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Abstract. Autonomous operation is a key challenge to the deployment of mo-

bile robots in real-world domains such as homes and offices. The partial observ-

ability, non-determinism and unforeseen dynamic changes of these domains fre-

quently make it difficult for robots to operate without any domain knowledge or

human inputs. It is however infeasible to provide robots with all relevant domain

knowledge (in advance), and humans are unlikely to have the time and exper-

tise to provide elaborate and reliable feedback in complex domains. Our previous

work enabled a team of robots to visually localize target objects using hierarchi-

cal partially observable Markov decision processes (POMDPs) [21]. Although

POMDPs elegantly model the uncertainty in sensing and navigation, it is diffi-

cult to represent common sense knowledge or perform high-level reasoning with

human inputs. This paper addresses these challenges by combining Answer Set

Programming (ASP), a non-monotonic logic programming paradigm, with hier-

archical POMDPs. Domain knowledge is represented as predicates and facts that

capture the relationships between object categories, and ASP reasons with the

available knowledge to initialize or revise the POMDP belief distributions. Sen-

sory observations and human inputs cause POMDP belief updates and augment

(or revise) the current knowledge modeled by ASP. All algorithms are evaluated

in simulation and on mobile robots localizing targets in indoor domains.
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1 Introduction

Mobile robots are increasingly being used in domains such as disaster rescue and assis-

tive health care due to the availability of affordable high-fidelity sensors and the devel-

opment of sophisticated sensory input processing algorithms. Such real-world domains

are characterized by partial observability, non-deterministic action outcomes and un-

foreseen dynamic changes, making is difficult for a robot to process all sensory inputs

using all available algorithms or to operate without any human input. At the same time,

it is not feasible to provide robots will all relevant domain knowledge (in advance), and

human participants are unlikely to have the time or expertise to provide elaborate and

accurate feedback in complex domains.

Researchers have used partially observable Markov decision processes (POMDPs)

to enable robots to robustly plan sensing, navigation and interaction (with humans) in



different application domains [9, 18, 21]. It is however a challenge to include common

sense knowledge obtained from sensory cues or human feedback in a standard POMDP.

On the other hand, although non-monotonic logical reasoning is appropriate for knowl-

edge representation and efficient inference, it is not well-suited for modeling the un-

certainty in real-world sensing and actuation [7]. This paper presents a novel hybrid

framework to address the challenges mentioned above, integrating Answer Set Pro-

gramming (ASP), a non-monotonic logic programming paradigm, and our prior work

on hierarchical POMDPs [21] to make the following key contributions:

• ASP enables the robot to use the information extracted from sensory (and human)

cues and online repositories to robustly represent, reason with and revise spatial (and

semantic) knowledge of the application domain.

• A hierarchical decomposition of POMDPs enables the robot to automatically adapt

sensing and information processing to the task at hand [21]. The entropy of the

POMDP belief states is used to identify the need for human feedback.

• A strategy inspired by lessons learned in psychophysics enables the robot to utilize

the logical facts representing current knowledge to initialize and revise the proba-

bilistic beliefs obtained by processing sensory inputs and human cues.

The hybrid framework and associated algorithms are evaluated in simulation and on

wheeled robots that use vision as the primary source of information, in conjunction

with range sensors, to localize target objects in complex indoor domains.

2 Related Work

Partially observable Markov decision processes (POMDPs) have been used to enable

agents and robots to operate in domains characterized by partial observability and non-

deterministic action outcomes [11]. Due to the exponential state explosion of real-world

domains and the computational complexity of solvers, hierarchical and factored formu-

lations of POMDPs have been developed for robot applications [15, 16, 21]. Our pre-

vious work used hierarchical POMDPs to enable a team of robots to localize one or

more targets in indoor domains [21]. However, robots or agents operating in domains

with uncertain sensing and navigation can benefit from high-level common sense rea-

soning using domain knowledge or human inputs [9, 13]. It is a challenge to perform

such knowledge representation and reasoning in the default POMDP formulation.

Decades of research in logical reasoning and knowledge representation has pro-

vided many sophisticated algorithms [8]. Researchers are also focusing on knowledge

representation and ontologies for planning perception and control tasks on robots [6,

19]. However, many of these algorithms require a significant amount of prior knowl-

edge or are unable to robustly merge the new (uncertain) information from sensors and

humans with what is currently believed by the robot based on the knowledge base. A

non-monotonic logic programming paradigm such as Answer Set Programming (ASP)

is well-suited for common sense knowledge representation and reasoning (especially

default reasoning) [1, 7]. ASP has been used in many application domains and it has

been integrated with natural language processing for service robots [4]. However, ASP

is not well-equipped to address the uncertainty in real-world sensing and navigation.



In addition, human participants in complex domains are unlikely to have the time or

expertise to provide elaborate and accurate feedback.

Recent research has resulted in the development of a switching planner where a

robot chooses between logical reasoning or POMDPs for action selection based on

expected action outcomes [9]. Such a strategy, however, fails to fully use the comple-

mentary features of logical reasoning and POMDPs. More recent research has com-

bined deterministic and probabilistic approaches for task and motion planning [12],

and combined common sense knowledge about object positions (e.g., cornflakes are

typically in the kitchen) and semantic maps with topological structure for target local-

ization [10]. However, the approach in [10] uses common sense knowledge obtained

from public resources (e.g., the Internet), which may not accurately reflect the specific

application and does not model non-monotonicity and dynamic changes (e.g., corn-

flakes are moved to living room) well. Integrating knowledge representation, logical

reasoning and probabilistic reasoning therefore continues to be a formidable challenge

in real-world domains. The hybrid framework described in this paper, which integrates

ASP and POMDPs, is a significant step towards addressing these challenges.

3 Problem Formulation

Figure 1 presents an overview of the proposed hybrid framework. The Knowledge Base

(KB) in ASP contains causal rules and facts about the domain. Currently, the rules are

hand-coded and the facts are learned from a range of resources that include human

feedback, sensory inputs and even online repositories. For any specific query (or task),

reasoning in the KB results in an answer set containing a set of grounded literals (Sec-

tion 3.1). The uncertainty in sensing and actuation is modeled using belief distributions

in the POMDP (Section 3.2). The answer sets from ASP help initialize the POMDP be-

lief or revise the existing belief distribution based on acquired knowledge (Section 3.3).

The robot makes observations using sensors that are activated by action execution (e.g.,

visual sensing or processing algorithms) and passive sensors that are always in oper-

ation (e.g., range finders). The observations made with high certainty update the KB,

while the remaining only update the POMDP belief distributions. Human feedback is a

valuable (but limited) resource that the robot uses judiciously. For instance, if the robot

knows the location of a target with high probability, it does not make sense to identify

and have a conversation with a human. The question-asking strategy is hence a function

of the entropy of the belief distributions (Section 3.3).

This framework is illustrated here in the context of active target localization, i.e.,

a mobile robot locating target objects in indoor domains by planning an appropriate

sequence of visual sensing and information processing actions.

3.1 Knowledge Representation and Reasoning with ASP

Answer Set Programming (ASP) is a non-monotonic logic programming paradigm [1].

An ASP program is a collection of statements describing domain objects and relations

between them [7]. An answer set is a set of ground literals that represent a set of beliefs

of an agent associated with the program. Program consequences are statements that



Fig. 1: Overview of the hybrid framework for knowledge representation and reasoning.

are true in all such belief sets. One key feature of ASP is its ability to perform default

reasoning. New information can hence be used to smoothly revise statements that are

currently believed to be true by the robot. The desired target localization task can hence

be reduced to finding answer sets for specific queries, as described below.

Elements The semantic (2D) description of an office has the following elements:

1. Room: a space bounded by walls and doors that can be occupied by the robot and

objects. The predicate room/1 is used to define a room, e.g., room(hallway).

2. Object: a visually identifiable element in a room. The predicate object/1 defines

an object, e.g., object(fridge1). The desired targets are objects.

3. Category: a set of objects or sub-categories. The categories and objects are orga-

nized in the form of a tree as shown in Figure 2. Leaf nodes are objects and all other

nodes are categories. Categories with objects as children are primary categories.

The information in the KB is used to automatically arrive at the arrangement of cate-

gories in Figure 2—it can be readily revised for other domains. Some initial information

in the KB is based on online repositories (similar to [10]), which is then revised incre-

mentally based on sensory and human inputs.

Relations between elements The following predicates represent relations between the

elements. Since the domain changes dynamically (e.g., a room that was accessible may

now be inaccessible), the concept of a timestep is introduced. The timestep is a natural

number that increments when the robot interacts with a human or observes something

with high certainty. Relations that change over time are modeled as predicates that

include the timestep as a parameter.

1. is(X,C) implies that C is the parent node of X, where X is an object or a category,

and C is a category, e.g., is(tv, electronics).

2. observed(O,R,S) is used to create a fact when an object O is observed (using

visual cues or human input) in room R at timestep S.



3. located(C,R,S) implies that objects of category C can be (inferred) in room R

at timestep S.

4. exclusive(C) implies that no more than one object of primary category C exists

in a room.

5. accessible(R,S) implies that the robot can enter room R at timestep S.

6. location(R,X,Y) states that the coordinates of room R are (X,Y), where X

and Y are natural numbers.

Reasoning rules The following rules are used for reasoning in this domain.1

1. If object O is of primary category C, the robot senses O in room R, and C is not an
exclusive category, then it is believed that objects of category C can be in R.

located(C,R,S) :- observed(O,R,S), is(O,C), not exclusive(C).

2. If objects of category C can be in room R, then the objects of the parent category of
C can be in room R. Likewise, objects in all categories that are ancestors of C can
be in R.

located(C1,R,S) :- located(C2,R,S), is(C2,C1).

3. (Rule of inertia) An object retains its location (i.e., it exists in a room) until it is
known to be in some other location; a room remains accessible (inaccessible) until
it becomes inaccessible (accessible).

observed(O,R1,S+1):- observed(O,R1,S), not observed(O,R2,S+1),

R1 != R2.

accessible(R,S+1) :- accessible(R,S), not ¬ accessible(R,S+1).

Reasoning example As an illustrative example of non-monotonic reasoning in ASP,

consider the following:

1. Test-case 1 has the following facts:

step(1..2).

observed(printer1, lab, 1).

is(printer1, printer).

Reasoning in ASP produces the following answer set (existing facts not repeated):

observed(printer1, lab, 2).

located(printer, lab, 1).

2. Consider Test-case 2 that has a new fact about an object’s observed location:

step(1..2).

observed(printer1, lab, 1).

is(printer1, printer).

observed(printer1, office, 2). % new fact

1 Variable definitions: #domain step(S),#domain object(O), #domain

category(C;C1;C2), and #domain room(R1;R2).



Reasoning in ASP now produces the following modified answer set (once again,
existing facts not listed):

located(printer, lab, 1).

located(printer, office, 2).

Baral [1] provides a more detailed description of inference in ASP. In this paper, ASP’s

ability to elegantly perform non-monotonic logical reasoning is integrated with the un-

certainty modeling capability of POMDPs described below.

3.2 Uncertainty Modeling with POMDP

Consider the situation where a robot has learned a domain map and has to locate a

specific target. Assume that ASP has provided a set of likely locations (e.g., two rooms).

To localize the target, the robot has to move and analyze a sequence of images of a

sequence of scenes. Towards this objective, we use hierarchical POMDPs to account for

the uncertainty in sensing and navigation. The 3D area to be analyzed is represented as a

discrete 2D occupancy grid, with each grid storing the probability of target occurrence.

The hierarchical POMDP has 2−3 levels. The high-level POMDP poses sensing as the

task of maximizing information gain, i.e., processing a sequence of scenes to reduce

entropy in the probability distribution over the grid. The lower levels of the POMDP

plan the processing of specific regions of images of a chosen scene using a subset of

available algorithms. This work builds on our previous work [21] that enables automatic

belief propagation and model creation—we briefly summarize existing work and our

contributions (for completeness), focusing primarily on the high-level POMDP.

Sensing POMDP For a grid with N cells, the high-level (HL)-POMDP is the tuple

〈S,A,T,Z,O,R〉 defined as:

• S : {si, i ∈ [1,N]} is the state vector; si corresponds to the event that the target is in

grid cell i.

• A : {ai, i ∈ [1,N]} is the set of actions. Executing ai causes the robot to move to and

analyze grid cell i.

• T : S×A×S′ → [0,1] is the state transition function; an identity matrix when actions

do not change state.

• Z : {present, absent} is the observation set that indicates if the target is detected.

• O : S×A×Z → [0,1] is the observation function.

• R : S×A→ R is the reward specification.

The robot maintains a belief state, a probability distribution over the states—with no

prior knowledge, the belief state is a uniform distribution resulting in maximum en-

tropy. The HL-POMDP seeks to choose actions that significantly reduce the entropy

by causing the belief distribution to converge to likely target locations. The reward of

action at at time t is hence defined as the reduction in entropy between belief state Bt−1

and the resultant belief state Bt . The observation function models the probability of

target detection as a function of the robot position and target position, where the proba-

bility of a specific observation in cell i given that the target is in cell j and the focus is on

cell k, i.e., p(zi|s j,ak), is a Gaussian distribution—the mean depends on target location,



grid cell being examined and field of view, while the variance represents the sensitivity

of sensory inputs to the object’s distance from the sensor. Given these model parame-

ters, POMDP solvers compute a policy that maps belief states to actions: π : Bt 7→ at+1.

Policy gradient methods are used to compute the policy that minimizes entropy over a

planning horizon. The policy is in the form of a matrix of “weights”, based on which

an action is selected for each belief state [3].

The number of grid cells can increase exponentially in real-world domains, making

real-time solutions of POMDP formulations intractable even with sophisticated solvers.

This challenge is addressed based on the observation that if the robot is analyzing a

specific grid cell, its performance is mainly a function of (and can affect) only a small

number of surrounding cells. The robot hence learns a policy kernel from a baseline

policy for a local region with a small number of grid cells. The policy for a larger area

with a larger number of grid cells is generated by an inexpensive convolution operation.

For instance, given the baseline policy generated for a 5× 5 map (with 25 states and

actions), the matrix of weights is reorganized into layers (each layer corresponds to

a specific state) and 3 × 3 mask is convolved across the layers (and normalized) to

generate the 3×3 kernel. This policy kernel can then be convolved with (say) a 10×10

map to generate the corresponding policy (one layer at a time). Although it may take

some time for the robot to learn a baseline policy, the extracted kernel is a function of

the sensors and is typically computed once—the kernel can then be used for different

larger-sized domain maps.

Motion Cost and Path Planning A mobile robot has to physically move between grid

cells—actuation expends time and effort, and introduces errors that accumulate as the

distance traveled increases. The movement is hence associated with a cost proportional

to the distance to be moved. This cost revises action weights during policy execution:

ŵ(a j) = f (w,dA∗) = w(a j)
1

1+
dA∗ (ai,a j)

speed

(1)

where w(a j) and ŵ(a j) are the weights corresponding to action a j before and after the

revision, while dA∗(ai,a j) is the distance between the current grid cell and the candi-

date grid cell. Unlike simulated domains, real-world domain maps include objects and

obstacles (e.g., doors and walls), a subset of which can move (or change) over time.

We enable the robot to continuously update the domain map using laser-based SLAM

algorithms. We also compute the distance between cells using the A∗ search algorithm.

This policy revision thus enables the robot to robustly (and efficiently) account for un-

foreseen domain map changes and trade off the likelihood of locating the target in a

grid cell against the cost of traveling to that grid cell.

We also introduce hill-climbing to make target localization in large maps more ef-

ficient. Instead of choosing the best (next) action based on current beliefs, the robot

considers a path through a set of grid cells that are likely target locations. It is however

infeasible to estimate an optimal path by evaluating all possible paths through all grid

cells. The robot is hence enabled to first detect local maxima grid cells whose weights

are much larger than surrounding cells—these local maxima are found by hill-climbing



based on a small number of randomly selected initial seed points. To evaluate paths

through different combinations of these local maxima grid cells, the robot computes the

weighted cost of each path:

wpath([h0,h1, . . . ,hN ]) =
N

∑
i=1

f (w(hi),
i

∑
j=1

dA∗(h j−1,h j)) (2)

where, hn is the nth local maxima, h0 is the current position of the robot, and w(hi) is

the (action) weight at the grid-cell corresponding to hot-spot hi. Function f is described

in Equation 1. Intuitively, the path-planning strategy makes the robot focus on the most

interesting grid cells, i.e., cells that have a high likelihood of containing the target and

have other similar grid cells close by. Note that the robot does not necessarily go through

the entire path—the observation obtained at the first grid cell along the path will update

the belief distribution and revise the path.

For each chosen scene, the lower-levels of the POMDP plan a sequence of visual

processing algorithms to process a suitable sequence of salient regions of interest in

specific images of the scene—this process is based on existing work [21].

3.3 Integrating ASP and POMDP

As described in Section 3.1, the ASP-based formulation elegantly models domain knowl-

edge and uses non-monotonic logical reasoning to robustly merge acquired information

that augments (or reduces belief in) the existing knowledge. The POMDP formulation

(described above) models the uncertainty in sensing and navigation to adapt sensing

and processing to any given task. This section describes the integration of ASP and

POMDP (Figure 1), enabling the robot to (a) use current knowledge to initialize or re-

vise the POMDP beliefs; (b) use belief entropy to identify the need for high-level human

input; and (c) merge the information extracted from sensory cues and human feedback

with the existing knowledge base (KB).

Belief revision based on answer set As stated in Section 1, it is a challenge to repre-

sent common sense knowledge in POMDPs, since the acquired information may have

varying levels of relevance to current and future tasks. Our framework addresses this

challenge by using the current knowledge to initialize and revise POMDP beliefs.

Answer sets, as described earlier, represent all the knowledge that is currently be-

lieved to be true by the robot. The answer sets are therefore used to assign a bias to the

initial belief distribution used by the POMDP to localize specific targets, significantly

improving the efficiency of task performance. Specifically, the literals in the answer set

relevant to the current task are used to compute an initial bias distribution. This opera-

tion (more details below) transforms the answer set into a distribution of the same form

as the POMDP belief. Since the KB (and hence the answer set) can contain incom-

plete and/or out-of-date information, the answer set-based belief and POMDP belief

are merged using relative trust factors (more details below). The belief initialization

and revision algorithm models the following hypotheses that capture the occurrence

(and co-occurrence) relationships between objects, based on the description of object

categories in the knowledge base (see, for instance, Figure 2):



1. An object is more likely to be co-located with close “relatives”, where closeness

is defined as the distance to the lowest common ancestor in the tree of object cate-

gories. E.g., in Figure 2, a printer is more likely to be co-located with scanners than

DVD players.

2. For any category, the influence of “siblings”, i.e., of categories with a common

parent, increases as the number of “siblings” decreases. The influence of a “sib-

ling” category increases when there is sufficient support for the sibling’s existence

(predicate observed/3).

3. The relationship between the probability of object occurrence (as an entry in a

belief vector) and the magnitude of evidence provided by different categories (and

siblings) follows Fechner’s law2.

These hypotheses enable smooth and robust evidence propagation. First consider the

belief generation based on the current answer set, described (for ease of explanation) in

the context of target localization in a set of rooms:

bAi = α ln



1+
Mi

∑
m=1

NF
i,m

∏
Ki,m−1

k=0 NS
i,k,m



 (3)

where bAi , the probability that the target is in room i based on the answer set, is a

logarithmic function (inspired by Fechner’s law) of the evidence obtained from the

(current) known answer set, and α is a normalizer. In Equation 3, m is the index of

primary category Cm, ranging from 1 to the total number of primary categories with

leaf objects known to be in room i (i.e., Mi), while NF
i,m counts the number of objects of

Cm known in room i. Values of Mi and NF
i,m are calculated by counting the number of

relevant located/3 and observed/3 literals (respectively) in the answer set. The

term Ki,m is the height (in the object category tree) of the lowest common ancestor of the

(desired) target andCm. The product in the denominator accounts for the category nodes

along the path fromCm to the lowest common ancestor. The variable k, which represents

the height of the nodes along the path considered, ranges from the object level (i.e., 0) to

Ki,m−1, one level lower than the lowest common ancestor. Finally, NS
i,k,m is the number

of siblings of the node (including itself) on the path at height k—the value of NS
i,0,m (at

height = 0) is set to be 1.

Once a belief vector has been computed (for target object occurrence) based on the

answer set, the revised POMDP belief is obtained by merging the existing POMDP

belief distribution with the belief distribution obtained from ASP:

b′i = (1−Ω)bi +ΩbAi (4)

where bi and b′i represent the sum of beliefs (that the target is in that room i) before and

after the belief revision respectively. The parameter Ω ∈ [0,1] represents the relative

trust in the knowledge represented by the answer set. The effect of this parameter is

analyzed experimentally in Section 4. This is a simplistic approach to merge probability

distributions—future work will consider more sophisticated algorithms [2, 5].

2 Fechner’s law was introduced in 1860 and served as the basis of modern Psychophysics. It

states that subjective sensation is proportional to the logarithm of stimulus intensity.



Fig. 2: Pictorial representation of relationships between object categories that are used

for ASP-based belief generation.

As an illustrative example, consider Figure 2, which is a pictorial representation of a

subset of object categories in the KB. This “tree” represents the following elements, re-

lations and learned facts in KB—the knowledge is a combination of initial information

(extracted automatically from online stores, e.g., Amazon) and information extracted

from sensory inputs and human inputs:

• Facts (elements):

category(electronics).

category(office_electronics).

...

category(printer).

...

object(printer1).

...

room(room1). ... room(room4).

• Facts (relations):

is(office_electronics, electronics).

is(television_and_video, electronics).

...

is(fax, office_electronics).

...

is(printer1, printer).

...

is(dvd_player2, dvd_player).

• Facts (learned):

observed(printer2, room1, 1).

...

observed(scanner3, room2, 1).

...

observed(dvd_player2, room4, 1).

accessible(room1, 1).

...

location(room1, 1000, 1000).

...

location(room4, 4000, 4000).



In this example, there are 4 rooms with some objects classified under “electronics”. The

robot (at this point) knows the location of some objects, e.g., room1 has one printer

(shown as red triangle in Figure 2) and two scanners (shown as red diamonds). The

robot is asked to localize a specific printer (shown as yellow triangle) that is visually

distinguishable from other objects. Unknown to the robot, the object is in room1. ASP

reasons with the existing facts to provide an answer set with the following literals:

located(printer, room1, 1).

located(scanner, room1, 1).

located(office_electronics, room1, 1).

located(electronics, room1, 1).

...

located(dvd_player, room4, 1).

located(television_and_video, room4, 1).

located(electronics, room4, 1).

The answer set is used to compute the ASP-based belief distribution (Equation 3) re-

sulting in bA = [0.3890,0.3361,0.0000,0.2749]. The initial POMDP belief distribution

(uniform in the absence of knowledge) is then revised as described in Equation 4, with

the trust factor Ω set such that POMDP and ASP modules are trusted equally. The

revised belief vector is [0.3195,0.2931,0.1250,0.2625]. The belief for each room is

spread over the grid cells in the room using a large-variance Gaussian centered in the

middle of the room to motivate the robot to move to a central location in rooms. Prior

knowledge about likely locations of target within a room will suitably revise mean and

variance of the Gaussian. The updated beliefs are used in the learned HL-POMDP pol-

icy to choose an action, resulting in the robot moving to analyze a specific scene.

Knowledge acquisition and observations The final component is the knowledge ac-

quisition from sensory inputs and humans. Since human participants may not have the

expertise or time to provide elaborate and accurate feedback, human feedback is limited

to simplistic high-level verbal inputs.

As the robot moves in the domain, (existing) algorithms are used to periodically

process images to detect humans (specific humans are not modeled separately). When

a human is detected nearby, the robot computes the need for human feedback based on

entropy of the belief distribution (for the target being localized). A low entropy implies

that the robot is confident of the target object’s location—the human is then ignored

(except for safe navigation). If the entropy is high, the robot will stop and draw the

human’s attention (emit tone), followed by a specific query about a room’s accessibility

or the target object’s location. These queries (generated by robots) and valid responses

are based on known templates such as:

Robot: Where is the [object]?

Human: In [room]. / Sorry, I do not know.

Robot: Is [room] accessible?

Human: Yes. / No. / Sorry, I do not know.

In addition to human inputs, the robot also acquires knowledge by processing sensory

inputs. As the robot moves between grids, learned models (more details below) are used



to detect objects in low-resolution images at low frequency. A newly detected object

with high certainty is added to the knowledge base, using the detected position to form

a suitable fact. Although this piece of information may not be directly relevant to the

current task, it may still be relevant to future tasks.

Dynamic changes in indoor domains include changes in object configuration and

obstacle locations, e.g., a door that was open may now be closed. The robot can confirm

such changes using human feedback—changes detected with high certainty update the

KB. Such revisions to the KB may eliminate certain areas from analysis in the near

future. Subsequent observations can produce facts that (once again) revise the KB.

4 Experimental Evaluation

The hybrid framework was evaluated in the context of a mobile robot localizing tar-

get objects in indoor domains (e.g., multiple floors of our department). Experiments

were designed to evaluate the ability of the robot to: (a) represent and reason with the

knowledge acquired by sensing and from humans; and (b) make use of the knowledge

to reliably and efficiently perform the desired tasks in complex real-world domains.

Experimental trials were conducted in simulation and on physical (wheeled) robots to

evaluate the following hypotheses: (I) the integration of ASP and POMDP enables reli-

able target localization while significantly reducing the time required to locate objects;

and (II) the entropy-based strategy for interacting with humans enables the robot to

make best use of human feedback to reliably and efficiently localize targets.

4.1 Initial Setup

The robots used in the experiments were equipped with the following capabilities not

described in this paper: (a) simultaneous localization and mapping (SLAM) using laser

range data; (b) local obstacle avoidance using range information; and (c) speech recog-

nition using the Sphinx toolkit [20]. The robot learned the domain map and revised it

during experiments. The robot also had an algorithm to autonomously learn sophisti-

cated object models using a variety of visual cues [14]. In the experiments below, the

object models required to recognize the desired objects have already been learned. The

object models enable the robot to generate the model parameters for the lower levels

of the POMDP hierarchy. The learned object models also provide certainty measures

for the observations extracted from sensory inputs. In the experiments below, the robot

associates high certainty with all human inputs.

4.2 Experiments in Simulated Domains

As conducting many trials on physical robots is a challenge, a simulated domain was

designed for extensive evaluation. The learned object (and error) models were used to

simulate realistic motion and perception. Figure 3 shows an instance where four rooms

are connected by a surrounding hallway in a 15× 15 grid. Table 1 shows the corre-

sponding 50 objects in 10 different primary categories. For simplicity, we assume that

none of the primary categories included in the experiments are exclusive. As stated



Fig. 3: Grid map of a domain created in simulation.

Table 1: Object categories for the simulated domain in Figure 3.

Categories

Root level 1

Internal level 1.1 1.2 1.3

Primary level 1.1.1 1.1.2 1.1.3 1.1.4 1.2.5 1.2.6 1.2.7 1.3.8 1.3.9 1.3.10

Object numbers

room1 3 2 3 1

room2 3 4 2 1

room3 1 1 7 6 1 2

room4 2 3 2 1 3 2

earlier, the object category tree is created automatically using learned and known facts

(and reasoned answer sets). Each data point in figures described below is the average of

results obtained over 5000 trials in the simulated domain.

To evaluate hypothesis I, all 50 objects are stationary and one or more of them are

randomly selected as target objects, whose locations are hence unknown to the robot.

The robot’s initial position is randomly selected in each trial. A specific target object

is considered to be localized when one of the entries in the corresponding belief dis-

tribution exceeds a threshold (e.g., 0.9) though performance is robust to the choice of

threshold (≥ 0.75). Figure 4 summarizes the experimental results, with the x-axis de-

picting the extent to which ASP-based beliefs are trusted. When ASP-based beliefs are

not included (0 on the x-axis), the accuracy is high (≈ 0.95)—even the few errors corre-

spond to objects in a grid cell being localized in one of the neighboring cells. However,

the robot travels a significant distance (and hence spends a considerable amount of time)

to locate the targets—there is no timed termination of these trials. As the robot starts

considering the ASP-based beliefs using Equations 3-4 there is a marked decrease in

the distance traveled by the robot to localize targets, and the performance is robust over

a wide range of trust factors. However, when ASP-based beliefs are trusted significantly

more than the POMDP beliefs (that are based on sensing), accuracy starts falling. One

reason for this decrease in accuracy is that the initial knowledge about categories (ex-

tracted from online repositories) is not fully correct. Another reason is that the evidence

from “related” objects can sometimes overwhelm other facts. For instance, when the

object of category 1.1.1 in room3 is selected as a target, room1 has the highest initial



belief based on the answer set. It is a challenge for the robot to recover from such situ-

ations if it mainly trusts ASP-based beliefs, especially when this trust is combined with

false positive observations of the target. In other words, logical reasoning (with KB)

and probabilistic reasoning are equally important for reliable and efficient operation.
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Fig. 4: ASP+POMDP: the time taken to localize targets is significantly reduced by using

ASP-based beliefs, and the high target localization accuracy provided by POMDPs is

retained. Trusting ASP beliefs too much has a detrimental effect on accuracy.
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Fig. 5: Human feedback as a function of belief entropy. Judicious use of human feed-

back significantly reduces the time taken to localize targets. Frequent use of feedback

hurts performance because of the uncertainty in human inputs.

Next, to evaluate hypothesis II, human feedback is considered in addition to sen-

sory inputs. The system uses known ground truth to simulate human feedback that is

available to the robot approximately once every five actions. In addition, there is a 20%

likelihood of the feedback being incorrect. The results summarized in Figure 5 are for

the domain in Figure 3, with the three curves corresponding to different costs associated

with human feedback (in units of time). The trust factor for ASP is chosen in the range

(≈ 0.2−0.6) that results in good performance in Figure 4. The x-axis shows the belief

entropy threshold above which the robot seeks human input. When the threshold equals



the maximum entropy (≈ 5.4), the robot never asks for human feedback, and the robot

always seeks human feedback (when available) when the threshold is 0. Since human

feedback can be unreliable, extensively seeking human input hurts performance. For

any entropy threshold between 2.5−5.0, the robot requires the least amount of time to

localize the corresponding targets. Humans can help identify the room containing the

target (but not the exact location) and/or comment on accessibility of rooms (see Sec-

tion 3.3). Human feedback therefore helps significantly if used when needed (i.e., when

the entropy is reasonably high) to reduce the search space of the robot. At the same time,

if the robot rarely seeks human feedback (high threshold), target localization takes more

time. In addition, as the cost of interacting with humans increases, feedback should be

acquired more sparingly.

4.3 Experiments on Physical Robots

Experiments were also conducted over two floors of our department building. The third

floor, for instance, has three research labs, 13 faculty offices, a conference room and a

kitchen (and common area). The experimental platform was a wheeled robot running

the Robot Operating System [17]—see inset in Figure 6.

Fig. 6: Occupancy-grid map of the indoor office domain used for experimental evalua-

tion. Robot platform shown as inset.

We conducted 30 trials (all successful) with the robot starting at a random location

and given a random target, e.g., a coffee maker or a specific printer. As stated earlier, the

robot has learned a domain map and object models. The robot starts with some domain

knowledge and incrementally augments it. Consider a trial where the robot knows the

presence of a refrigerator and a microwave in one of the rooms even though it has no

knowledge about the semantic meaning of “kitchen”. Based on the object category tree

corresponding to the current knowledge, the robot concludes that the coffee maker is

highly likely to occur in the same room with other kitchenware, resulting in high initial

belief (of target occurrence) in the kitchen after merging ASP and POMDP beliefs. As



the robot moves to the kitchen, it meets a human but does not ask for input because the

belief entropy is not high. However, in the main office outside the kitchen, the robot

detects a printer that had recently been moved from the floor above, and the door to an

instructor’s office that is closed. These pieces of information, though not relevant to the

current task, revise the KB. On arrival at the kitchen, the hierarchical POMDP enables

the robot to efficiently process the images and localize the coffee maker. If the robot has

to enter the instructor’s office or find the printer in subsequent trials, it uses the existing

knowledge and seeks human input appropriately.

5 Conclusions and Future Work

This paper presented a novel hybrid framework that integrates ASP and POMDPs to

enable a mobile robot to reason with domain knowledge, automatically tailor sensing

and information processing to the task at hand, merge logical facts with probabilistic

beliefs, and use the information extracted from sensory cues and high-level human in-

puts to revise the knowledge base. The framework is evaluated in the context of visual

target localization to show that the robot is able to operate reliably and efficiently.

The proposed framework opens up many directions of future research. Future work

will consider advanced logical reasoning of object (and domain) properties, e.g., kitchen

typically has only one microwave. We also seek to integrate decision-theoretic inference

with probabilistic non-monotonic logical reasoning. A mobile robot will then be able to

jointly reason with logical facts and model the uncertainty in sensory cues and human

inputs, resulting in widespread deployment in real-world application domains.
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