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Abstract. This paper presents a novel approach that enables a mobile robot to

autonomously learn object models using local, global and temporal visual cues.

Learning is triggered by motion cues—interesting image regions are identified by

tracking and clustering salient (local) image gradient features across a sequence

of images. Object models learned from these candidate image regions consist

of: (1) gradient features and their relative spatial arrangement; (2) neighborhood

relationships of connection potentials between the gradient features; (3) parts-

based representation of image segments extracted from the region; and (4) color

distribution statistics. Belief revision and energy minimization algorithms used

the learned object models to reliably and efficiently recognize the desired objects

in novel scenes. All algorithms are implemented and evaluated on a mobile robot

platform deployed in indoor and outdoor domains.
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1 Introduction

Object recognition continues to be an open challenge in the field of robotics and com-

puter vision despite the development of sophisticated object recognition algorithms that

use a variety of visual cues [7, 8, 13–16, 24]. Real-world application domains are char-

acterized by unforeseen dynamic changes and reliable operation in such domains re-

quires the robot to autonomously learn and revise models of domain objects. However,

the sensitivity of visual inputs to changes in environmental factors and the computa-

tional complexity of visual input processing algorithms make vision-based autonomous

operation a formidable challenge. This paper describes a novel approach that enables

a mobile robot to autonomously learn models for environmental objects using local,

global and temporal visual cues. The approach draws inspiration from nature, where a

chameleon that has camouflaged itself by taking on the color of the background can still

be detected when it starts moving. We hypothesize that once a map of the world (with

stationary objects and obstacles) has been learned, objects that can move are interesting

and need to be tracked by the robot. The proposed approach therefore identifies inter-

esting image regions corresponding to candidate objects using temporal visual cues,

i.e., by tracking local gradient features over successive images. Each candidate object

is then characterized by image gradients, connections between gradient features, im-

age segments and color distributions extracted from the corresponding image region.



The learned models are augmented with an additional layer that models the relative

spatial arrangement of gradient features, neighborhood relationships of feature connec-

tions, parts-based arrangement of image segments and second-order statistics of color

distributions. The layered object model thus utilizes the complementary properties of

local, global and temporal visual cues to build robust models that characterize envi-

ronmental objects. A belief revision strategy uses the learned models to detect objects

in subsequent frames, revising the learned models and leading to more accurate object

recognition. All algorithms are evaluated on mobile robots in real-world domains.

2 Related Work

Sophisticated algorithm have been developed in computer vision research to character-

ize and recognize object using scale, rotation and affine-invariant gradient features [4,

13, 16, 18]. For instance, Mikolajczyk and Schmid [16] developed image gradient fea-

tures invariant to affine transforms to characterize and recognize objects in images.

Lowe [13] developed the scale-invariant feature transform (SIFT) that used local im-

age gradient features to characterize objects of interest. Matas et al. [15] represented

objects by using an affine-invariant set of extremal regions, called the maximally stable

extremal regions (MSER). However, algorithms that use gradient features are not well-

suited for representing objects with patterned or texture-less surfaces, and are com-

putationally expensive. Other algorithms for object recognition characterize objects

using models of appearance, shape and size [7], as a hierarchical decomposition of

parts [8], or as a contour that identifies object boundaries tracks non-rigid shapes [30].

Researchers have also developed models based on the human visual cortical mecha-

nisms [25] and used visual code-books to represent a wide range of objects [17]. How-

ever, these algorithms typically require extensive manual supervision during training

and are computationally expensive.

Computer vision algorithms draw upon mathematical principles such as energy min-

imization, graph theory and belief propagation in graphical models [3, 29, 11]. For in-

stance, Guo et al. [10] developed an adaptive non-planar road detection and tracking

algorithm that uses a Markov random field (MRF) for belief propagation. Kolmogorov

et al. [11] used MRFmodels to build inference layers based on color, contrast and stereo

matching, while Arbelaez et al. [1] used the normalized energy of the established match

between images as a measure of goodness of fit. More recently, Porway and Zhu [22]

developed a Markov Chain Monte Carlo (MCMC) inference algorithm that outperforms

existing inference algorithms in tasks such as drawing interpretation and object recog-

nition. Piater et al. [21] learned joint representations for perception-grasping systems,

using reinforcement learning and hierarchical Markov models. Although algorithms

based on graphical models result in robust object recognition, obtaining labeled sam-

ples and conditional probability distributions is a challenge in robot domains.

Researchers in computer vision and robotics are increasingly focusing on develop-

ing algorithms for unsupervised learning of object models. Roman et al. [23] proposed

a hierarchical approach that relies on the stability of a subset of features extracted from

sensory inputs to perform an initial classification of images using unsupervised meth-

ods. Parikh et al. [20] developed an algorithm for unsupervised learning of hierarchical

spatial structures from images, using a rule-based model and a graph-based represen-



tation for each rule. Prior work on robots has shown that a robot can use visual in-

put to autonomously adapt visual feature models to illumination changes [27], and use

temporal cues in addition to other visual and non-visual cues to achieve autonomous

navigation![19]. Many of these algorithms fail of fully exploit the rich information in

visual inputs. In this paper, we present a novel approach that enables a mobile robot to

autonomously learn object models using local, global and temporal visual cues.

3 Proposed Algorithm

This section describes the learning of object models and the use of these models to

recognize objects in novel scenes. Learning is triggered by motion cues and image

regions corresponding to candidate objects are identified by tracking local gradient fea-

tures in a sequence of images (Section 3.1). The object models are then composed

of low-level and high-level representations of gradient features, connection potentials

between gradient features, image segments and color distributions extracted from the

candidate regions (Section 3.2). A belief revision strategy uses the learned models for

object recognition, as described in Section 3.3.

3.1 Candidate Image Region Selection

Many real-world object possess unique characteristics and trace well-defined motion

patterns, although these characteristics and patterns are not known in advance and may

change over time. Image regions corresponding to candidate objects are hence iden-

tified by tracking MSER-SIFT gradient features [12] in consecutive images. Consider

features extracted from images: {It−1, It} at time t − 1 and t:

MSt−1 = {mst−1,i, post−1,i}
Nt−1

i=1

MSt = {mst,i, post,i}
Nt

i=1

where each featurems is a 128D vector, pos is the feature’s (x, y) position in the image,

and Nt−1 and Nt are the number of gradient features in It−1 and It respectively. The

gradient features in these two sets are matched based on the Euclidean distance metric.

The matched features are clustered based on their relative displacement between the

images. The underlying hypothesis is that unique features corresponding to an object

are likely to have similar relative motion between consecutive images. Clusters with

more than a minimum number of matched features are considered to be candidate ob-

jects in motion. Convex boundaries are found around each cluster and any cluster that

includes many features from a different cluster within its boundary is removed. In ad-

dition, pair-wise feature matching is performed over 3 − 5 consecutive images. This

selection of candidate image regions assumes that object motion is not very fast and has

a translational component. We also assume that objects with substantial overlap do not

move with the same velocity.

3.2 Learning Layered Object Model

For a candidate region of interest (ROI), an object model is learned autonomously—see

Figure 1. The first layer models visual features from the ROI and the second layer mod-

els higher-level abstractions for robustness. Specifically, the object model has four com-

ponents based on: (1) gradient features and relative spatial arrangement of features; (2)



connection potentials between neighboring gradient features and an undirected graph of

relationships between these potentials; (3) image segments and a parts-based model of

relative spatial arrangement of segments; and (4) color distributions and second-order

image statistics. These components are described below.

Fig. 1: Learned object models consists of four components that exploit the complementary prop-

erties of local, global and temporal visual cues.

Spatial Coherence Vector: Although the gradient features may not be unique, the spa-

tial arrangement of features extracted from the image ROI corresponding to an object

is difficult to duplicate. The object model represents the relative spatial arrangement of

gradient features using a spatial coherence vector (SCV) similar to the coherence vec-

tor for color histograms [9]. If the object has N gradient features in the ROI, the SCV

for the ith feature is computed along the x and y axes:

SCVx,i = {dx
i,1, d

x
i,2, . . . , d

x
i,N} (1)

SCVy,i = {dy
i,1, d

y
i,2, . . . , d

y
i,N}

where dx
i,j and d

y
i,j are the relative positions of feature i w.r.t feature j along the x and

y axes. If xi and xj are the x-coordinates of features i and j in the image:

dx
i,j =







1 if xi > xj

0 if xi = xj

−1 if xi < xj

(2)

and d
y
i,j is defined similarly. The object model hence extracts N gradient features from

the ROI (each feature is a 128D vector) and a 2(N − 1)-dim SCV for each feature.

Connection Potentials: The second component of the object model captures the distri-

bution of pixels between gradient features in the image ROI. The connection potential



between two gradient features is computed as the color distribution of pixels on the line

joining the features in the image. The spread between any two features is normalized to

unit distance and the 3D color pixel values are collected in 100 bins. This distribution

is smoothed along each dimension using an impulse response filter:

Cnew
n = αCn + (1 − α)Cn−1 (3)

where the smoothed value in the nth bin, i.e., Cnew
n , is a function of the value in the

previous bin (Cn−1) and the raw color value in bin (Cn). The parameter α controls the

effect of raw data on the smoothed value. This coarse representation (100 bins) provides

computational efficiency while modeling the connection potential.

A connected neighborhood is built for each gradient feature (in the learned model)

by sorting the features in increasing order of distance from the center of the ROI. Con-

sider the sorted list of N features:

{d1, ..., dk−2, dk−1, dk, dk+1, dk+2, ..., dN} (4)

where ∀i < j, di < dj . A four-connected neighborhood of each feature is then defined

as the four closest neighbors in the sorted list. The object model is then augmented with

an undirected graph (i.e., Markov network [2]) that models the neighborhood relation-

ships of connection potentials between gradient features in the object model.

Parts-based Representation: The third component of the object model is the spatial

arrangement of object parts made up of image segments. A graph-based segmentation

algorithm [6] is used to extract segments from the image ROI such that the pixel val-

ues within a segment are similar to each other and significantly different from pixels in

surrounding segments. Spurious segments are filtered by rejecting significantly concave

segments and segments that do not overlap substantially with the image region under

consideration. Individual segments are then modeled as Gaussians that represent seg-

ment locations within the ROI. These 2D Gaussian models: N (µk, Σk), k = 1, ...,M
constitute the “parts” of the object in the ROI. These parts and the list of neighboring

parts (that share a boundary) are added to the object model. Two measures are defined

to compute pixel similarity within each part (PartSimM ) and pixel dissimilarity in

neighboring parts (PartDiffM ), as described in Algorithm 1.

Algorithm 1 considers the N pixels in the M parts (i.e., Gaussians) computed in the

ROI. First, each pixel is assigned a label lb(n), i.e., membership in one of the M parts,

using the a priori probability density functions of different parts (lines 2–4). Next, each

pixel’s contribution to the similarity and dissimilarity measures is computed (lines 5–

12). The term Nin represents the number of pixels in the part that pixel n belongs to,

while Nnhb is the number of pixels in all neighboring parts. The function RGB() com-

putes the difference in RGB values of two pixels. For each pixel, lines 6–8 compute the

similarity with other pixels in the same part (Simlb(n)), and lines 9–11 compute the dis-

similarity with pixels in neighboring parts (Difflb(n)). For both Simlb(n) and Difflb(n),

the value added in each iteration is the difference in RGB values between the corre-

sponding pixels, weighted by the probability that the two pixels belong to the same part

(Simlb(n)) or different parts (Difflb(n)). The contributions of each pixel are summed

up, and the similarity and dissimilarity measures (PartSimMlb(n), PartDiffMlb(n))

are computed as the logarithm of the summations (lines 13, 14).



Algorithm 1 Similarity + Dissimilarity of Object Parts.

1: Initialize Sim = 0 and Diff = 0.
2: for n = 1 to N do

3: lb(n) = arg max
1≤j≤M

p(n |µj , Σj )

4: end for

5: for n = 1 to N do

6: for nin = 1 to Nin do

7: Simlb(n)+ =

P

∆r,∆g,∆b

RGB(n,nin)

p(n|µlb(n),Σlb(n)) p(nin|µlb(n),Σlb(n))

8: end for

9: for nnb = 1 to Nnb do

10: Difflb(n)+ =

P

∆r,∆g,∆b

RGB(n,nnb)

p(n|µlb(n),Σlb(n)) p(nnb|µlb(nb),Σlb(nb))

11: end for

12: end for

13: PartSimMlb(n) = ln(simlb(n))
14: PartDiffMlb(n) = ln(difflb(n))

Local variations in the positions of parts are modeled by artificially displacing the

envelope around the extracted parts. The values of PartSimM and PartDiffM com-

puted over these positions are modeled as a gamma distribution. The object model’s

third component thus consists of image segments, parts-based model and measures of

expected similarity (dissimilarity) within (between) parts.

Color Distribution Statistics: The final component of the object model is based on the

distribution of pixels extracted from the ROI. These pixels are used to learn normalized

histograms, i.e., color space pdfs, in the HSV color space. Since any two of the three

normalized dimensions are sufficient statistics, each pdf is learned in (h, v) with ten

bins in each dimension. Since color distributions do not constitute a stable or unique

representation, second-order image statistics are computed [26]. Specifically, the dis-

tance between every pair of pdfs is computed using the Jensen-Shannon (JS) measure:

JS(a, b) =
KL(a,m) + KL(b,m)

2
(5)

KL(a, b) =
∑

i

∑

j

(ai,j · ln
ai,j

bi,j

), m =
a + b

2

where (a, b) are two pdfs and KL is the KL-divergence measure. The JS measure is

robust to spurious peaks in observed pdfs. The fourth component thus consists of color-

space pdfs and the distribution of distances between the pdfs.

3.3 Information Fusion for Object Recognition

The learned object models are used for object recognition in subsequent images of novel

scenes, irrespective of whether the object is stationary or moving. For a given test image,



this section describes the belief revision strategy to estimate probability of occurrence

of different learned objects. Assume initially that a subset of gradient features in the test

image have been matched with the features of a learned object model to obtain a test

image ROI. The use of energy minimization algorithms to iteratively select test image

ROIs is described later in this section.

Gradient Feature-based Matching: The probability of occurrence of a specific object

is computed by comparing the SCV of gradient features in the test image ROI with the

learned object model’s SCV:

pssm =
xcorrect + ycorrect

2 ∗ M
, pssm ∈ [0, 1] (6)

xcorrect =
M
∑

m=1

Nxm correct

N − 1

ycorrect =
M
∑

m=1

Nym correct

N − 1

where Nxm correct and Nym correct represent the number of values in the test image

SCV that match the learned object model’s SCV along the x and y axes respectively.

The term M is the count of gradient features in the learned object model. The value of

pssm ∈ [0, 1] is the probability of spatial match of the two sets of gradient features. A

similar computation using other learned object models provides a probability distribu-

tion of occurrence of each object in the test image ROI.

Connection Potential Matching: The probability of occurrence of a learned object is

also computed by comparing the neighborhood of connection potentials between gra-

dient features in the test image to the connection potentials and neighborhood of the

corresponding matched features in the object model. Once the ROI’s gradient features

have already been matched with the learned object model’s gradient features, a sim-

ilarity measure is computed between connection j in the ROI and the corresponding

(matched) connection i in the learned model. This similarity measure uses the corre-

sponding normalized distributions Cj
n and Ci

n in the ROI and learned model:

con(i, j) =
100
∑

n=1

f(Ci
n, Cj

n) (7)

f(a, b) =

{

1 |a − b| > β

0 otherwise
(8)

where β is a parameter to identify significant change in entries of the connection poten-

tials. The probability of occurrence of the learned object is obtained using the neigh-

borhood of connection potentials in the test image ROI and learned object model:

pcon =
1

Z

∑

k∈{1,...,M}

∑

i∈Nk,j∈Nkm

con(i, j) (9)

where M gradient features in the object model match the features in the ROI, Nk is the

connected neighborhood of gradient feature k in the object model,Nkm
is the connected



neighborhood of (matched) gradient feature km in the ROI, and Z is a normalizer. A

similar computation with other learned object models provides the probability distribu-

tion of occurrence of these objects in the ROI.

Parts-based Matching: For the selected test image ROI, a match probability is also

computed using the parts-based component of the learned object model. Different rel-

ative arrangements of the learned model’s parts are compared with pixels in the test

image ROI. For pixels in the overlapping region for each arrangement, the similarity of

pixels within a learned model part and the dissimilarity of pixels in neighboring parts is

computed using the PartSimM and PartDiffM measures in Algorithm 1—the pixel

class labels (lb(n)) are provided as input. The learned gamma distributions of values of

these measures are used to compute the suitability of this arrangement:

f(xj) = gamma(|xli
j − xj | − (k − 1)θ, k, θ) (10)

p
j
cdm = f(PartSimMj) × f(PartDiffMj)

pcdm =
∑

j

(wli
j × p

j
cdm)

where (k−1)θ is the stationary point of the gamma distribution, xj is the pixel similarity

(PartSimM ) or dissimilarity (PartDiffM ) when considering the ith learned object

model’s jth part and xli
j is the mean of the gamma pdf. The match probability for this

relative arrangement (pcdm) is the weighted product of match probabilities p
j
cdm of each

part. The weight wli
j is the ratio of number of pixels in that part divided by the number

of pixels in all parts of the object model. The best arrangement is one that maximizes

pcdm. A similar computation is performed using other learned object models to obtain

the probability distribution of occurrence of the learned objects in the ROI.

Color-based Matching: Color space distributions extracted from the test image ROI

are also used to compute the probability of occurrence of the learned objects. For the

ith learned object model, the average distance davg,li is computed between the test

image pdf and the color space pdfs corresponding to the learned object model, using

Equation 5. A comparison with the expected (Gaussian) distribution of distances (for the

learned object model) provides pjs,li , the probability of occurrence of the corresponding

object in the test image ROI. A similar computation is performed using other learned

object models to obtain the probability distribution of occurrence of different objects

in the test image ROI. Note that it is possible (when the second-order statistics are

being learned) to use relative values of the average distances between test image pdf

and learned pdfs of different object models to obtain the probability of occurrence of

the learned objects in the test image ROI.

Information Fusion: Finally, consider the identification of test image ROIs (for anal-

ysis) and the information fusion strategy. For ease of explanation, assume that only one

object exists in a test image ROI—the algorithm can detect multiple objects in an image

or ROI. If the object is moving in a test image sequence, ROIs are identified by track-

ing gradient features. However, when test images are snapshots of stationary objects or



objects in different scenes, ROIs are identified by matching gradient features in the im-

ages with the learned object models. Consider a test image that is being compared with

the ith learned object model. For each of the G local gradient features in the model,

K nearest neighbors are found in the test image. Each of the possible (at most) K ∗ G

combinations is a ROI in the test image that can be analyzed by individual components

of the object model. Energy minimization is used for iteratively selecting ROIs from

the available combinations, as described later in this section.

For a specific ROI, belief revision is used to combine the evidence provided by com-

ponents of the learned object models regarding presence of the corresponding objects.

First, the predicted estimate of the ith learned object’s occurrence in the ROI is:

p(mpre
li

) =
∏

j∈{1,...,G}

nnj ; nnj =
dis stdj

disj

(11)

where dis stdj is the distance from the ith learned model’s jth gradient feature to the

nearest neighbor among the ROI’s features, and disj is the distance to the current selec-

tion among the K possible neighbors. Next, the observations provided by the individual

components of the learned object model are merged as:

p(mob
li

) = pcon,li · pcdm,li · pssm,li · pjs,li (12)

where the individual probabilities (pssm,li , pcon,li , pcdm,li , pjs,li) of occurrence of ith

learned object are computed as described above. We assume that the individual compo-

nents are mutually independent, which works well in practice. The corrected estimate

of occurrence of the ith learned object in the test image ROI is then computed as:

p(mli) = p(mpre
li

)p(mob
li

) (13)

The ROI (among the candidates generated by matching gradient features) that max-

imizes Equation 13 is the best estimate of the corresponding object’s location. This

optimization problem is solved using the iterated conditional modes (ICM) energy min-

imization algorithm [28]. The results with ICM can be sensitive to the choice of initial

estimate in high-dimensional spaces. However, we obtain robust performance by using

the nearest neighbors of the learned model’s gradient features to obtain the initial ROI

estimate. The normalized match probability distribution is then computed as:

pli =
p(mli)

M
∑

j=1

p(mlj )

(14)

This probability distribution is used for recognizing learned objects and for detecting

novel objects when the match probabilities for all learned models are low.

The overall operation is described in Algorithm 2. A mobile robot begins with a

learned map of the domain but no initial knowledge of the desired objects. If the robot

is to learn object models, i.e., modelLearn is true in line 3, the robot uses clustered

gradient features extracted from consecutive images to obtain candidate ROIs. If a valid

ROI exists (line 5), visual features are extracted to populate the four components of the

learned object model. The robot attempts to match the new object model with existing

models (if any, line 7). If a match with a sufficiently high probability is found, the



Algorithm 2 Object Model Learning and Recognition.

Require: : Ability to learn object models based on feature connections, gradient features, color

distributions and color segment parts.

Require: Learned map of the surroundings for navigation.

1: Initialize: numObjects = 0 (no prior knowledge).

2: while true do

3: if modelLearn then

4: Compute gradient features for It and It−1.

5: if validObject() then

6: Compute SCV, connection potentials, segment parts and color distribution statistics.

7: if (numObjects > 0) & existModel() then

8: Augment model of appropriate object.

9: else

10: ComputeNewModel()
11: numObjects = numObjects + 1
12: end if

13: end if

14: else

15: Compute SCV, connection potentials, segment parts and color distributions for It.

16: if numObjects > 0 then

17: Compute match probabilities of learned models.

18: Identify object in image.

19: end if

20: end if

21: end while

existing object model is augmented. If a good match is not found, a new entry is created

in the list of learned objects (lines 9-12). If the modelLearn flag is not set, the robot

performs object recognition using the learned object models (lines 17-18). Although

learning and recognition are separated in Algorithm 2 for ease of explanation, the robot

performs them concurrently on multiple ROIs.

4 Experimental Setup and Results

This section describes the robot test platform and the experimental results of evaluating

the proposed algorithms.

4.1 Test Platform

The ERA-MOBI robot (a.k.a “erratic”) from Videre Design [5] is used as the test

platform—see Figure 2. It is a 40cm × 41cm × 15cm wheeled base equipped with

a stereo camera, monocular camera, laser range finder and pan-tilt unit. The experi-

ments used one of the cameras of the stereo unit that provides 640 × 480 images. The

laser range finder with a range of 30m is used to learn the domain map. Although the

robot has Wi-Fi communication capability, all experiments were performed on-board

using a 1.6GHz Core2 Duo processor and 1GB RAM. Trials were conducted in indoor

offices, corridors, outdoor settings, and on images from benchmark datasets.



Fig. 2: Robot test platform: “Erratic”.

4.2 Experimental Results

Six object categories were used in the experiments: humans, boxes, airplanes, books,

cars and humanoid robots—Figure 3 shows examples of each category. The “car” and

“airplane” categories were evaluated in outdoor settings, “human” category was eval-

uated in outdoor and indoor settings, while other categories were primarily used for

indoor trials. Separate models were learned for different objects within a category, e.g.,

different boxes, books or humans, to result in 20 subcategories. The objects were con-

sidered in complex backgrounds that made learning and recognition challenging. Dur-

ing trials, some objects (e.g., humans and cars) moved in specific directions, while

others (e.g., boxes and books) were moved on trolleys.

It is a challenge to obtain a relevant database of objects (with well-defined motion)

for experimental evaluation. The experiments were conducted over a set of ≈ 1000
images. About 700 images were captured by the robot over a period of time. A total

of ≈ 300 images (all “airplane” and some “car” images) are from the Pascal VOC2006

dataset (to show applicability to benchmark datasets), which includes information about

ROIs—suitable ROIs were selected manually when any of these images were used for

learning. Each object model is learned autonomously using ≈ 3− 5 images, with ≈ 90
images used for learning all object models—the remaining images are used for evalua-

tion. The goal of the experimental trials is not to compare our algorithms with existing

computer vision algorithms (for object recognition), but to show that a mobile robot

can autonomously learn object models and use these models to robustly recognize ob-

jects in novel scenes. The robot accounted for its own motion and processed 3 − 5
frames/second to identify moving objects and learn desired models, and to detect ob-

jects in subsequent images. Figure 4 shows examples of ROIs and parts extracted from

sample images, while Figures 5(a)-5(c) shows results for a challenging test image.

Results of experimental trials show that object models are learned autonomously

and used for reliable object recognition in novel scenes. The learned model for one cat-

egory rarely provides a good match for any other object category. Figure 6 analyzes the

contribution of each component of the object model towards the overall classification

performance. Each component’s contribution depends on the object in the specific im-

age under consideration. For instance, it is difficult to distinguish between the front and



Fig. 3: Sample images of objects from six object categories.

back of a humanoid robot using color distributions (both surfaces are mostly white in

color), but the gradient features on these surfaces are significantly different. Figure 6

shows that no single component is able to reliably recognize objects across the different

categories and subcategories, but the combination of these components exploits their

complementary properties to provide reliable and efficient recognition.

Box Car Human Robot Book Airplane

Box 0.927 0 0 0.033 0.04 0

Car 0.042 0.89 0 0.068 0 0

Human 0.074 0.017 0.78 0.047 0.05 0.032

Robot 0.028 0 0.017 0.863 0.012 0.02

Book 0.058 0 0 0.025 0.917 0

Airplane 0.03 0.024 0 0.016 0.024 0.906

Table 1: Object recognition accuracy averaged over different models (i.e., subcategories) in each

category.

Table 1 shows the classification accuracy for the different object categories, aver-

aged over the different object models (subcategories) within each category. The classifi-

cation is considered to be correct only if the robot matches each object in the test image



Fig. 4: Images with ROIs and parts extracted.

(a) Test Image. (b) Match Probabilities. (c) Net Match.

Fig. 5: (a) Test image of a box in a complex background; (b) Individual match probabilities— the

best subcategory within each category is shown along the x-axis; (c) Net match probabilities for

different categories.

to the correct model within the appropriate category, i.e., matching an object in human-

class1 to the learned model human-class2 is incorrect. The off-diagonal terms therefore

represent errors. One reason for the classification errors is the learning of object mod-

els with non-unique features, e.g., long shots of the “human” category cause gradient

features to be extracted from clothes, resulting in non-unique object models and lower

classification accuracy. Some classification errors correspond to situations where a suf-

ficient number of unique features in the test image are not matched with the learned

object models due to motion blur or a substantial difference in scale or viewpoint (be-

tween learning and testing). A third reason for the errors is the fact that test image ROIs

are assigned the label of the object model with the maximum match probability, even if

that value is not significantly higher than match probabilities of other objects. Some of

the errors can hence be eliminated by assigning a threshold on the match probability for

object recognition—performance is not very sensitive to the choice of this threshold. In



Fig. 6: The match probabilities obtained with each component of the object model, averaged over

subcategories in each object category.

addition, classification errors are less frequent in image sequences of objects in motion

because identifying the ROI properly enables one or more of the components to identify

the object accurately. These experimental results indicate that the autonomously learned

object models result in reliable recognition of objects in indoor and outdoor scenes.

5 Conclusions and Future Work

Autonomous operation is a key requirement for mobile robots in dynamic real-world

domains. This paper described a novel approach for a mobile robot to autonomously

learn object models by exploiting the complementary properties of local, global and

temporal visual cues. Image regions corresponding to candidate objects are identified

using motion cues, and the objects are modeled using local gradient features, connec-

tion potentials between the gradient features, parts-based model of image segments and

color distribution statistics. Belief revision and energy minimization algorithms use the

learned models for robust recognition in novel scenes.

One constraint in the current set of experiments is that only a couple of objects were

moving at any point in time—future research will investigate the extension to image

sequences with multiple moving objects, consider other object categories and use stereo

vision to disambiguate partially occluded objects. The object model currently assumes

independence between the individual components—future work will enable learning

of the relationships between the components to build more robust models. In addition,

stochastic sampling will be used to improve the efficiency of selecting candidate ROIs

and matching parts-based models. Furthermore, the approach will be extended to a team

of robots collaborating towards a shared objective.
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