
View Planning with Time Constraints —
An Adaptive Sampling Approach

Lars Kunze1 and Mohan Sridharan2 and Christos Dimitrakakis3 and Jeremy Wyatt4

Abstract— Planning for object search requires the generation
and sequencing of views in a continuous space. These generated
plans need to consider the effect of overlapping views, and there
is typically a limit imposed on the time taken to compute and
execute the plans. We formulate this challenging problem of
view planning in the presence of overlapping views and time
constraints as an Orienteering Problem with history-dependent
rewards. In this paper, we focus on the aspect of the problem
in which the plan execution time is constrained, but not the
planning time. We abstract away the unreliability of perception,
and present a sampling-based view planner that simultaneously
selects a set of views and a route through them, and incorporates
a prior over object locations. We show that our approach
outperforms the state of the art methods for the orienteering
problem. All algorithms are evaluated in four environments
that vary in size and complexity, using a robot simulator
that includes a realistic model of robot dynamics. We also
demonstrate the robustness of our approach through long-term
robot deployment in a real-world environment.

I. INTRODUCTION

Planning of visual search for objects in large continuous
spaces is an open problem in robotics. The problem has many
aspects that together make existing solutions inadequate. A set
of views must be selected from an infinite number of possible
views. To provide any preference ordering over this infinite
set, it is necessary to have prior information about where
objects might be found, and for that prior to be non-uniform.
This formulation of the task of finding the best set of views
is a sub-modular problem, and thus greedy solutions can be
shown to have bounded sub-optimality. However, it does not
take into account the costs of sequencing those views—it is
possible that the best set of views is time consuming to visit,
and there exists another set of views that is only slightly
worse but is vastly quicker for a robot to traverse.

The view planning problem is further complicated by four
issues. First, some views will overlap and the value of a
view, at any point in a sequence of views, will depend on
the sequence of views taken so far. Since the values of views
are history dependent, the problem ceases to be sub-modular.
Second, the sensing process should ideally be modeled as
being unreliable, transforming the problem from one of
planning in a physical space, to one of planning in belief space.
Third, in many practical applications, e.g., for a security robot,

1Oxford Robotics Institute, Dept. of Engineering Science, University of
Oxford, United Kingdom, lars@robots.ox.ac.uk

2Department of Electrical and Computer Engineering, The University of
Auckland, New Zealand, m.sridharan@auckland.ac.nz

3Computer Science and Engineering, Chalmers University of Technology,
Göteborg, Sweden, chrdimi@chalmers.se

4Intelligent Robotics Lab, School of Computer Science, University of
Birmingham, United Kingdom, jlw@cs.bham.ac.uk

Fig. 1: View planning with overlapping views and time limit.
Imagine three possible views onto a table, of which a robot
can only observe two in the time available. If view v1 is taken
first (A), then the robot can next take v2 or v3 (B or C). The
reward for each of these two views depends on its overlap
with v1. The robot must account for both history-dependent
rewards and navigation costs.

the time available to execute the planned trajectory of views
is constrained. Fourth, existing view planning approaches
have not considered the length of time used to plan, which
will determine how much of the plan (i.e., solution) can be
executed in the time available.

In the context of the challenging problem of view planning
with overlapping views and time constraints, we propose a
solution to the first and third of the issues identified above. We
do not consider unreliable perception, which transforms view
planning into a yet worse class of problems, or constraints on
planning time—we leave these for future consideration. We
assume the ability to use sensor inputs to generate 2D and
3D occupancy grid maps of the environment, for navigation
and object recognition; and assume prior knowledge about
the locations of objects, which can be related to the 3D map.
We make the following key contributions:

• We show that the joint view selection and view sequenc-
ing problem can be posed as an orienteering problem
(OP) on a redundant set of views, where the rewards
are history dependent.

• We present a Gibbs sampling-based view planning
algorithm (GVP) that produces approximate solutions,
but will provably converge in the limit to an optimal
sequence given a finite set of views.

• We evaluate our sampling-based view planning algo-
rithm on a range of environments under different time
constraints and compare it to the state of the art.

• We demonstrate that our view planning approach is
applicable to real-world environments.

To locate any given object, our algorithm (GVP) first generates
a much larger number of candidate views than can possibly be
searched in the available time, orders them by the probability
of providing a view of the object, and selects the m best
views for subsequent analysis. A sampler incrementally selects

a sequence of views that simultaneously maximizes the
likelihood of finding the object, considering the field of view
overlap and the viewing history, and minimizes the time taken
to do so—see Fig. 1. Many such sampling processes are run,
each of which is terminated when the time limit is reached,
and the robot chooses the best sequence of views.

We compare GVP to a randomized OP solver, and to two
solvers for the traveling salesperson problem (TSP)—a fast but
sub-optimal greedy TSP solver (TSP-G), and an optimal but
slow TSP solver based on dynamic programming (TSP-DP).
We show that GVP typically outperforms other algorithms on
problems of different sizes and different bounds on execution
time. On small problems, TSP-DP produces better solutions,
but it is challenging to terminate in reasonable time for larger
problems–GVP is thus an effective, if sub-optimal, solution.

The remainder of the paper is organized as follows. We
discuss related work in Sec. II, and formulate the problem
of view planning for object search in Sec. III. Sec. IV
describes our sampling-based view planning algorithm and
the corresponding implementation details. Sec. V discusses
experimental results in simulation and on a physical robot in
an office environment, and we conclude in Sec. VI.

II. RELATED WORK

The problem of searching for objects in human environ-
ments has been addressed many times. Early work discussed
the intractability of object search in a continuous space,
even under some simplifying assumptions [1], and devised
fast approximate methods [2]. Subsequent approaches have
employed different strategies to ameliorate the complexity.
Examples include visual saliency [3]; search planning at
the level of rooms and views, coupled with room-object
associations [4], [5], [6] or place-object associations [7];
indirect search using qualitative spatial relations [8]; and
reward maximization for a given task [9]. Some approaches
assume reliable observations [2], whereas some others reason
about observation failure in a probabilistic framework [10].
Many approaches address the difficulty of reasoning under
partial observability by employing a mix of qualitative
and probabilistic reasoning, e.g., the combination of non-
monotonic reasoning for estimating target location at the
level of rooms [11], and the use of decision theoretic
and logic-based planning [4], [12], [13]. Almost all of
these approaches exploit a combination of probabilistic and
relational knowledge to make search more efficient.

The fundamental problem of planning a sequence of views
to find an object can be formulated as a generalization
of two other problems, the art gallery problem and the
watchman problem. The art gallery problem is NP-hard, and
is a generalization of the guarding problem where sensors
have infinite range, bounded only by obstacles [14]. A
randomized algorithm developed for this problem provides a
high probability of bounded error between its coverage and
the optimal solution [15]. Approximate algorithms have been
proposed to solve the art gallery problem sequenced by a
traveling salesman problem (TSP) [16]. If sensing becomes
unreliable, the joint art-gallery and watchman problem is

a continuous space, continuous action POMDP, but even
discrete state, discrete action POMDPs can become intractable
for complex domains. Researchers have partially addressed
this intractability by employing hierarchical decompositions,
e.g., for visual processing [6].

Our view planning problem is related to planning in belief
space, e.g., for task and motion planning [17], although we do
not plan in belief space in this work. Also, unlike probabilistic
roadmaps [18], we do not restrict the solution space too much,
since we consider time constraints. Further, there is some
relation to work in temporal logic planning [19], although
existing approaches do not address all the issues of interest,
and will not scale as well as our approach.

Our view planning problem is most related to the orien-
teering problem (OP) [20]. In an OP, a rewarding sequence
of locations must be visited, where each location can have
(in general) a different associated reward. We use a sampling-
based algorithm for OP [21] as one of the baselines for
comparison. OPs, are however, typically stationary reward
problems, whereas we, due to overlapping views, must solve
a varying-reward OP, also called general OP [22].

In this paper, we assume reliable perception and thus
address a continuous state, continuous action MDP with
a history-dependent reward function. Our novel contribution
is an algorithm for the joint problem of selecting views (art-
gallery) and planning a route in continuous space. We present
a randomized algorithm that interleaves the selection of views
with the selection of the route. In addition, unlike previous
work, which used sparse sampling [23], stochastic branch and
bound [24] or Monte-Carlo tree search [25], our sampling
method has very low space complexity.

III. PROBLEM FORMULATION

We decompose the problem of view planning for object
search with time constraints in a continuous environment into
two parts: (i) transforming the continuous problem into a
discrete problem; and (ii) solving the discrete problem using
a sampling-based approach. Although our proposed algorithm
includes both parts, we primarily focus on (ii). We consider
the discrete problem as an Orienteering Problem (OP) with
history-dependent rewards—given a fully connected graph of
locations s ∈ S, a cost function C(s, s′), and a time limit T ,
maximize the expected reward R(s0, s1, . . .) obtained from
a sequence of visited locations. The reward of a location in
a sequence depends on the locations that have been visited
before. As stated before, we only consider the execution time
(TE) when solving the view planning problem within a given
time limit, i.e., TE ≤ T . The following section describes
how we construct the OP and generate a solution using a
sampling-based approach.

IV. SAMPLING-BASED VIEW PLANNING

This section first provides an overview of our view planning
algorithm, followed by a detailed description of the steps
of the algorithm (Section IV-A). We then describe the
implementation (Section IV-B).

We assume that we are given a: (1) 2D environment map
(M2D); (2) 3D environment map (M3D); (3) probability
distribution P of a robot at location s observing an object
of a certain type, which is computed based on M3D; and (4)
function C(s, s′) that provides the temporal cost of moving
between locations s and s′. Section IV-B describes how P
and C are computed.

To search for objects within time limit T , the robot
generates a trajectory s = s0, s1, . . . , st′ , composed of a
sequence of locations st (t = 0, 1, . . . , t′). Note that t merely
indexes waypoints in the trajectory—the time taken from
the t-th to the t+ 1-th location is not fixed, and t′ denotes
the index of the last feasible waypoint given time limit T .
At each point s in the trajectory, there is a chance that the
target object will be found. We use φ : s→ {0, 1} to denote
whether or not we can observe the object at location s. Then
P (φt = 1 | φ1:t−1, s1:t), with φt = φ(st), is the probability
of a positive observation at the next time step given the
trajectory history. These probabilities may be determined in
an ad-hoc manner or through Bayesian inference—Section IV-
B describes how they are determined in our implementation.

Given T , P and C, the objective is to find a trajectory s
to find an object, which maximizes the expected reward R:

RT (s) = RT (s1:t′) =

t′∑
t=1

P (φt = 1∧φk = 0 ∀k < t); (1)

under the constraint that the total cost of the trajectory does
not exceed the time limit T :

C(s) = C(s1:t′) =

t′∑
t=1

C(st−1, st) ≤ T. (2)

Instead of exhaustively exploring all possible trajectories
s, we generate them from a distribution, which prefers
trajectories that look the best myopically, and puts a non-zero
probability on every path.

A. The Sampling-based Algorithm
The core idea of our algorithm is a two-phase anytime

sampling-based optimization of the reward function.
The first phase (Algorithm 1), which transforms the

continuous problem into an OP, samples a set of possible
locations S independently until the search area is covered to
a certain degree (based on P) (Lines 3-8). Locations with
zero/low probability are .filtered out such that the coverage
constraint holds (Line 9). Further, the cost C(s, s′) for all
location pairs is calculated (Lines 12-13).

The second phase (Algorithm 2), which solves the OP, first
selects the m best locations from S (Line 4). Then it updates
and normalizes P by taking view dependencies into account
(Line 6). Next, it generates a series of trajectories, defined as
an ordered sequence of locations, i.e., sk = (sk0 , s

k
1 , . . . , s

k
tk),

within time limit T (Lines 8-20). All trajectories start from
s0, the current pose of the robot, i.e., ∀k, sk0 = s0. The
tth location of the kth trajectory (skt) is sampled from the
following distribution without replacement (Line 14):

skt ∼ P (φkt = 1 | φk
1:t−1, s

k
1:t)

e−%C(skt−1,s
k
t)

Z
(3)

Algorithm 1: View planning (phase one): OP construction
1 Function GVP-OP-CONST (M2D, P, tc)

Input : 2D map M2D; prob. dist. of perceiving an object P
(based on M3D), target coverage tc (0 < tc ≤ 1)

Output : Set of locations S; cost function C
2 begin
3 S ← ∅
4 coverage← 0
5 while coverage < tc do
6 s← sampleLocation(M2D)
7 S ← S ∩ s
8 coverage← coverage+ P (s)

9 /* Filter redundant locations s ∈ S with zero/low
probability (P) such that the coverage constraint holds*/

10 S ← filterRedundantLocations(S)
11 /* Calculate the cost C(s, s′) for all location pairs */
12 for s ∈ S, s′ ∈ S do
13 C(s, s′)← computeCost(M2D, s, s′)

14 return S,C

Algorithm 2: View planning (phase two): OP solving
1 Function GVP-OP-SOLVE (S, P,C, T, ns,m, %)

Input : Set of locations S; prob. dist. of perceiving an object
P ; cost function C; time limit T ; number of
trajectories ns; number of locations to be considered
m (0 ≤ m ≤ |S|); regularization parameter %

Output : Sequence of locations s
2 begin
3 /*Select the m best locations form S according to P */
4 S′ ← selectMBestLocations(S,m, P)
5 /* Update and normalize P according to S′ */
6 P ← updateAndNormalize(P, S′)
7 /* Generate a set of trajectories S (of size ns) */
8 S ← ∅
9 for k ← 1 to ns do

10 /* Initialize sequence with current robot location*/
11 sk ← (sk0)
12 t← 1
13 while C(sk) < T do
14 skt ← sampleNextLocation(P,C, sk, %)
15 sk ← append(sk, skt)
16 S′ ← S′ \ skt
17 /* Update and normalize P according to new S′ */
18 P ← updateAndNormalize(P, S′)
19 t← t+ 1

20 S ← S ∩ sk
0:t−2

21 s∗ ← arg max
sk∈S

RT (s
k)

22 return s∗

where t = 1, . . . , tk and φk
1:t−1 = 0 if we have not found

the object yet. The exponential expression is the transition
distribution of choosing the next location dependent on costs,
and Z =

∑
ski /∈sk1:t−1

e−%C(skt−1,s
k
i) is a normalizing constant.

The sampling procedure only stops when time limit T is
exceeded, and discards the last location, i.e., all sampled
trajectories are designed to account for the time constraint
in Equation 2. However, the trajectories can be of different
length, although the last node has an index tk. Finally, % ≥ 0

is a parameter used to adjust the influence of the cost function.
If % = 0, e−%C(skl−1,s

k
l)/Z is a uniform distribution, and

reward will only be based on location and not consider costs—
higher the value of %, greater the preference for locations
with lower costs, leading to more cost effective trajectories.

When a decision must be made, the trajectory with the
highest reward found so far is chosen for execution (Equation
1) (Lines 21-22). If there is a tie between trajectories, the
trajectory with the smallest expected cost is chosen.

We experimentally analyzed the effect of the parameters
in both algorithms. However, finding an optimal setting for
them is beyond the scope of this paper.

B. Implementation

This section describes the integration of our algorithm with
other components on a robot, followed by a description of
our algorithm’s implementation.

a) Integration on a robot: We integrated our view
planner with the perception and action components of a
simulated SCITOS A5 robot1 equipped with a 2D laser range
finder, a depth camera, and a semantic camera. The range
finder is used to create a 2D map of the environment (M2D),
and to localize the robot during navigation. The cameras are
mounted on a pan-tilt unit (PTU) and have the same field of
view. The depth camera is used to generate a 3D occupancy
grid map (M3D) [26]. The semantic camera is used for object
recognition—it returns true (false) when an object of a given
type is (is not) in the field of view. The semantic camera’s
field of view is realistic and similar to a Kinect, but we
assume perfect perception as we are primarily interested in
evaluating the planning algorithm—a more realistic sensor
model can be included. We also use the motion planning
and navigation routines from the Robot Operating System
(ROS)2. The robot can thus be controlled by specifying a
target pose, and the cameras can be controlled by specifying
the PTU’s angles. Next, consider the implementation of our
view planning algorithm.

b) Sampling of locations (S): Step 1 of Algorithm 1
samples locations s ∈ S until a predefined area of M3D is
covered. Each location s is composed of robot pose (x ∈ X)
and view pose v ∈ V variables, i.e., s = (x, v). We first
sample a robot pose x from M2D and verify that the robot
can navigate to it. We then generate a number (nv) of random
pan and tilt angles for the PTU (can use fixed angles too),
and use the SCITOS robot model’s forward kinematics to
compute the poses of the cameras on the PTU. At each robot
pose x ∈ X , the robot thus takes several views v ∈ V .
We repeat this process until the predefined space is covered.
Fig. 2 shows the robot poses and view poses (black arrows)
generated in a mapped office environment.

c) Probability distribution P (φt = 1|s1:t): The gener-
ated poses are used to calculate the probability of observing
an object. The probability distribution P is based on the
assumption that objects rest on surfaces in the environment.

1http://metralabs.com
2http://wiki.ros.org/navigation

Fig. 2: Left: our algorithm generates a set of robot poses,
and a set of views (black arrows) at each pose to search
for an object. Right: views are evaluated by counting the
number of 3D voxels (of supporting surfaces) that lie within
a view frustum. Colors indicate the probability of observing
the object in a given view (red: high, blue: low).

From a given M3D (Fig. 2, left), we first extract the
supporting surfaces based on the estimated normal of each
voxel. Then, we identify the supporting surfaces’ voxels
that would be observed at each generated pose, by counting
the number of voxels that lie within a frustum projected
to the pose s (Fig. 2, right). This provides the initial
distribution over views, i.e., P (φ0 = 1). Since we sample
views without replacement,we remove any selected view from
the distribution, update the probabilities of dependent views,
and normalize the distribution. We treat overlapping views as
mutually dependent, i.e., once a view is chosen, we update
the probabilities of all dependent views. We do this until we
reach a plan length tk. The expected reward RT is calculated
based on this probability distribution.

d) Cost function C(s, s′): we represent cost as time (in
seconds). The cost of moving between locations s and s′ is
the maximum of two sub-costs (1) the navigation cost Cnav;
and (2) the pan-tilt unit cost Cptu—we assume the robot can
navigate and operate its PTU concurrently:

C(s, s′) = C((x, v), (x′, v′)) (4)
= max(Cnav(x, x

′), Cptu(v, v
′)).

To compute the navigation cost for a pair of robot poses
(x, x′), we call the motion planner in ROS, retrieve a trajectory
of waypoints, calculate the linear and angular distances
between all consecutive waypoints, multiply them by their
respective velocities, take the maximum of the linear and
angular durations, and sum them up. The PTU cost is
calculated by multiplying the differences between the current
and the target pan and tilt angles by their respective velocities,
and computing the maximum of the pan and tilt costs.

V. EXPERIMENTAL EVALUATION

We evaluated the proposed sampling-based view planning
algorithm in simulation and on a physical robot. The simula-
tion trials compared our algorithm with baseline algorithms
in four different simulated office environments that vary in
size and complexity (Section V-A). The hypothesis was that
our algorithm would scale better than the baseline algorithms,
especially in larger environments. In these trials, we used the
expected reward of a plan as the performance measure. We
also evaluated our algorithm on a mobile robot in the context

of object search in an office environment (Section V-B). In
these trials, we used the fraction of planned views that were
successfully executed, as the performance measure.

A. Experimental Results: Simulation

Simulation trials were conducted in the robot simulator
MORSE [27]. The size and complexity of the four environ-
ments used in these trials are provided in Tab. I. For each
environment, we generated 2D and 3D maps, and sampled
locations such that 95% of the space was covered. In all
environments, the robot had a predefined starting location.

First, we compared our algorithm (GVP) with other meth-
ods for the OP problem, in four environments, for different
time limits T . As baselines, we considered a stochastic
algorithm for the OP [21] (OP-S), and two sequential
approaches that greedily select the m best views and sequence
them using a TSP solver–one sequences the views greedily
(TSP-G), whereas the other solves the TSP using dynamic
programming (TSP-DP). We expect our approach to scale
better in larger environments as it can choose locations freely
from the initial distribution, unlike the TSP-based approaches
that have to compute a solution for a fixed set.

Tab. II summarizes the results. Since the sampled locations
cover 95% of the space, 0.95 is the maximum reward possible.
All approaches degrade in performance as the environments
grow larger. Among the two sampling-based approaches,
GVP is superior to OP-S in all environments, except in
E2 and T = 120. Although OP-S achieves a comparable
performance in smaller environments, its performance is much
worse in larger environments. Similarly, TSP-G performs
reasonably well for the small environments, but the results
for the larger environments are poor, as hypothesized. TSP-
DP provided good results in several trials, but it could
not compute a solution in environments E1-E3 for longer
intervals3. The performance of the TSP-based approaches
depends on the spatial distribution of the best m views. Hence,
their performance cannot be predicted easily. Overall, our
algorithm provides effective, if sub-optimal, solutions over a
range of environments and time limits.

B. View Planning in the Real World

We also evaluated our approach on a mobile robot searching
for target objects in a real-world office environment (Fig. 3).
This evaluation was part of the STRANDS project that explore
long-term autonomy of mobile robots in dynamic domains4.
In this context, our algorithm has been successfully used
within a long-term deployment (>60 days) in an office
environment. Overall the robot performed 130 object search
tasks (>2 per day). In each search task, the robot was
required to search a small region of interest including surfaces
of office desks, cabinet tops, meeting tables, and kitchen
counters. To this end, it had to plan views and observe the

3Although the planning time is not considered within these experiments,
the approach could not compute a solution on a standard laptop in under 10
minutes. The maximum number of locations the TSP-DP implementation
was able to sequence was 21.

4http://www.strands-project.eu/

Fig. 3: View planning in a real-world office environment.

respective surfaces. On average, each search task included
3.65 views. The total number of views was 474. Tab. III
describes the performance outcome of these views. More
than 95% of the views (451 out of 474) were successful in
that they were executed successfully by the robot, regardless
of whether an object was perceived in the view or not.
The remaining 23 (< 5% of 474) views were unsuccessful
in that they could not be taken due to navigation failures.
These results demonstrate that our view planning approach
is applicable to robot platforms performing object search in
realistic environments.

VI. CONCLUSIONS

This paper has presented a randomized solution to the
well known open problem of view planning for object search
under time constraints. We have posed this problem as an
OP with history-dependent rewards, and imposed a time
limit. Experimental results show that our sampling-based view
planning algorithm outperforms state of the art methods.

The proposed view planning approach has been tightly
integrated with the representations and processing routines of
a mobile robot platform. At the same time, the sampling-based
algorithm itself does not depend on any kinematic structure,
and it can (potentially) also be used to plan views of a camera
mounted on a manipulator arm or on a quadcopter. Future
work will further explore planning where both are limited
planning time and execution time, and also investigate view
planning under partial observability.

Acknowledgments: This work was supported by the European
Union Seventh Framework Programme (FP7/2007-2013) under grant agree-
ment No 600623, STRANDS; and the EPSRC grant EP/M015777/1, ALOOF.

REFERENCES

[1] J. Tsotsos, “On the relative complexity of active vs. passive visual
search,” International Journal of Computer Vision, vol. 7, no. 2, pp.
127–141, 1992.

[2] Y. Ye and J. Tsotsos, “Sensor planning for 3d object search,” Computer
Vision and Image Understanding, vol. 73, no. 2, pp. 145–168, 1999.

[3] S. Frintrop, VOCUS: A visual attention system for object detection
and goal-directed search. Springer, 2006, vol. 3899.

[4] A. Aydemir, A. Pronobis, M. Göbelbecker, and P. Jensfelt, “Active vi-
sual object search in unknown environments using uncertain semantics,”
IEEE Trans. on Rob., vol. 29, no. 4, pp. 986–1002, Aug. 2013.

[5] M. Lorbach, S. Höfer, and O. Brock, “Prior-assisted propagation
of spatial information for object search,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2014.

[6] S. Zhang, M. Sridharan, and C. Washington, “Active visual planning
for mobile robot teams using hierarchical POMDPs,” Robotics, IEEE
Trans. on, vol. 29, no. 4, pp. 975–985, 2013.

[7] D. Joho, M. Senk, and W. Burgard, “Learning search heuristics for
finding objects in structured environments,” Rob. Auton. Syst., vol. 59,
no. 5, pp. 319–328, May 2011.

[8] L. Kunze, K. Doreswamy, and N. Hawes, “Using qualitative spatial
relations for indirect object search,” in IEEE International Conference
on Robotics and Automation), Hong Kong, China, 2014.

TABLE I: Experimental Environments
Environment E1 E2 E3 E4

Size (m2) Small (32m2) Medium (96m2) Large (168m2) Huge (240m2)
Coverage (%) 95% 95% 95% 95%
Locations (|S|)
(unfiltered) 91 (322) 139 (402) 319 (1462) 399 (1533)

3D occ. grid
size (#voxels)
(only surfaces)

2362 4519 8775 12950

3D occupancy
grid maps
(blue voxels in-
dicate surfaces)

TABLE II: Comparison with baseline algorithms. Configura-
tion for OP-S and GVP: ns = 250; m = 80; % = 1.0.

OP-S TSP-G TSP-DP GVP
T RT TE RT TE RT TE RT TE

Environment E1
120 0.81 119 0.59 67 0.95 116 0.89 113
240 0.93 234 0.92 131 0.95 136 0.95 237
360 0.94 359 0.95 216 - - 0.95 358
480 0.94 471 0.95 235 - - 0.95 429
600 0.95 597 0.95 272 - - 0.95 479

Environment E2
120 0.51 119 0.35 116 0.25 45 0.36 110
240 0.54 239 0.70 233 0.90 239 0.57 239
360 0.64 341 0.83 328 0.92 265 0.68 358
480 0.91 479 0.89 450 - - 0.95 477
600 0.91 597 0.91 587 - - 0.95 530

Environment E3
120 0.17 118 0.17 135 0.08 64 0.28 118
240 0.28 226 0.30 220 0.36 207 0.39 237
360 0.35 334 0.46 332 0.61 358 0.57 324
480 0.50 477 0.57 458 0.87 459 0.60 478
600 0.56 597 0.66 552 - - 0.76 596

Environment E4
120 0.08 118 0.10 96 0.05 59 0.17 117
240 0.12 233 0.20 217 0.15 230 0.30 239
360 0.26 356 0.29 337 0.24 317 0.42 353
480 0.32 470 0.37 437 0.45 479 0.54 479
600 0.36 597 0.52 583 0.72 575 0.67 597

TABLE III: View planning performance in the real world.

Performance Explanation % #views

Successful Object(s) observed 37.77 179
Nothing observed 57.38 272

Unsuccessful Navigation failure 4.85 23

Total 100.00 474

[9] J. Nunez-Varela and J. Wyatt, “Models of gaze control for manipulation
tasks,” ACM Trans. on Applied Perception, vol. 10, no. 4, p. 20, 2013.

[10] J. Velez, G. Hemann, A. Huang, I. Posner, and N. Roy, “Planning
to perceive: Exploiting mobility for robust object detection,” in
International Conference on Automated Planning and Scheduling,
Freiburg, Germany, June 2011.

[11] J. Wyatt, A. Aydemir, M. Brenner, M. Hanheide, N. Hawes, P. Jensfelt,
M. Kristan, G. Kruijff, P. Lison, A. Pronobis et al., “Self-understanding
and self-extension: A systems and representational approach,” Au-

tonomous Mental Development, IEEE Trans. on, vol. 2, no. 4, pp.
282–303, 2010.

[12] M. Hanheide, M. Gobelbecker, G. Horn, A. Pronobis, K. Sjoo,
P. Jensfelt, C. Gretton, R. Dearden, M. Janicek, H. Zender, G.-J. Kruijff,
N. Hawes, and J. Wyatt, “Robot Task Planning and Explanation in
Open and Uncertain Worlds,” Artificial Intelligence, 2015.

[13] S. Zhang, M. Sridharan, and J. Wyatt, “Mixed Logical Inference
and Probabilistic Planning for Robots in Unreliable Worlds,” IEEE
Transactions on Robotics, vol. 31, no. 3, pp. 699–713, 2015.

[14] B. Nilsson, “Guarding art galleries: Methods for mobile guards,” Ph.D.
dissertation, Lund University, 1995.

[15] H. González-Baños, “A randomized art-gallery algorithm for sensor
placement,” in Proceedings of the Seventeenth Annual Symposium on
Computational Geometry. ACM, 2001, pp. 232–240.

[16] A. Sarmientoy, R. Murrieta-Cid, and S. Hutchinson, “A sample-based
convex cover for rapidly finding an object in a 3-d environment,” in
Proceedings of the 2005 IEEE International Conference on Robotics
and Automation. IEEE, 2005, pp. 3486–3491.

[17] D. Hadfield-Menell and E. Groshev and R. Chitnis and P. Abbeel,
“Modular Task and Motion Planning in Belief Space,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Hamburg, Germany, September 28–October 2, 2015.

[18] Roland Geraerts and Mark H. Overras, “A Comparative Study of
Probabilistic Roadmap Planners,” in Workshop on the Algorithmic
Foundations of Robotics (WAFR), Nice, France, December 15-17, 2002.

[19] C. Vasile and C. Belta, “An Automata-Theoretic Approach to the
Vehicle Routing Problem,” in Proceedings of Robotics: Science and
Systems, Berkeley, USA, July 2014.

[20] P. Vansteenwegen, W. Souffriau, and D. V. Oudheusden, “The orien-
teering problem: A survey,” Eur. J. Oper. Res., vol. 209, no. 1, pp. 1 –
10, 2011.

[21] T. Tsiligirides, “Heuristic methods applied to orienteering,” The Journal
of the Operational Research Society, vol. 35, no. 9, pp. 797–809, 1984.

[22] Q. Wang, X. Sun, B. L. Golden, and J. Jia, “Using artificial neural
networks to solve the orienteering problem,” Ann. Oper. Res., vol. 61,
no. 1, pp. 111–120, 1995.

[23] T. Wang, D. Lizotte, M. Bowling, and D. Schuurmans, “Bayesian
sparse sampling for on-line reward optimization,” in Proceedings of the
22nd International Conference on Machine Learning. ACM, 2005,
pp. 956–963.

[24] C. Dimitrakakis, “Complexity of stochastic branch and bound for belief
tree search in Bayesian reinforcement learning,” in 2nd International
Conference on Agents and Artificial Intelligence, 2009, pp. 259–264.

[25] A. Guez, D. Silver, and P. Dayan, “Efficient Bayes-adaptive reinforce-
ment learning using sample-based search,” in Advances in Neural
Information Processing Systems, 2012, pp. 1025–1033.

[26] A. Hornung, K. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: An efficient probabilistic 3D mapping framework based on
octrees,” Autonomous Robots, 2013.

[27] G. Echeverria, N. Lassabe, A. Degroote, and S. Lemaignan, “Modular
openrobots simulation engine: Morse,” in Proceedings of the 2011
IEEE International Conference on Robotics and Automation, 2011.

