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Abstract. Visual object recognition is an important challenge to widespread de-
ployment of mobile robots in real-world domains characterized by partial observ-
ability and unforeseen dynamic changes. This paper describes an algorithm that
enables robots to use motion cues to identify (and focus on) a set of interesting
objects, automatically extracting appearance-based and contextual cues from a
small number of images to efficiently learn representative models of these ob-
jects. Object models learned from relevant image regions consist of: (a) relative
spatial arrangement of gradient features; (b) graph-based models of neighbor-
hoods of gradient features; (c) parts-based models of image segments; (d) color
distribution statistics; and (e) probabilistic models of local context. An energy
minimization algorithm and a generative model of information fusion use the
learned models to reliably and efficiently recognize these objects in novel scenes.
All algorithms are evaluated on wheeled robots in indoor and outdoor domains.

Keywords: Visual learning, Object Recognition, Mobile robots

1 Introduction

Sophisticated algorithms have been developed for representing and recognizing objects
using different visual cues [8, 10, 15]. The computational complexity of these algo-
rithms, and the sensitivity of visual inputs to changes in object configurations and en-
vironmental factors, make it difficult for robots to reliably and efficiently model and
recognize objects. Existing algorithms typically require considerable training, human
supervision or prior knowledge to learn good object models, However, robot applica-
tion domains are typically characterized by partial observability and unforeseen dy-
namic changes, making it a challenge to obtain accurate domain knowledge, human
feedback or many training examples of relevant domain objects. Learning object mod-
els and object recognition therefore continue to be open problems in robotics.

The above-mentioned challenges are partially offset by some observations. First,
many objects possess unique characteristics (e.g., color and shape) and distinguishable
motion patterns, although these characteristics and patterns are not known in advance
and may change over time. Second, images encode information about objects in the
form of complementary appearance-based and contextual cues. Third, robots typically
do not need to model all domain objects; if robots automatically learn and revise the
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Fig. 1. Local, global and temporal cues extracted from pixels within the yellow boundary repre-
sent appearance, while mixture models and relative positions (e.g., “on” and “under”) of regions
within the red rectangle (outside the yellow polygon) represent context.

domain map, many tasks require robots to pay attention to objects that move. This
paper describes an algorithm that exploits these observations to make the following key
contributions:
• Investigates learning of object models from a small (3−8) number of images. Robots

learn the domain map and consider objects that move to be interesting, efficiently
identifying corresponding image regions using motion cues.

• Exploits complementary properties of appearance-based and contextual visual cues
to efficiently learn representative models of these interesting objects from relevant
image regions.

• Uses learned object models in generative models of information fusion and energy
minimization algorithms for reliable and efficient recognition of stationary and mov-
ing objects in novel scenes.

These contributions build on our prior work on efficiently learning object models using
visual cues [13], promoting automatic and incremental learning on mobile robots. Al-
though visual features included in our algorithm have been used in vision research, our
representation fully utilizes them by learning: spatial arrangements of gradient features,
graph-based models of neighborhoods of gradient features, parts-based models of im-
age segments, color distributions, and local context models. Experiments show reliable
and efficient learning and recognition on robots in indoor and outdoor domains.

The remainder of this paper is organized as follows. We first discuss related work in
Section 2, and describe our approach in Section 3. Experimental results are presented
in Section 4, followed by conclusions in Section 5.

2 Related Work

Many algorithms have been developed for representing and recognizing objects us-
ing scale, rotation and affine-invariant image gradient features [2, 15], appearance and
shape features [5], hierarchical decompositions of parts [6] and visual code-books [16].
However, these algorithms require extensive training or human supervision, and are
computationally expensive for use on mobile robots.

Context is an important cue for vision-based object recognition by humans and ma-
chines [18, 20]. Object recognition algorithms have modeled global context at the level
of the entire image [26, 29], and learned models of local context from image regions
surrounding the object of interest [7, 25]. Recent research has focused on extracting
adaptive (and different) contextual cues from images [10, 14]. Research shows that the
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importance of contextual cues varies with the quality of appearance information [20].
Research also shows that motion cues (especially relative motion) can be used for visual
recognition [27] and for augmenting the recognition capability provided by other visual
(or non-visual) cues [17].

Many algorithms are being developed for unsupervised learning of object models.
Researchers have used the stability of some features extracted from sensor inputs for
initial unsupervised classification of images [22]. Existing algorithms also enable unsu-
pervised learning of hierarchical spatial structures from images using rule-based mod-
els [19]. Using multiple visual cues and interactions with objects, researchers are de-
veloping algorithms for learning spatial relationships between objects [23], and for au-
tomatic discovery of groups of related objects [11]. Joint representations of perception-
grasping systems have been learned using reinforcement learning and hierarchical Markov
models [21], and a robot’s interactions with objects have been used to distinguish ob-
jects from the background [24]. However, these algorithms fail to fully exploit different
visual cues, and require accurate domain knowledge and considerable training data.
Our prior research has shown that regions of interest can be automatically identified
in images using motion cues, modeling objects using different visual cues [12, 13].
This paper further investigates learning of object models from a small number of im-
ages, building rich representations that fully exploit complementary properties of local,
global, temporal and contextual visual cues.

3 Proposed Approach

In the proposed approach, robots learn the domain map using range data and consider
objects that move to be interesting. Based on the observation that characteristic features
of an object have similar relative motion between consecutive images, robots track lo-
cal gradient features in short sequences (3 − 8 images), identifying regions of interest
(ROIs) corresponding to moving objects by clustering features with similar relative
motion. One underlying assumption (that works well in practice) is that object motion
has a non-trivial linear component. Object models are learned from candidate ROIs us-
ing complementary properties of local, global, temporal and contextual cues extracted
from the ROIs. This section describes the components of the object model, and the use
of learned object models for reliable and efficient object recognition in novel scenes.

3.1 Object Model Learning

Consider the process of learning an object model from a specific ROI. As shown in
Figure 2, the corresponding object model includes appearance-based and contextual
cues: (1) gradient features and their relative spatial arrangement; (2) connection poten-
tials between gradient features and a graph-based model of neighboring potentials; (3)
image segments and a parts-based model of their spatial arrangement; (4) color distri-
butions and second-order image statistics; and (5) Gaussian mixture models and relative
positions of image segments neighboring the ROI.
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Fig. 2. Learned model uses contextual and appearance-based cues to characterize objects.

Spatial Coherence of Gradient Features (SCG): Gradient features extracted from
the image ROI may not be unique. Our prior work used a spatial coherence vector
(SCV) to model the relative spatial arrangement of gradient features, which is difficult
to duplicate [12]. The SCV is computed along x and y axes for each of the N gradient
features in the ROI:

SCVx,i = {dx
i,1, d

x
i,2, . . . , d

x
i,N} (1)

SCVy,i = {dy
i,1, d

y
i,2, . . . , d

y
i,N}

where dx
i,j and dy

i,j are the relative positions of feature i w.r.t feature j along the x and y
axes respectively, e.g., if xi and xj are the x-coordinates of feature i and j in the image,
dx

i,j = 1, 0 or −1 for xi >,= or < xj respectively; dy
i,j is defined similarly. The object

model hence extracts N gradient features from the ROI (each feature is a 128D vector)
and a 2(N − 1)-dimensional SCV for each feature.

Graph-Based Model of Connection Potentials (GCP): The second component of
the object model captures the relationships between neighboring gradient features in
the ROI. For any two gradient features, the connection potential is defined as the dis-
tribution of pixels on the line joining the features. The distance between the features is
normalized and pixel values are collected in a histogram of 100 bins, which is smoothed
along each dimension:

Cnew
n = αCn + (1− α)Cn−1 (2)

where the smoothed value in nth bin is a function of the value in previous bin (Cn−1)
and raw value in the bin (Cn). The effect of raw data is controlled by α, while the
coarse representation (100 bins) provides computational efficiency. The N gradient
features in the ROI are also sorted based on distance from the center of the ROI:
{d1, ..., dk−1, dk, dk+1, ...dN},∀i < j, di < dj . The local neighborhood of each fea-
ture includes the four closest neighbors. The object model includes the connection po-
tentials and a undirected graph [9] of local neighborhoods of connection potentials.
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Parts-based Models of Image Segments (PIS): The third component uses a graph-
based segmentation algorithm [4] to extract segments from the ROI such that RGB
values within a segment are similar and significantly different from pixels in neigh-
boring segments. Valid segments are modeled as 2D Gaussians that represent spatial
locations in the ROI: N (µk, Σk), k = 1, ...,M and constitute “parts” of the object.
Each pixel n in the ROI is assigned membership in one of M parts based on Gaussian
density functions of the parts: argmaxj p(n |µj , Σj ). Then, each pixel’s similarity with
pixels in the same part and dissimilarity with pixels in neighboring parts are computed,
weighted by the probability that these pixels belong to the same part or different parts.
Similarity and dissimilarity measures for each part (PartSimMk, PartDiffMk) are
defined as the logarithm of sum of contributions of all pixels in that part. To capture lo-
cal variations in positions of parts, the envelope around the extracted parts is displaced a
few times and the corresponding values of PartSimM and PartDiffM are modeled
as gamma (Γ ) distributions for each part. The object model includes image segments,
parts-based model and these measures of similarity and dissimilarity.

Color Distribution Statistics (CDS): The fourth component of the object model cap-
tures color information, based on our prior research [12, 13]. The ROI’s pixels are used
to learn normalized histograms (i.e., probability density functions) in the HSV color
space. Each pdf is learned in (h, v) with ten bins in each dimension. Since color dis-
tributions are not a stable or unique representation of an object, second order statistics
are computed in the form of distances between every pair of pdfs, using the Jensen-
Shannon (JS) measure [3]. The fourth component consists of the color-space pdfs and
incrementally-learned distribution of distances between the pdfs.

Gaussian Mixture Model of Context (GMC): The fifth component models the ob-
ject’s local context using image segments (extracted for PIS above) that share a bound-
ary with the ROI. These segments lie within the red rectangle but outside the yellow
boundary in Figure 1. The pixels in each such segment are used to learn a 2D Gaussian
in the normalized HSV color space (using h, v). The relative spatial arrangement of
each segment with respect to the ROI is used to assign labels “on”, “under” and “be-
side” to the segment; image segments can have more than one label. Image segments
that have the same label are used to learn a Gaussian mixture model (GMM), e.g., each
of the K 2D Gaussians with label “on” is assigned a mixing factor πk that is the ratio of
number of pixels in the corresponding segment divided by the number of pixels in all K
segments. Each GMM is also assigned a weight that is the ratio of number of pixels in
segments with the corresponding label to the number of pixels in all segments used to
model context. The object model includes GMMs and their relative positions and sizes
with respect to the center and size of the ROI.

3.2 Information Fusion for Recognition

The learned models are used for object recognition in images of novel scenes, irre-
spective of whether the objects are stationary or moving. Energy minimization is used
to iteratively select ROIs in test images, and generative models merge evidence from
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components of learned models to compute probability of occurrence of objects in the
ROIs. The analysis of a specific test image ROI is described first.

SCG-Based Matching: The SCVs of gradient features in a learned model and the
matched features in the test image ROI are used to obtain pscg , the corresponding ob-
ject’s probability of occurrence:

pscg =
xcorrect + ycorrect

2 ∗M
, pscg ∈ [0, 1] (3)

xcorrect =
M∑

m=1

Nxm correct

N − 1
, ycorrect =

M∑
m=1

Nym correct

N − 1

where Nxm correct and Nym correct are the number of values in the ROI’s SCV that
match the learned model’s SCV along x and y axes respectively; M and N are the
number of gradient features in the learned model and ROI respectively. The probability
distribution of occurrence of learned objects in the ROI is obtained by considering all
object models.

GCP-Based Matching: The probability of occurrence of a learned object (in the ROI)
is also computed by comparing the neighborhood of connection potentials in the learned
model to the neighborhood of connection potentials between matched ROI features. The
similarity between two connection potentials i and j is:

con(i, j) =
100∑
n=1

f(Ci
n, Cj

n), f(a, b) =
{

1 |a− b| > β
0 otherwise

where parameter β is used to identify significant changes in entries of connection po-
tentials. The probability of occurrence of the learned object is:

pgcp =
1
Z

∑
k∈{1,...,M}

∑
i∈Nk,j∈Nkm

con(i, j) (4)

where M gradient features in the object model match features in the ROI, Nkm
is the

connected neighborhood of feature km in the object model and Nk is the connected
neighborhood of the corresponding matched feature k in the ROI, and Z is a normalizer.
A similar computation with other object models provides the probability distribution of
occurrence of learned objects in the ROI.

PIS-based Matching: To compute the probability of occurrence of a learned object us-
ing parts-based models, different relative arrangements of the learned model’s parts are
compared with pixels in the test image ROI. For pixels in the overlapping regions (for
any arrangement), the similarity of pixels that lie within a learned model part and the
dissimilarity of pixels that lie in neighboring parts are computed. The learned Γ distri-
butions of these measures (for each part) help compute likelihood of this arrangement:
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ppis =
∑

j

{wj · f(PartSimMj) · f(PartDiffMj)}

f(xj) = Γ
(
|xj − xj | − (k − 1)θ, k, θ

)
(5)

where, for the learned object’s jth part, (k − 1)θ is the stationary point of the learned
Γ pdf, xj is the similarity or dissimilarity computed using ROI pixels in the part
(PartSimMj , PartDiffMj), and xj is the mean of the Γ pdf. The match probability
of this arrangement is the sum of product of these measures for each part, weighted (wj)
by the ratio of number of ROI pixels in a part divided by number of ROI pixels in all
parts of object model. The arrangement that maximizes ppis is chosen. A similar com-
putation with other object models provides the probability distribution of occurrence of
learned objects in the ROI.

CDS-Based Matching: To compute the probability of occurrence of the a learned
object in the ROI (pcds), the average distance davg is computed between the ROI’s color
space pdf and the pdfs in the learned object model, using the JS measure. A comparison
with the expected (Gaussian) distribution of distances (for the object model) provides
the value of pcds. Performing this computation with all learned models provides the
probability distribution of occurrence of the learned objects in the ROI. When second-
order statistics of object models are being learned, relative values of average distances
between the ROI’s color space pdf and learned pdfs of object models are used to obtain
the probability of occurrence of the learned objects in the ROI.

GMC-Based Matching: The probability of occurrence of a learned object in the ROI
is also computed by comparing local context information. Each GMM in the learned
model (labels: on, under, beside) is scaled and positioned with respect to the ROI. A
matching score is computed using each GMM, considering the pixels around the convex
boundary of the ROI that fall within the spatial scope of the GMM (Nlbc). The prob-
ability of occurrence of learned object is then the weighted sum of individual scores:

pgmc =
∑

lbc∈{on,under,beside}

wlbc · Γ
(
f(xlbc), k, θ

)

f(xlbc) =
1

Nlbc

Nlbc∑
l=1

Ngmm
lbc∑
j=1

πj e−
1
2 (xl−µj)

T Σ−1
j (xl−µj) (6)

where Ngmm
lbc is the number of 2D Gaussians in the Gaussian mixture model with label

lbc ∈ {on, under, beside}. Each ROI pixel x is a 2D vector in the normalized (h, v)
color space. The value of f(xlbc) is scaled by a Γ distribution and weighted (wlbc)
by the ratio of number of pixels that fall within the corresponding GMM divided by
number of pixels that fall within all GMMs in the learned model. Values of πj , µj

and Σj are obtained from the learned model. A similar computation with other object
models provides the probability distribution of occurrence of learned objects in the ROI.
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Information Fusion: Consider: (a) the identification of ROIs in test images; and (b)
fusion of evidence from components of learned object models regarding the presence
of corresponding objects in these ROIs. For ease of explanation, assume that any ROI
contains no more than one learned object—the algorithm can detect multiple objects in
an image or ROI. If a test image sequence contains a moving object, the corresponding
ROI is identified by (as during learning) tracking and clustering gradient features in
the sequence; the probability of occurrence of a learned object in this ROI is then the
product of probabilities provided by components of the object model.

When test images are snapshots of objects in different scenes, ROIs are identified
by matching gradient features in test images with gradient features in the learned object
models. For instance, to compute the probability of occurrence of the ith learned object
in a test image, the K nearest neighbors are found in the test image for each of the M
local gradient features in the learned model. Each of the (at most) K ∗M features in the
test image is considered for further analysis. Candidate ROIs are created by iteratively
selecting M matched features in the test image using the iterated conditional modes
(ICM) energy minimization algorithm [28]. Since this algorithm can be sensitive to
the choice of initial estimates in high-dimensional spaces, the nearest neighbors of the
learned object’s gradient features are used as the initial ROI estimate. Each ROI is
analyzed using generative models of information fusion. For a set of M matched (test
image) features, the probability of occurrence of the ith learned object (pOi) considers
the evidence provided by each feature:

pOi
=

∏
j∈{1,...,M}

p
(
gj |Oi, {gn|n = 1, ...,M, n 6= j}

)
=

∏
j∈{1,...,M}

p(gj |Oi) (7)

where {gn|n = 1, ...,M, n 6= j} is the subset of M matched test image gradient fea-
tures excluding the jth feature under consideration. Since {gn|n = 1, ...,M, n 6= j} is
always given, the term is ignored in the following equations. The probability that each
matched feature comes from learned object Oi is formulated as a generative model over
the individual components of the object model:

p(gj |Oi) =
∑

Lbgj∈{fg,bg}

p(gj |Lbgj , Oi) · p(Lbgj |Oi) (8)

where Lbgj
∈ {fg, bg} indicates whether the jth feature belongs to the foreground,

i.e., it is part of the target object, or to the background, i.e., it is not part of the target.

When specific labels (fg, bg) are assigned to candidate matched features, the ROI
is defined by the convex hull [1] i.e., minimal convex set containing the foreground
features. The idea is to identify candidate features based on feature matching and energy
minimization, and use generative models to consider multiple local arrangements to
refine the initial choice. Equation 8 is decomposed using the independence relationships
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in the joint probability distribution:

p(gj |Oi) =
∑

Lbgj∈{fg,bg}

p(gj |Lbgj , Oi) · p(Lbgj |Oi) (9)

=
∑

Lbgj
∈{fg,bg}

p(gj |Lbgj , scgOi) · p(gj |Lbgj , gcpOi)·

p(Lbgj |pisOi) · p(Lbgj |cdsOi) · p(Lbgj |gmcOi)

The underlying observation is that parts-based models (PIS), color statistics (CDS) and
context-based models (GMC) capture visual cues that are more global and are not eval-
uated based on relative arrangements of local cues. These models can hence be used
to evaluate the relative likelihoods of (foreground or background) labels for the feature
under consideration. The other components of the object model, i.e., those based on
gradient features (SCG) and connection potentials (GCP) are used to evaluate the prob-
ability of occurrence of the gradient features given the specific labels. The individual
probabilities in Equation 9 are computed using Equations 3-6 and the underlying inde-
pendence assumptions work well in practice. The ROI (among candidates generated by
matching gradient features) that maximizes Equation 9 and thus Equation 7 is the best
estimate of the corresponding object’s location in the test image.

Finally, the net probability distribution of occurrence of the L learned objects in a
test image ROI is normalized: pOi

, i ∈ [1, L]. This distribution is used to recognize
objects and detect novel objects when none of the learned objects has a match proba-
bility significantly larger than others. The robot concurrently learns object models and
recognizes objects while revising the domain map and planning navigation. Initially, if
candidate ROIs are identified corresponding to moving objects, the robot learns object
models. Learned models are used to recognize these objects in subsequent images and
to identify new objects. Furthermore, image ROIs corresponding to recognized objects
are used to incrementally revise existing object models.

4 Experimental Setup and Results

This section describes the robot test platform and the experimental results of evaluating
the proposed algorithms.

4.1 Test Platform

The test platform is a wheeled robot from Videre Design equipped with a stereo camera,
monocular camera, laser range finder and pan-tilt unit on a 40cm×41cm×15cm base.
The experiments used one of the cameras of the stereo unit that provides 640 × 480
images. Input from the laser range finder is used to learn the domain map. Although
the robot has Wi-Fi capability, all experiments were performed on-board using a 2GHz
processor and 1GB RAM. Trials were conducted in indoor offices and outdoor settings.
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4.2 Experimental Results

We experimentally evaluated the robot’s ability to: (a) learn representative object mod-
els from a small number of images by exploiting complementary properties of different
visual cues; and (b) reliably and efficiently recognize objects in novel scenes. In com-
parison with our prior work [13], this paper evaluates additional components (in the
object model) and includes a much more complex database of images. Twenty object
categories were used in the experimental trials, e.g., car, human, book, box, robot and
bus; Figure 4 shows some examples. Separate models were learned for different objects
in a category, e.g., different boxes, books or humans, resulting in 60 subcategories.
Objects were considered in complex backgrounds that made learning and recognition
challenging. During experiments, some objects (e.g., humans and cars) moved on their
own, while some (e.g., boxes) were moved on trolleys.

It is a challenge to obtain an image database of objects with well-defined motion.
Experiments used ≈ 2000 images, including short sequences and individual snapshots,
≈ 700 of which were captured by the robot. To establish applicability to different do-
mains, ≈ 1300 images of motorbikes, buses, some cars and airplanes were chosen from
the Pascal VOC2006 and Caltech-256 benchmark datasets. The benchmark datasets in-
clude ROIs for objects in the images—the robot selected suitable ROIs when any of
these images were used for learning object models, and automatically learned context
models (GMC) from image segments neighboring the ROIs. To make learning chal-
lenging, each object model is learned from ≈ 3 − 8 images, with ≈ 250 images used
for learning all object models; remaining images are used for evaluation. Test images
consist of short sequences of objects in motion and individual snapshots of objects in
indoor and outdoor scenes. The robot processed 3−5 frames/second to identify moving
objects, learn models and recognize objects while performing other actions. The images
used for learning and recognition were chosen randomly (in repeated trials) to obtain
the results below.

Box Car Human Robot Book Airplane Bus Bike Firetruck Firehydrant
Box 0.941 0 0.017 0.025 0 0 0 0 0 0.017

Car 0.010 0.917 0 0.021 0 0 0 0.042 0 0.010

Human 0.080 0.024 0.820 0.060 0.016 0 0 0 0 0

Robot 0.027 0 0.042 0.899 0.027 0 0 0.005 0 0

Book 0.016 0 0 0.042 0.942 0 0 0 0 0

Airplane 0.029 0.051 0 0.023 0.009 0.888 0 0 0 0

Bus 0 0 0 0 0 0 0.856 0.036 0.108 0

Bike 0 0.073 0 0.010 0.016 0 0.062 0.839 0 0

Firetruck 0 0.032 0 0 0 0 0.080 0.016 0.872 0

Firehydrant 0.029 0.029 0 0 0 0 0 0 0.058 0.884

Table 1. Recognition accuracy averaged over different models (i.e., subcategories) in a subset of
(ten) object categories.

The average classification accuracy over all 60 subcategories in 20 object categories
is: 0.8860±0.0432, which is very appealing given the small number of images used for
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Fig. 3. Our algorithm provides higher accuracy than any individual component and any four of
the components; results are statistically significant.

learning. Table 1 shows classification accuracy for a subset of (ten) object categories,
averaged over object models in each category; off-diagonal terms represent errors. Ac-
curate classification requires an object to be matched to the correct model; matching an
object in car-class1 to model car-class2 is an error. One reason for errors is the learning
of object models with non-unique features, e.g., long shots of humans cause features to
be extracted from clothes, resulting in non-unique object models and lower recognition
accuracy. Some errors correspond to an insufficient number of features in the test image
being matched with the learned object models due to occlusions, motion blur or a large
difference in viewpoint. Incremental revision of object models further improves recog-
nition accuracy. Some errors also occur when test image ROIs are assigned the label of
the object model with the maximum match probability, even if this value is similar to
match probabilities of other objects. These errors are eliminated by requiring that the
maximum match probability be substantially higher than match probabilities of other
object classes. Furthermore, errors are less frequent in image sequences of objects in
motion because correctly identifying the ROI enables some subset of components to
provide high match probabilities for the appropriate object.

Our algorithm and existing vision algorithms have disparate objectives; our algo-
rithm efficiently learns models of a subset of objects using 3 − 8 images (each), while
existing algorithms typically use a large database (e.g., ≥ 1000 images) for training (or
learning) models of each object and focus on modeling a large number of objects. Al-
though it is challenge to find a common frame of reference, the following comparisons
were conducted.

When we increase the number of images used of learning object models, the recog-
nition accuracy increases, e.g., 0.90 ± 0.05 with 400 images (total) for learning, and
slowly approaches reported accuracies of state of the art algorithms on the benchmark
datasets. However, these algorithms are much more (computationally) expensive for
learning or recognition. Furthermore, it is difficult for these algorithms to learn good
models from a much smaller number of images because they do not fully exploit the
complementary properties of (and dependencies between) different cues.
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Fig. 4. Robot recognizes objects from different categories, multiple objects and multiple instances
of an object in cluttered backgrounds. Last column shows an incorrect envelope (top) and an
incorrect classification due to occlusion (bottom).

Next, Figure 3 compares the average recognition accuracy of our algorithm with
that of each component and any four of the components. Note that each component
uses popular visual cues, although our representation better exploits their benefits. Any
individual component cannot provide high accuracy and there is large variance, espe-
cially with components that primarily use color. At the same time, each component
does contribute to the overall accuracy, and variance is larger when spatial arrange-
ments of local features are not considered. The combination of all components provides
the highest accuracy by learning models that exploit complementary properties of dif-
ferent visual cues. Figure 4 shows examples of the robot accurately recognizing objects
from different categories, and recognizing multiple objects or multiple instances of ob-
jects in different scenes. The last column of Figure 4 also shows an instance where
(a) top: the object boundary is incorrect (although object label is correct) due to incor-
rectly matched features; and (b) bottom: occlusion leads to incorrect classification, e.g.,
object of bus-class1 matched with car-class2. We hypothesize that including a compo-
nent in the object model that matches partial shapes will minimize these errors, and the
computational efficiency of our algorithm supports the addition of such components.

5 Conclusions and Future Work

This paper described an algorithm for mobile robots to identify interesting objects
based on motion cues, automatically learning representative models of these objects
using appearance-based and contextual visual cues from a small number of images.
The learned models enable reliable and efficient object recognition in novel indoor and
outdoor scenes. Future research will consider image sequences with many moving ob-
jects and further improve computational efficiency using sampling and efficient energy
minimization algorithms. Furthermore, we will investigate the inclusion of other com-
ponents (e.g., shape) and design algorithms for automatically determining the most in-
formative components to represent each object. The long-term goal is to enable robots
to automatically and incrementally learn object models with minimal human supervi-
sion in real-world domains.
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