
DOROTHY: Integrating Graphical Programming with
Robotics to Stimulate Interest in Computing Careers

David South, Austin Ray, Kevin

Thomas, Stephanie Graham, Shiloh
Huff, Sarah Rainge

Texas Tech University
Department of Computer Science

Lubbock, TX 79409
936-827-4876

david.south@ttu.edu,
austin.ray@ttu.edu

kevin.thomas@ttu.edu
stephanie.graham@ttu.edu

shiloh.huff@ttu.edu,
sarah.rainge@ttu.edu

Mary Shuman

University of North Carolina,
Charlotte

Department of Computer Science
Charlotte, NC 28223

704-345-8034
mshuman@uncc.edu

Sabyne Peeler
Florida A&M University

Department of Computer and
Information Sciences

Tallahassee, Florida 32307
850-599-3042

speeler4@yahoo.com

Mohan Sridharan

1

Susan D. Urban
2

Joseph E. Urban
2

Texas Tech University
1
Department of Computer Science

2
Department of Industrial Engineering

Lubbock, TX 79409
806-742-2484

mohan.sridharan@ttu.edu
susan.urban@ttu.edu
joseph.urban@ttu.edu

ABSTRACT

This paper describes DOROTHY, a novel educational tool that

enhances the Alice 3D programming environment to enable

bidirectional communication of sensor data and commands with

robots capable of autonomous operation. Users without any

programming experience can quickly create graphical routines

consisting of one or more simulated robots in virtual worlds.

Command dictionaries and socket streams enable real-time

translation of these routines to software for synchronous or

asynchronous control of sensing and actuation on one or more

mobile robots with on-board sensing, resulting in adaptive

behavior in the real-world. Multiple execution scenarios are

described to illustrate the capabilities of the educational tool.

Furthermore, the paper outlines a curriculum that can be used with

the tool to teach core concepts of computing, concurrent execution

and real-world sensing to middle school and high school students,

thus stimulating interest in computing.

Categories and Subject Descriptors

D.2.6 [Programming Environments]: Graphical environments,

integrated environments; I.2.9 [Robotics].

General Terms

Design, Documentation, Experimentation.

Keywords

Computational thinking, graphical programming environments,

autonomous mobile robots.

1. INTRODUCTION
The technological and economic growth of a country depends on

training computing professionals drawn from the full spectrum of

diverse groups that compose the country [2, 3, 16]. However,

many communities face long-standing under-representation in

undergraduate and graduate programs in computing disciplines.

These programs also have low retention rates, especially for

students from under-represented groups. Research indicates that

many students have made career choices by the time they are in

high-school [4]. Middle school and high school students therefore

need to be engaged in projects where they actively learn and apply

computational thinking concepts [23]. Enabling these students to

discover the satisfaction of successfully addressing real-world

computing challenges may encourage them to pursue advanced

degrees and careers in computing.

A plethora of programs have introduced K-12 students to

computing concepts in an effort to stimulate interest in computing.

Programming courses continue to serve as a significant means of

introducing students to computing, but many students have been

overwhelmed with the syntax of programming languages.

Students also lose interest in computing because many

introductory courses fail to connect computing with real-world

applications. In recent years, 3D graphical programming

environments such as Alice [1], Scratch [19] and Greenfoot [8]

have been a more effective way of teaching students to program.

Middle school students have also been introduced to storytelling

as a way to learn programming concepts in 3D environments [12].

Stories consist of action sequences (i.e., animations) generated in

simple pseudo-code based on virtual characters, objects, and

scenarios. However, these environments do not support real-world

enactment of the graphical routines, and students using these

environments may fail to make the transition to advanced

computing concepts and their application to real-world problems.

Many students have also embraced the world of robotics as an

introduction to computing [11, 13, 14, 18, 20]. Robots are great

for illustrating practical applications of core computing concepts.

However, some students find it challenging to work with physical

robots and struggle to learn the complex syntax required to

program robots. In addition, many existing robot kits limit the

students’ ability to obtain a deeper understanding of computing

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Permissions@acm.org.

ALICE '13, June 19 2013, Durham, NC, USA

Copyright 2013 ACM 978-1-4503-2250-8/13/06…$15.00.

http://dx.doi.org/10.1145/2532333.2532338.

mailto:david.south@ttu.edu
mailto:austin.ray@ttu.edu
mailto:kevin.thomas@ttu.edu
mailto:stephanie.graham@ttu.edu
mailto:shiloh.huff@ttu.edu
mailto:sarah.rainge@ttu.edu
mailto:mshuman@uncc.edu
mailto:speeler4@yahoo.com
mailto:mohan.sridharan@ttu.edu
mailto:susan.urban@ttu.edu
mailto:joseph.urban@ttu.edu

that can result by programming robots capable of autonomous

operation using sensor feedback.

The Alice 3D environment has been used as a programming

interface with mobile robots to successfully stimulate interest in

CS1 courses within an undergraduate computer science program

[6, 21, 22]. However, existing schemes typically interface with a

single robot, do not support bidirectional communication between

Alice and robots, or do not support graphical routines that result in

autonomous and adaptive behavior on robots. This paper presents

DOROTHY (Design of Robot Oriented Thinking to Help Youth),

an educational tool that addresses these challenges by customizing

and enhancing Alice, making the following novel contributions:

1. A command dictionary and a socket stream enable real-

time translation of graphical routines (i.e., action

sequences) in virtual worlds to corresponding sensing

and actuation commands on one or more wheeled robots

capable of autonomous operation using on-board sensor

inputs (e.g., camera and infrared sensor).

2. A robot handler provides bidirectional communication

of sensor data and commands between robots and Alice,

enabling synchronous (i.e., concurrent) or asynchronous

execution of graphical routines in virtual worlds and on

physical robots.

3. A modular architecture allows socket communicators to

be written in any programming language. The tool can

be used with different types of robots by changing the

command dictionary.

DOROTHY thus fully exploits the complementary features of

robots and graphical programming environments. Students

program in virtual worlds using syntax that is easy to learn and

see the physical enactment of the program on robots in the real-

world. Furthermore, we have developed a curriculum for using the

tool to teach core concepts of computing, concurrent execution

and real-world sensing to middle school and high school students.

The remainder of this paper is organized as follows. Section 2

presents related work on using Alice and robots for computing

education. Section 3 describes DOROTHY’s modular architecture

that enables real-time bidirectional communication between

virtual domains and physical robots. Section 4 presents illustrative

scenarios and outlines the curriculum that can be used to teach

core computing concepts. Section 5 presents a summary of initial

efforts and future plans of using the tool and curriculum to teach

computational thinking to middle school and high school students.

2. RELATED WORK
This section discusses previous work that has motivated the

development of DOROTHY. Section 2.1 provides an overview of

the Alice programming environment; Section 2.2 describes the

use of robot platforms for computing education; and Section 2.3

describes previous research on integrating Alice with robots.

2.1 3D Programming with Alice
Graphical (i.e., 3D) programming tools are becoming increasingly

popular for teaching programming concepts due to their easy-to-

use interfaces and simple programming syntax [1, 6, 8, 19]. Users

create visual representations of virtual worlds by adding virtual

objects to the scene. These objects are manipulated by action

sequences (i.e., graphical routines or programs) created by drag

and drop techniques or pseudo code. Students learn and use

computational thinking to achieve the desired functionality.

Our tool builds on the Alice 3D programming environment. Alice

is a system developed by researchers at Carnegie Mellon

University [1, 5] that uses storytelling to maintain user interest

while teaching introductory programming concepts. Alice

provides multiple virtual objects in a large pre-existing gallery,

along with the ability to create new 3D virtual objects. A user can

create a story (i.e., an action sequence) with these objects using

pseudo Java code, which illustrates data structures, functions,

control structures and the correlation between stories and

programming concepts. In congruence with the idea of

storytelling, Alice programs are called ‘worlds’.

2.2 Robots for Computing Education
Robots are great tools for stimulating interest in computing since

they illustrate real-world applications of computing concepts [13,

14, 20]. For instance, the Advancing Robotics Technology for

Societal Impact (ARTSI) alliance led by Spelman College focuses

on increasing the number of African American students in

computer science. The Lamar University INcreasing Student

Participation in Research Development (INSPIRED) program

uses Scratch and robots to motivate under-represented middle

school students to pursue computing education [7]. The Hispanic

Computer Brigade at San Jose State University uses Alice and

pico-crickets to inspire Hispanic students to pursue computing [9].

The primary robot platforms used in this project are the fluke

robots created for the Myro (My Robotics) project by the Institute

for Personal Robots in Education [10], a joint venture between

Georgia Institute of Technology, Bryn Mawr College, and

Microsoft Research for promoting the use of robots in computer

science education [11]. These robots consist of an add-on board

mounted on a scribbler wheeled robot base with a microcontroller

[15]. The wheeled base can move forward, backward, and turn.

The base can also be fitted with a marker to draw patterns. The

add-on board provides inputs from sensors, such as a camera,

infrared sensors, and light sensors, and enables communication

between the robot and a computer using Bluetooth technology.

The Myro project provides a framework with many built-in

functions that can be used for I/O, movement, obstacle detection,

sensor data acquisition, and image processing on fluke robots.

Although versions of the Myro framework are being developed in

different programming languages, DOROTHY interfaces with the

Myro framework written in the Python programming language.

2.3 Integration of Robotics and Alice
Wellman, et al. [21, 22] integrated the Alice programming

environment with the iRobot Create platform to stimulate interest

in CS1 courses in the undergraduate computer science program at

the University of Alabama. Using source code from Alice 2.0, the

Java programming language and the Bluetooth-enabled robot

platform (based on the Roomba robot base), researchers

generalized the robot’s commands to terms in Alice and created a

component that utilizes Alice’s output [6]. This program, called

“Providing Robotic Experiences Through Object-Based

Programming” or “PREOP”, allows users to program an iRobot

using Alice [17]. The iRobot, represented by a custom virtual

version in Alice, can also be commanded to execute motion

commands, play a song, or beep to a chosen frequency. Classroom

modules were designed based on PREOP for an introductory

computer science course. Studies show that the use of PREOP

significantly increased the students’ self-ratings of confidence and

computing abilities [6, 22]. However, PREOP does not allow

users to simulate sensing or create programs that result in adaptive

behavior on the robot (e.g., automatically detect and track

objects). Instead, the robot separately uses iRobot Create’s bump

detection to avoid obstacles. The PREOP program is also limited

to operate on one instance of a specific type of robot.

Our educational tool significantly enhances Alice to allow

bidirectional communication of data and commands with robots,

translating graphical routines in virtual worlds to adaptive

behavior on multiple (and different types of) robots. In addition,

the tool enables synchronous (i.e., concurrent) or asynchronous

(i.e., separate) execution of action sequences in virtual worlds and

on robots in the real-world. Figure 1 shows some fluke robots, the

re-designed DOROTHY interface and the erratic wheeled robot

(with on-board sensors and processor) that has been partially

integrated with DOROTHY. Users can thus design complex

graphical routines and execute them on robots, learning advanced

computing concepts beyond just basic control structures.

Figure 1: Flukes and their virtual representation; DOROTHY

interface screenshot; autonomous robot platform (erratic).

3. DOROTHY ARCHITECTURE
This section describes the modular architecture used to create

DOROTHY. Section 3.1 explains an initial XML-based approach

that used Alice’s ability to export its user-made programs into a

web page. Section 3.2 discusses the revised real-time approach

that uses a robot handler for communication between virtual

worlds and robots, creating a more dynamic method for

representing and manipulating robots in the virtual worlds.

3.1 XML Approach
The initial approach investigated the development of a program to

gather action information in Alice using the structure of Alice’s

world files. Alice saves its worlds in a zip file containing

collections of XML files. Each XML file consists of a conditional

statement, an event or a variable. The organization of world files

is based on the nesting of blocks of code in an Alice world.

Conditional statement directories contain folders of other

commands or conditional statements, while command directories

contain an XML file with information about that command. A

Python program was designed to read saved Alice world files and

parse XML tags from each page’s source code. This information

is translated into the Myro API and sent through a Bluetooth

connection to the fluke robot. A dictionary data structure, as

shown in Figure 2, supports this translation of an action sequence

into the robot’s programming language. Commands in the virtual

world that are incompatible with the robot’s commands are

ignored. The translated commands are written to a Python script

file that the robot can understand. Since the dictionary supports

the ability to translate graphical routines to any robot language,

multiple types of robots can be used in the virtual world and the

corresponding physical world. The generated script file can be run

on robots without installing Alice.

3.2 Robot Handler Approach
The XML parser approach does not support real-time editing or

feedback from the robot. The user programs a virtual robot,

generates the script file, and transmits the script file to the

physical robot to see real-world enactment of the moves of the

virtual robot. DOROTHY addresses this limitation by customizing

Alice with a robot handler that uses sockets for bidirectional

communication between the graphical environment and the robot.

A user can program a virtual robot and have the physical robot

move in synchronization. Multiple (and different types of) robots

can be controlled concurrently using multiple handlers. The

following subsections describe the robot handler approach.

3.2.1 Intercepting Actions and Questions
The robot handler was designed through the observation that

objects (e.g., robots) in virtual worlds and the real-world can

receive requests for information about their surroundings, and can

be sent commands to perform actions. Execution of a routine in a

virtual world creates events that tell objects to perform specific

actions or answer questions. Figure 3 shows the data flow for

actions and questions in DOROTHY. The corresponding events

are distinguishable because they are handled in different locations.

An action event is intercepted when the action is converted into a

“Runtime Response” that uses all relevant information to act on a

virtual object. The appropriate robot handler receives the

information about the class/type of action, parameters needed for

the action, and object/subject that will perform the action. The

handler’s data receiver passes this datagram to the translator. The

translator initially reads the class-name of the action and

compares it with a dictionary data type containing the class-names

of all actions that the robot can perform. If a matching class-name

is found in the dictionary, the corresponding action template

contains a basic layout of the action and variables that need to be

parsed from the datagram. The data extracted from the datagram

is passed to the commands created for execution on the robot(s),

e.g., for the flukes, commands are generated as function calls from

the set of functions available for use in the Myro language.

Figure 2: Dictionary for DOROTHY-to-Myro translation.

A question event is created when a user wants to check the

condition of the virtual world, e.g., presence of obstacles in front

of the robot. If the question can be answered by the robot as

modeled by the robot handler, the question is intercepted and sent

to the handler. The robot handler queries the robot’s sensors for

the corresponding data, e.g., infrared sensors to detect obstacles.

This data is communicated to the graphical environment,

effectively overriding the virtual object’s observations and

displaying real-world observations of robot(s) in virtual worlds.

Figure 3: Communication between graphical environment and

Robot Handler in DOROTHY. Event generator and robot

handlers enable bidirectional communication.

3.2.2 Sockets for Bidirectional Communication
The robot handler needs to listen for commands from the virtual

world to the robot and communicate sensor information from the

robot back to the virtual world. This capability is implemented

using sockets, making it possible for the robot handler to be

written in different programming languages. As the DOROTHY

interface and the robot handler initialize, a socket stream is

created to connect them. Only actions in a graphical routine (i.e.,

in the virtual world) that can be translated to appropriate actions

on the robot are sent to the robot handler.

Events in virtual worlds are generated when a user executes an

event script, e.g., when a user right clicks on a virtual object, they

are able to command it to perform an action instantaneously. To

provide a similar capability with the handler, the robot handler

always listens for these events. As a result, the user can see the

virtual robot(s) and real-world robots moving together.

The implementation of the robot handler ensures that definitions

of robot capabilities can be edited and new robots can be added

without making changes to the graphical environment. The

modular architecture of DOROTHY also enables interaction with

any robot capable of wireless communication (e.g., with

Bluetooth technology). Adding a new robot just requires the

addition of the corresponding functions (e.g., API options for a

specific robot) to the translator’s dictionary.

3.2.3 Using Multiple Robots
In addition to supporting multiple robot types, DOROTHY also

supports concurrent or asynchronous control of multiple instances

of the same type of robot. This objective is achieved by adding a

robot tracker file to the interface. When a new robot object is

added in the virtual world, information about the object (e.g.,

name, type, and procedure to access this robot type) is stored in a

RobotType object. The RobotType object for each robot is stored

in a list. The object names to be saved to the list are determined

automatically by checking if the corresponding object is of class

robot, an extension of the standard object class in Alice.

Each handler runs in its own thread to connect each robot with its

virtual representation. The initial setup is such that the handlers

automatically establish connections with robots as and when they

appear. The capabilities of the fluke robots currently integrated in

DOROTHY include: (a) movement; (b) infrared sensing; (c) light

sensing; (d) image processing and video recording; (e) computer

speaker vocalization; and (f) real-time visualization of sensor

readings from robots. A connection of up to five fluke robots has

been tested with DOROTHY for synchronous and asynchronous

operation. We have also enabled DOROTHY to send movement

commands to a more sophisticated wheeled robot (erratic) using

the Python Paramiko module and the SSH connection protocol.

4. EXECUTION SCENARIOS
Seven undergraduate students from three different universities

developed DOROTHY. The students were supervised on

individual research projects and summer internships since

Summer 2011, with partial support from an NSF Research

Experiences for Undergraduates (REU) site project. The objective

is to develop an educational tool to stimulate interest in computing

among middle school and high school students. This section

describes some execution scenarios and outlines the curriculum

that can be used with the tool to teach core computing concepts

(e.g., abstraction, functions, control structures, iteration and

concurrent execution) to school students. The scenarios are

described below in the context of fluke robots.

4.1 Scenarios for a Single Robot
The basic scenario for the DOROTHY tool supports bidirectional

communication between a virtual robot and its physical cohort.

Graphical routines created in virtual worlds can have the robot

move forward, backward, and turn. Such movements can be

embedded in loops to teach sequential reasoning and iteration.

The robot in the virtual (real) world can also sense objects in the

virtual (real) world and adapt its behavior—this scenario can be

used to teach control structures such as if-then-else. The virtual

robot can also be programmed to respond based on the objects

sensed by its cohort in the real-world. The available capabilities

include: (1) developing an algorithm based on a virtual world; (2)

developing a non-deterministic algorithm based only on the sensor

inputs received by the robot in the real-world; and (3) developing

an algorithm where the robot dynamically senses objects in the

virtual and the real-world. The tool also supports the dynamic

addition of objects in the virtual world as they are sensed in the

real-world. Figure 4 shows a fluke executing an obstacle

avoidance routine in a boxed-in area in the real-world. The robot

uses infrared sensors to sense walls (i.e., obstacles) and responds

according to instructions from the virtual world, e.g., the robot

turns away from obstacles and determines a new direction of

motion that is obstacle-free. Although not shown, a virtual robot

executes the same movement in-sync with the physical robot.

Since the robot base can hold a pen and write on the floor, the

DOROTHY interface can be used to teach the concept of a

procedure, e.g., procedures for writing specific words or

“patterns”. More challenging scenarios for a single robot include:

(a) searching for the brightest location in the room (using light

sensors); and (b) locating objects of a specific shape or color

(based on image processing), while navigating safely around

obstacles. These scenarios require students to learn and use data

structures and functions, in addition to algorithms for sensor input

processing and navigation on robots.

Figure 4: Fluke robot detecting walls in a boxed area and

communicating obstacle information to DOROTHY interface.

4.2 Scenarios for Multiple Robots
DOROTHY allows for the creation of scenarios involving

multiple robots that run simultaneously. The underlying Alice

interface has a “Do Together” block that can be used to teach the

concept of concurrent execution. Figure 5 illustrates three robots

as they simultaneously move in a square pattern while avoiding

obstacles. Such scenarios can be used to create challenging

computational thinking exercises, where students can program

multiple robots to work together to achieve a task, e.g., the

synchronized motion of two or more robots to perform a “dance”

step, and a team of robots on a “treasure hunt” or assembling a

complex structure by retrieving component parts. Students will

hence learn to use advanced data structures and functions, and

sophisticated algorithms for sensor input processing and

teamwork. An added benefit is that students working on such

projects learn important teaming and social skills.

Figure 5: Three fluke robots drawing a box in synchronization

with their virtual representations.

4.3 Curriculum Development and Pilot Runs
We have developed a curriculum that incorporates the scenarios

described above in individual lessons that teach core computing

concepts. These lesson plans can be viewed online:

http://www.cs.ttu.edu/~smohan/Outreach/Dorothy.html

The curriculum consists of six lessons, each of ~1.5-2 hour

duration, which can be distributed over a few days or weeks. The

first lesson illustrates the importance of computing by discussing

recent technological developments and logic puzzles. Instructors

also demonstrate DOROTHY and its ability to control one or

more robots. The second lesson has student teams interacting with

robots through the virtual interface, e.g., generate graphical

routines to control a robot’s motion. Instructors demonstrate the

need for sensor inputs from robots, and illustrate the use of basic

variable assignment for generating motion patterns defined by

user-specified parameter values. Students then work on recreating

this demonstration. The third lesson introduces Boolean

conditions and control structures (e.g., if-else) using scenarios

such as obstacle avoidance. Students create appropriate graphical

routines and execute them on real-robots. The focus of the fourth

lesson is on iteration, which is motivated by posing challenge

tasks such as repetitive pattern generation and obstacle avoidance.

Student teams learn from demonstrations and create programs for

similar tasks. Lesson five motivates the need for functions for

program reuse and introduces basic image processing concepts.

Students use these concepts for complex tasks such as locating

bright spots in a room and visual object recognition. The final

lesson discusses concurrent execution concepts and poses

challenging tasks as projects, e.g., multiple robots performing a

dance or searching for treasure. Student teams participate in a

competition to complete these projects.

 Different versions of the curriculum are used for middle school

and high school students. For middle school students, the lessons

focus on providing a general overview of computing and on

developing basic problem-solving skills. Only the first three

lessons are used and simple puzzles and tasks are assigned in the

individual lessons. For high-school students, all six lessons are

used to provide a more in-depth knowledge of core computing

concepts such as problem solving, functions, iteration, control

structures, abstraction and concurrent execution.

We are iteratively modifying DOROTHY and the associated

curriculum based on pilot trials at a local middle school and high

school. For instance, we conducted a workshop for students at a

local high school that engaged students in projects (based on the

first four lessons described above) in four 75 minute sessions

spread over four weeks. A workshop was also organized for ~20

middle school students to use DOROTHY for interacting with

flukes in three one-hour sessions. Furthermore, a three day

workshop (total of seven hours) was conducted for ~20 middle

school girls hosted on campus for the Science: It’s a Girl Thing

workshop. The workshops have been well-received by the

students and their teachers, with feedback that has helped improve

the tool and the curriculum.

5. SUMMARY AND FUTURE WORK
This paper described the DOROTHY educational tool that has

enhanced the Alice 3D programming environment with the

capability to control sensing and actuation commands on one or

more mobile robots with on-board sensing capabilities. The

modular architecture of DOROTHY introduces command

dictionaries and robot handlers to enable synchronous (i.e.,

concurrent) and asynchronous operation of one or more virtual

robots and their physical counterparts in the real-world.

Bidirectional communication of data and commands between the

http://www.cs.ttu.edu/~smohan/Outreach/Dorothy.html

tool and the robots results in more realistic simulations and

adaptive behavior on the robots. The integrated environment has

significant potential for use as a stimulating teaching tool for

computational thinking since it integrates two of the most popular

programming paradigms used at the K-12 level: 3D graphical

programming and robotics.

The development of DOROTHY opens up many avenues of

further research. For example, research is needed to better

simulate how the software perceives the real-world using the

robot’s sensors. Another challenge involves synchronizing the

speed of the virtual robots with that of the real robots. Currently, a

virtual robot object can move at speeds that exceed the

capabilities of the physical robot being commanded. Future

research will also incorporate and test different wheeled and

humanoid robots. Further integration of the more advanced

sensing capabilities of the erratic robot (e.g., simple path

planning, learning domain map, and learning object models) will

enable the use of DOROTHY to illustrate stimulating real-world

applications of computing.

One key direction for future research is focused on extensive

evaluation of the tool and curriculum through workshops that

engage middle school and high school students. The results of

these studies will inform and guide the further development of

curriculum materials for middle school and high school students.

The work in [17] has already shown that an integrated

Alice/robotics teaching approach can help engage beginning

undergraduate students. DOROTHY is well suited for teaching

core computing concepts at the middle school and high school

level. In terms of educational research, the integration of 3D

programming and robotics can be used to: (a) help teachers at the

K-12 level teach (and enhance) computational thinking skills

among their students; and (b) help students learn and apply these

computing concepts to real-world challenges. Such studies may

lead to a deeper understanding of effective ways to teach

fundamental computing and programming concepts, further

stimulating student interest in computing disciplines.

6. ACKNOWLEDGMENTS
This research was supported in part by NSF Grant No. CNS

1005212. Opinions, findings, conclusions, or recommendations

expressed in this paper are those of the author(s) and do not

necessarily reflect the views of NSF.

7. REFERENCES
[1] Alice (2009). Accessed May 2011 at www.alice.org.

[2] BPC (2010) NSF Broadening Participation in Computing

Portal, www.bpcportal.org

[3] CPGE21 (2007) Committee on Prospering in the Global

Economy of the 21st Century, Rising Above the Gathering

Storm: Energizing and Employing America for a Brighter

Economic Future, National Academies Press, 2007, 592pp.

[4] Craig, M., and Horton, D. (2009). Gr8 Designs for Gr8

Girls: a Middle-School Program and its Evaluation,

Proceedings of the Fortieth ACM Technical Symposium on

Computer Science Education.

[5] Dann, W., Cooper, S., and Pausch, R. (2008). Learning to

Program with Alice (2nd Edition), Prentice-Hall.

[6] Davis, J., Wellman B., Anderson, M., and Raines, M. (2009).

Providing Robotic Experiences through Object-Based

Programming (PREOP), Proceedings of the 2009 Alice

Symposium.

[7] Doerschuk, P., Liu, J., and Mann, J. (2009). INSPIRED

Computing Academies for Middle School Students: Lessons

Learned, Proceedings of the Richard Tapia Celebration of

Diversity in Computing Conference, Portland, Oregon.

[8] Greenfoot (2009). Accessed May 2011 at

www.greenfoot.org.

[9] HCB (2010). Hispanic Computer Brigade,

http://www.engr.sjsu.edu/hcb.

[10] IPRE (2010). The Institute for Personal Robots in Education,

accessed May 2011 at http://www.roboteducation.org.

[11] IPRE Wiki (2010) The Institute for Personal Robots in

Education Course Curriculum,

http://wiki.roboteducation.org/Introduction_to_Computer_Sc

ience_via_Robots

[12] Kelleher, C., Pausch, R., and Kiesler, S. (2007). Storytelling

Alice Motivates Middle School Girls to Learn Computer

Programming, CHI 2007 Proceedings • Programming By &

With End-Users, April 28-May 3, San Jose, CA, USA.

[13] Lauwers, T., Nourbakhsh, I., and Hamner, E. (2009).

CSBots: Design and Deployment of a Robot Designed for

the CS1 Classroom, Proceedings of the 2009 SIGCSE

Technical Symposium on Computer Science Education, pp.

428-432.

[14] McWhorter, W. and O’Connor, B. (2009). Do Lego

Mindstorms Motivate Students in CS1? Proceedings of the

2009 SIGCSE Technical Symposium on Computer Science

Education, pp. 438-442.

[15] Parallax (2011). Accessed July 2011 at

http://www.parallax.com.

[16] PCAST (2007) President’s Council of Advisors on Science

and Technology (PCAST), Leadership Under Challenge:

Information Technology R&D in a Competitive World,

Executive Office of the President of the United States,

August 2007, 63pp.

[17] PREOP (2007). The University of Alabama, accessed July

2011 at http://cs.ua.edu/preop.

[18] RCJ (2010). The Junior League RoboCup Competitions,

www.robocup2010.org/competition_Category.php?c=4

[19] Scratch (2009). Accessed May 2011 at www.scratch.mit.edu.

[20] Summet, J., Kumar, D., O’Hara, K., Walker, D., Ni, L.,

Blank, D., and Balch, T. (2009). Personalizing CS1 with

Robots, Proceedings of the 2009 Technical Symposium on

Computer Science Education, pp 433-437.

[21] Wellman, B., Anderson, M., and Vrbsky, S. (2009). PREOP

as a Tool to Increase Student Retention in CS, Journal of

Computing Sciences in Colleges, 2009.

[22] Wellman, B., Davis, J., and Anderson, M. (2009). Alice and

Robotics in Introductory CS Courses, Proceedings of the

Richard Tapia Celebration of Diversity in Computing

Conference, Portland, Oregon, April.

[23] Wing, J. M. (2006). Computational Thinking,

Communications of the ACM, 49, 3 pp. 33–35.

http://www.alice.org/
http://www.bpcportal.org/
http://www.greenfoot.org/
http://www.engr.sjsu.edu/hcb
http://www.roboteducation.org/
http://wiki.roboteducation.org/Introduction_to_Computer_Science_via_Robots
http://wiki.roboteducation.org/Introduction_to_Computer_Science_via_Robots
http://www.parallax.com/
http://cs.ua.edu/preop
http://www.robocup2010.org/competition_Category.php?c=4
http://www.scratch.mit.edu/

