPPo.
Similar experiments were conducted using CP and the naive approach. The results are summarized in Table 2. The naive ap-
proach results in an average classification accuracy of 76.67%, i.e., the visual operators mis-classify approximately one-fourth
of the objects. The naive approach accepts the operator outputs (most likely outcomes) and does not accumulate beliefs. In
addition, it is computationally expensive and infeasible in many robot applications.

Using CP to plan the sequence of visual operators for a given query results in an accuracy of 76.67%, i.e., CP significantly
reduces the execution time but can do no better than the naive approach in terms of reliability. CP does not improve the
reliability because it fails to exploit the probabilistic outputs of the operators and handles uncertainty qualitatively. The CP
framework is not well-suited for propagating beliefs and uncertainty. HiPPo, on the other hand, is designed to exploit the
probabilistic outcomes of the operators in order to accumulate belief and reduce the uncertainty. The significantly higher
reliability of 90.75% is a direct reflection of this capability. Based on these experiments, we observe that HiPPo is able to
recover from instances where the operators do not provide the correct classification. The proposed approach fails only when
the noise in information processing is consistent over several images of the scene. As the non-hierarchical POMDP takes a
significantly larger amount of planning time for simple scenes, the optimal plan was not computed for scenes with more
than two ROIs. However, for the cases where a plan was computed, there was no significant difference between the optimal
approach and HiPPo in terms of reliability.

5. Conclusions and future work

Robots working on cognitive tasks in the real world require the ability to operate autonomously, tailoring sensing and
information processing to the task at hand. In this paper, we have proposed a probabilistic planning framework that enables
the robot to plan a sequence of visual operators in order to accomplish a given task with high reliability while still using
the available resources in an optimal manner. In a representative domain where a robot and a human jointly converse about
and manipulate objects on a tabletop, our hierarchical POMDP approach enables the robot to efficiently use learned models
of the uncertainty in action outcomes to accumulate belief. Our approach hence responds to queries or commands with
comparable efficiency and significantly higher reliability than a representative modern planning framework that had been
applied to similar domains.

In our problem domain, we are still dealing with a relatively small set of operators and image ROIs. We have analyzed
actions that observe the state of the ROI, and actions that modify the state—for e.g., region-splitting operators to analyze
overlapping objects. With a large number of operators, solving the LL-POMDPs may become expensive. Similarly, solving the
HL-POMDP may be computationally expensive for images with a large number of ROIs. In addition, we are interested in
using the lessons learned in the tabletop scenario to apply the proposed approach to other complex domains. In such cases,
it may be necessary to use a range of hierarchies [44] in the state and action spaces. A further extension would involve
learning the hierarchy using approximations of recent theoretical developments [49].

The hierarchical decomposition incorporates approximations to speed up the planning. We have presented an analysis of
the approximation error involved in policy-caching, which involves a trade-off between the computational effort involved
in creating and solving the LL-POMDPs, and the accuracy of action costs computed for each ROI being analyzed. We have
shown that the experimental error incurred by the approximation is significantly smaller than the theoretical estimate,
and that the error incurred is offset by the reduction in the computational effort involved in creating and solving the
POMDPs. A direction of further research is to compute the observation functions at different ROI-sizes so that the value
and cost of each action can be computed more accurately. We also aim to analyze other approximations in the hierarchical
decomposition.

In this paper, we have looked at analyzing different images of the same scene. When there are multiple objects in the
scene, it may be required to move the camera in order to get a better view of the objects and to eliminate occlusions.
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Fig. 8. Image with three ROIs extracted from the background.

In addition, the desired object may be present at a location that the robot cannot observe without first moving to an
appropriate location. In such situations, the robot should be able to first choose a specific scene or viewpoint to observe
the environment (based on the task), and then analyze images of the scene using a range of suitable visual operators. One
direction of further research is the formulation of scene analysis as a POMDP that forms a higher level of abstraction over
the existing hierarchy. The goal at the top layer of the hierarchy will be to choose actions (i.e., scenes to examine) that
maximize the information gain, i.e., reduce the entropy in the belief distribution [55]. The challenge will be the efficient
and automatic belief propagation and transfer of control between the levels of the hierarchy. We have performed proof of
concept experiments that extend the hierarchy for vision-based high-level scene analysis [56]. The results show that the
existing hierarchy holds promising potential for such extensions.

Currently the system can handle queries on object location, existence and identity. In the future, we plan to extend
the proposed planning framework to more complex “relationship queries” (e.g., “is the red triangle to the left of the blue
circle?”), and “action queries” (e.g., “can the red mug be grasped from above?”). We also plan to investigate the interaction
of a mobile robot with the objects in the environment, and use the interactions (e.g., pushing or grasping the objects) to
reason about action affordances.

The key contribution of this article is a hierarchical planning framework whose levels match the cognitive requirements
of visual processing on a robot. The framework can jointly tailor sensing and information processing to the task at hand.
The proposed system is able to automatically plan a sequence of visual operators that are individually unreliable, in or-
der to achieve high overall reliability and efficiency. A similar framework can be developed for other application domains
that use visual or non-visual sensors, by designing hierarchical decompositions that match the corresponding sensing and
information processing requirements. Eventually the aim is to enable mobile robots to use a combination of learning and
planning to respond autonomously, reliably and efficiently to a range of tasks, thereby interacting with and assisting humans
in real-world applications.
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Appendix A. Approximation error estimation

During the creation of the LL-POMDPs for the image ROIs, we discretize the ROI-sizes and cache the policies in order
to speed up the planning—Fig. 7(b). However, the POMDP models for each ROI are not identical since the cost of each
visual operator is a function of the size of the ROI being operated upon—Eqs. (1), (8). In this section, we estimate the error
introduced by policy caching. We show how to trade-off the computational effort expended in creating and solving the
LL-POMDPs, against the error incurred by not computing the action costs accurately.

Consider the image shown in Fig. 8 with three ROIs extracted from the background. The individual ROI-sizes for R1, R2,
R3 are 23 400, 11 050 and 20 800 pixels respectively. We have three discretization options: (1) different action costs for each
individual ROI, which would require the LL models and policies to be computed thrice; (2) same action costs for R1, R3 and
a different set of action costs for R2, leading to the creation of LL models and policies twice; (3) same set of action costs
for all three ROIs, i.e., the LL models need to be created and solved just once. In terms of computational costs for creating
the LL models and policies:

ModelCostOption2 = 0.667 × ModelCostOption1

ModelCostOption3 = 0.333 × ModelCostOption1 (9)

On the other hand, the discretization of ROI-sizes causes an approximation error. We compute a theoretical upper bound
first. The maximum approximation error in the action costs, over all visual operators and ROIs whose sizes fall within the
discretization range, is given by:
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max a∈A
a/∈A S

∣∣ f (ri) − f (ravg)
∣∣ = δ (10)

For instance, in Option2:

ri = {
ROI-size(R1),ROI-size(R3)

}
ravg = (

ROI-size(R1) + ROI-size(R3)
)
/2

whereas in Option3:

ri = {
ROI-size(R1),ROI-size(R2),ROI-size(R3)

}
ravg = (

ROI-size(R1) + ROI-size(R2) + ROI-size(R3)
)
/3

Then, for a discount factor of γ in the POMDP models, the net maximum error due to the ROI-size approximation is given
by:

error = δ + γ · δ + · · · + γ N−1 · δ
= δ

{
1 − γ N

1 − γ

}
(11)

where N represents the number of steps over which an ROI’s policy is executed, or equivalently it is the number of levels
for which the corresponding policy tree is explored. For γ = 0.9 and N = 8, the upper bound (on the approximation error)
computed in Eq. (11) is ≈ 6δ. Taking into account the ROI-sizes in Fig. 8, the upper bounds on the estimation errors
in Option2 and Option3 are 0.33 and 2.35 respectively. We then compute the actual error for Option2 by computing two
policies for R1 based on models that estimate actions costs using ravg and ROI-size(R1) respectively. The difference in the
values of the two policies for the initial state of R1 results in an experimental error of 0.021. A similar computation for
Option3 with R2, the ROI where the maximum error is expected to be observed, results in an error of 0.232. We observe
that the actual approximation error is significantly smaller than the upper bound on error.

The error estimation process described above can be used to autonomously determine the ROI-size discretization ap-
propriate for a given image. Different discretization options can be compared by trading off the expected approximation
error against the corresponding reduction in the computational effort involved in determining the models and policies. The
observation functions would also vary for different ROI-sizes. However, a large amount of data would be required to learn
the relationship between ROI-sizes and the performance of visual operators. We therefore do not (as yet) use different
observation functions for different ROI-sizes.
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