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Abstract. Many robot manipulation tasks require the robot to make
and break contact with objects and surfaces. The dynamics of such
changing-contact robot manipulation tasks are discontinuous when con-
tact is made or broken, and continuous elsewhere. These discontinuities
make it difficult to construct and use a single dynamics model or control
strategy for any such task. We present a framework for smooth dynamics
and control of such changing-contact manipulation tasks. For any given
target motion trajectory, the framework incrementally improves its pre-
diction of when contacts will occur. This prediction and a model relating
approach velocity to impact force modify the velocity profile of the mo-
tion sequence such that it is C∞ smooth, and help achieve a desired
force on impact. We implement this framework by building on our hy-
brid force-motion variable impedance controller for continuous contact
tasks. We experimentally evaluate our framework in the illustrative con-
text of sliding tasks involving multiple contact changes with transitions
between surfaces of different properties.

Keywords: Robot manipulation · Changing-contact manipulation · Vari-
able impedance control · Online adaptation

1 Introduction

Consider a robot manipulator moving its end-effector along a desired motion
pattern (see Figure 1), which involves making and breaking contacts, e.g., con-
tact with the table’s surface at “1” and with another object at “3”. This task’s
dynamics, i.e., the relationships between the forces acting on the robot and the
resultant accelerations, vary markedly before and after the end-effector comes in
contact with the surface. The dynamics also vary based on the type of contact
(e.g., surface or edge contact), surface friction, applied force, and other fac-
tors. We consider such manipulation tasks involving changes in dynamics due to
changes in the nature of contact as “changing-contact” manipulation tasks. Core
industrial assembly tasks, e.g., peg insertion, screwing, stacking, and pushing,
and many human manipulation tasks are changing-contact tasks. whose discon-
tinuous dynamics can result in poor transition-phase behavior or instability [12].
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Fig. 1: Example motion trajectory for a sliding task that involves making and
breaking contacts. Specifically the robot has to make contact with the table’s
surface at “1” and with another object at “3”.

Since the interaction dynamics of the robot performing these tasks are discon-
tinuous when a contact is made or broken and continuous elsewhere, it is very
difficult to use a single dynamics model or control strategy for these tasks [2].

Smooth motion along a desired trajectory for a changing contact manipula-
tion task could be achieved using an accurate analytical model of the transitions
or a learned model that predicts the transition dynamics. Analytical models of
the impact dynamics of a system of objects require comprehensive knowledge
of the objects’ physical and geometric attributes, and often impose unrealistic
assumptions not satisfied in practical domains [6,10]. On the other hand, with
methods that learn the values of the objects’ attributes, build object classi-
fiers based on these attributes, and/or learn sequences of parameters (e.g., joint
angles) to achieve the desired trajectory, it is very difficult to acquire sufficient
examples of different objects, contacts, features, and trajectories to learn models
that can be used to achieve smooth motion without discontinuities [1,7].

A different approach for achieving smooth dynamics is to use a transition-
phase controller that minimizes discontinuities by lowering velocity and stiffness
to reduce impact forces, vibration, and jerk on impact. Existing transition control
strategies switch to a different controller once a contact is detected, but this
switch could still cause substantial discontinuities in the interaction dynamics,
damaging the robot or the objects [8,16]. We instead seek to predict contacts
accurately and adapt the velocity and stiffness during the transition phase to
minimize discontinuities, allowing the robot to switch to a different controller
after contact. To do so, we need to determine: (Q1) how best to predict when
contact will occur? (Q2) when to activate the transition-phase controller? and
(Q3) how best to adapt the transition-phase controller’s parameters to the task?
We also need to determine: (Q4) what representation and control strategy to
use for reliable and efficient control with minimal samples before, during, and
after contact? Our framework builds on our prior work on a task-space, hybrid
force-motion, variable impedance controller for continuous contact tasks [16],
which partially addresses Q4 and simplifies the problem, enabling the following
as solutions to questions stated above:
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– A simple and efficient contact prediction method that incrementally improves
its estimates.

– An adaptive strategy that uses predicted contacts to minimize time spent in
the transition-phase;

– An approach that revises the velocity to be used in the transition phase to
achieve a C∞ smooth velocity profile and a desired impact force.

We evaluate our framework on a physical robot and in simulation, using the
motivating example of sliding tasks that involve making and breaking contacts
with objects and surfaces of different attributes. To thoroughly explore the con-
trol problems, we only consider sensor input from a force-torque (FT) sensor
in the wrist. We review related work (Section 2), and describe the framework
(Sections 3- 5), experimental results (Section 6), and conclusions (Section 7).

2 Related Work

As stated earlier, control for changing contact manipulation tasks can be achieved
using analytical methods, learning methods, or transition-phase controllers.

Analytical methods that explore the relation between relative motion of two
colliding objects and their impact dynamics mainly typically formulate it as
a linear complementary problem (LCP) that considers the velocities and im-
pulses [13], or the accelerations and forces [18], at contact points [6,9,15,10].
Such a formulation and the associated methods can guarantee physical consis-
tency between motion and impulses, but it is computationally expensive to solve
the LCP at every time step, and difficult to provide the required prior knowledge
of object attributes and/or accurate 3D object models in complex domains.

Methods developed to learn the physical attributes of objects, or to catego-
rize objects based on these attributes, require the robot to perform the related
task multiple times to obtain the training examples needed for building relevant
models or optimizing the models’ parameters [7,1]. Also, the learned models need
to be retrained if the objects, tasks, or interaction dynamics change over time.

Methods that use a transition-phase controller (for changing contact manip-
ulation tasks) focus on minimizing the discontinuities in the dynamics, i.e., on
reducing the forces, vibration, and jerk on impact [8,16]. However, many of these
methods switch to a different controller only after a contact is detected, which
can result in significant discontinuities when the switch is made, along with loss
of energy, and damage to the robot or the domain objects.

In this paper, we pursue an approach based on a transition-phase controller.
However, instead of abruptly transitioning to a controller after contact has been
detected, we focus on anticipating contacts and adapting the velocity and stiff-
ness used in the transition phase to reduce impact forces, vibration, and jerk on
impact. To ensure that the resultant motion is smooth, the transition velocity
profile has to be continuous; to make the motion smooth in acceleration and jerk,
the motion needs to be at least C4 smooth. Methods have been developed for
kinematic time-optimal motion using trapezoidal velocity profiles [4], C4 smooth
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trajectories using multiple trajectory segments [11], and for minimum-jerk mo-
tion profiles [14,3,5]. However, these methods are computationally expensive
when the robot has to compute a path through many points in each trajectory
segment. Our approach instead seeks to provide smooth motion over any given
trajectory, modifying the trajectory to transition to a desired velocity using a
velocity profile that is C∞ smooth. This is achieved by making suitable rep-
resentational choices, accurately predicting contact, and suitably transitioning
into (out of) the transition phase controller before (after) contact. The main
contribution of this work is a framework that can, in a few trials, learn to (a)
predict contact changes in a changing-contact manipulation task; and (b) adapt
its control strategy before impact such that the impact forces are reduced while
deviating from the provided trajectory as little as possible.

3 Framework Overview

Figure 2 presents an overview of our framework. The inputs are the desired
motion trajectory, the force-torque sensor measurements, and the end effector
position. The default controller is the hybrid force-motion variable impedance
controller that we developed for continuous contact tasks [16]. This includes an
incrementally learned forward (predictive) model of end effector measurements;
the error between the predicted and actual measurements automatically revise
stiffness values in control laws to determine the control signal. We showed that
operating in task (i.e., Cartesian) space allows this controller to use suitable
abstractions to learn accurate forward models from very few examples, provide
compliance along specific directions, and accurately track the desired trajec-
tory, thus partially addressing Q4 in Section 1. The framework in this paper
builds on this default controller’s representation for changing-contact manipu-
lation. Specifically, we introduce a task-space contact anticipation model that
incrementally updates its contact prediction using a Kalman filter (Q1). These
predictions are used to minimize the time spent in the transition phase (Q2),
and the velocity to be used in the transition phase is set adaptively to achieve a
C∞ smooth velocity profile and a desired impact force (Q3). Once the transition
is completed at a suitable velocity and stiffness to minimize discontinuities, the
robot moves to using another version of the default controller and revises the
parameter values automatically as needed. We begin with a description of the
contact prediction method.

4 Contact Prediction

Anticipating contacts by predicting impact forces or time to collision is chal-
lenging because these parameters are influenced by robot dynamics and the
controller’s parameters. For instance, reducing the robot’s velocity or its con-
troller’s stiffness reduces the impact force and increases the time to contact. It
is more reliable to predict static contact parameters such as end-effector pose
during impact and direction of contact force, which do not change significantly
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Fig. 2: Overview of our framework for smooth control of changing-control ma-
nipulation tasks.

for repetitions of the task as long as we can assume that the trajectory and
the environment’s attributes do not change significantly; these are reasonable
requirements for many tasks.

The robot’s belief about the position of each expected collision while exe-
cuting the assigned motion trajectory is modeled as a multivariate Gaussian in
the workspace, with the covariance ellipsoid denoting the uncertainty along dif-
ferent motion control dimensions; it is also the “region of anticipated contact”
C. Given that the controller operates in the task space, each contact location’s
representation is compact and is updated over very few trials of the task using
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a Kalman filter with the state update equation: ẋ = Axk + Buk + w, where
x is the contact position, A is the object’s self-activation, i.e., it defines the
dynamics of motion of the contact point without the robot acting on it (I for
positively activated objects, which is the case in this paper), B is the control
matrix capturing the effect of the robot’s action u on contact position, and w
is Gaussian noise modeling the uncertainty in the contact location. The sensor
model uses the end-effector pose (as given by forward kinematics from joint po-
sitions) as measurement when a contact is detected. This sensor model (with
noise depending on the joint encoder noise and forward kinematics) will provide
a corrected estimate of the contact point once a contact is made, resulting in
a reduced covariance ellipsoid for subsequent trials. The Kalman filter’s update
equations are as follows:

µ̂k|k−1 = Ak−1µ̂k−1|k−1 + Bk−1uk−1 (1a)

Σk|k−1 = Ak−1Σk−1|k−1A
T
k−1 + Qk−1 (1b)

vk = yk −Hkµ̂k|k−1 (1c)

Sk = HkΣk|k−1H
T
k + Rk (1d)

Kk = Σk|k−1H
T
k S−1k (1e)

µ̂k|k = µ̂k|k−1 + Kkvk (1f)

Σk|k = Σk|k−1 −KkSkK
T
k (1g)

where µ̂i|i−1 and Σi|i−1 are the predicted mean and covariance at step i, µ̂i|i and
Σi|i are the corrected mean and covariance based on measurement yi (of pose on
contact) at step i, K is the Kalman gain, and Q and R are noise matrices. Our
representational choices enable us to develop a contact anticipation model that
is simple, efficient, and reliable; a linear model is used to accurately estimate
contact locations in the workspace from very few (noisy) repetitions of the task.
Although this representation supports contact with movable objects, we assume
(in this paper) that the end effector only makes contact with stationary objects
(i.e., A = I, B = 0). Also, H = I since state and measurements are in the
same space. These simplifications reduce the Kalman updates to simple Gaussian
updates using the noisy measurements based on the robot’s kinematics model
(since sensor input is limited to that from an FT sensor) each time the robot
experiences a particular contact change.

5 Controller Formulation

For any given task, the desired motion trajectory P is provided as a sequence of
mappings from time to the target end-effector pose and force (for force control).
This is typically obtained through a single demonstration of the task, with the
human moving the robot manipulator. As stated earlier, the controller is defined
in the Cartesian-space; it provides an intuitive trajectory description and any
obstacles can be considered efficiently. Also, P is assumed to be made up of
segments of smooth and continuous pose trajectories that satisfy the minimum
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jerk constraint. The motion within each segment is smooth, but each segment
ends with a change in the direction of control, and P does not account for the
collisions (i.e., contact points).

Our framework’s default controller builds on a standard variable impedance
control equation [17]:

hc = Λ(q)ẍd + Γ (q, q̇)ẋd + η(q) + Kp∆x+ Kd∆ẋ (2)

where hc is the task-space control command, Λ(q) = (JM(q)−1JT )−1 is the
6×6 operational space inertia matrix, Γ (q, q̇) = J−TC(q, q̇)J−1−Λ(q)J̇J−1 is
the compensation wrenches including centrifugal and Coriolis effect, and η(q) =
J−Tg(q) is the gravitational wrench. M(q),C(q, q̇) and g(q) are the equivalent
values defined in the joint space of the robot; ∆x is the error in end-effector
pose with respect to a desire pose xd; and Kp and Kd are 6 × 6 symmetric
positive-definite matrices defining the desired impedance stiffness and damping.
The final joint-space torque control is computed as u = JThc.

In the absence of the external wrench he, the control law provides asymptotic
stability with equilibrium state ẋe = 0, ∆x = 0 for a closed-loop system. In the
presence of non-zero he, a non-null ∆x will be present at equilibrium. For a
fixed or non-stationary target xd, if the external force he is known to be due to
non-fixed resistance (e.g., friction when sliding on a surface), forces against the
direction of motion can be cancelled out with an appropriate feed-forward term
hff in the control law:

hc = Λ(q)ẍd + Γ (q, q̇)ẋd + η(q) + Kp∆x+ Kd∆ẋ+ hff (3)

When the robot is not expecting a contact change, hff and the impedance gains
(Kp, Kd) are revised based on the difference between the predicted and observed
values of forces and torques at the end effector. The predictions are based on
a task-specific (feed)forward model that is revised incrementally during task
execution [16]. We build on this default controller to answer questions Q2-Q4.

5.1 Transition Controller Parameters

We first describe the formulation of the transition controller and its parameters.
Since the permitted impact force may differ based on the task, e.g., large forces
can damage delicate objects in certain tasks, it is reasonable to assume a safe
limit on the maximum allowed impact force. Also, experimental analysis indi-
cated that reducing the controller stiffness helps reduce the jerk in motion after
impact by providing compliance, but has no significant effect on impact forces
because the robot has to make the contact for the error and stiffness term in
the feedback control loop to come into effect. A safe controller should thus have
lower stiffness for reducing vibrations. In addition, the approach velocity was
observed to be directly proportional to the force at impact, especially when the
robot registers a contact while moving in free space. One advantage of the de-
sign of our controller (and the related representational choices) is that a simple
approach (linear regression) can be used to fit the relationship between impact
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force and the approach velocity between a pair of objects. This relationship is
then used to compute the approach velocity for a desired impact force.

The robot may not have a model of these relationships when performing a
task for the first time. So, for any given target impact force, the robot starts with
a safe low velocity during the first trial, using the difference between the target
impact force and the measured impact force to revise the approach velocity for
the next iteration of the task:

∆va = β(Fd − Fm) (4)

where ∆va is the value used to revise the approach velocity, Fd is the desired
impact force along motion direction, Fm is the measured impact force, and β is
a learning rate that is ideally a value less than or equal to the slope of the plot
relating impact force to the approach velocity. Over time, this approach enables
the robot to learn a task-specific velocity of approach for a desired impact force.
The learned linear model can also be reused for other target impact forces. Given
this formulation, we next describe our approach to decide when to switch to using
the transition-phase controller.

5.2 Switching to Transition-Phase Controller

Recall that a lower stiffness in the transition phase can reduce vibrations on
contact, and a lower velocity reduces the impact forces. Since any such strategy
will cause the robot to deviate from the desired trajectory, the robot should
ideally switch to this control phase just before the contact is made, and switch
out of it immediately after stable contact is established. Since this is not possible
in practice, it is safer to switch to this control mode when it enters a region in
the task space where the contact is highly likely to occur, and switch out of it
once stable contact is achieved.

As stated in Section 4, we use the covariance of the multivariate Gaussian
estimating the contact location to define the region of anticipated contact C in
the task-space. Activating the transition-phase controller just before or after it
enters C ensures that the transition-phase is only active when a contact/collision
is anticipated. The part of the target motion trajectory P within C can be found
bychecking if the points in P (t) satisfy the relation given by:

(P(t)− µ)TΣ−1(P(t)− µ) ≤ λ (5)

where µ is the mean of the Gaussian predicting contact position, Σ is the co-
variance, λ is the scaling factor governed by the confidence in the covariance
estimate; it is modeled as the chi-squared percent point function of the desired
confidence value. The first point in trajectory P to satisfy this condition is the
boundary pc of the anticipated collision region C. When the robot does a task
for the first time, the position uncertainty and hence the volume of C are large,
and the robot switches to the transition phase controller (with lower stiffness
and velocity) earlier than actual impact. Over time, as the covariance ellipsoid
shrinks, the robot’s contact prediction is more accurate and it transitions to the
transition controller when it is just about to make impact.
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5.3 Smooth Transition between Controllers

Since the desired impact force is primarily achieved by revising the approach
velocity, the transition-phase controller is set (by the designer)to use lower fixed
controller gains (Kp

∗,Kd
∗) as the robot moves at a lower velocity, for reducing

the negative effects of collision. To avoid discontinuities, the robot needs to
smoothly transition from a normal (pre-contact) controller with output u1 to
the transition-phase controller with output u2. We use linear interpolation of u1

and u2 over a time window [0, T ] such that the transition is completed by the
time the robot reaches pc:

u =(1− α)u1 + αu2; α = t/T t ∈ [0, T ] (6)

where T is the desired duration of the transition between the controllers. As long
as the outputs from the two controllers (u1 and u2) are individually smooth,
the output of the combination will also be smooth. In this work, controllers use
the task-space representation described earlier, with u2 being the output of the
fixed, low-gain, transition-phase controller as the arm approaches the contact
point. A similar approach is used to smoothly transition from the transition-
phase controller to a normal controller after contact is made.

5.4 Modifying Velocity Profile over Target Trajectory

Transition-phase controllers typically use a lower velocity than the original kine-
matic sequence P to reduce the force at impact. Also, as the region C is revised
by the Kalman filter, the robot will switch to the desired approach velocity at
different points in the target trajectory in different trials. Therefore, the timeline
of the trajectory has to be modified to account for the modified velocity profile.

To modify the given motion trajectory such that velocity changes smoothly,
we enable the robot to create a new velocity profile and time-mapping. Our
approach builds on the trapezoidal formulation used in literature for velocity
profiles; it can be viewed as either the lift-off or set-down phase of a trapezoidal
profile. Unlike other representations, our formulation results in motion that is
smooth and continuous at all orders, i.e., is C∞ smooth.

Without loss of generality, assume that the original motion trajectory P is
along one dimension with velocity v1. Assuming that transition starts at time t1
with v1 and has to be completed at t2 (i.e., in t2− t1) with approach velocity v2
(as the robot crosses boundary point pc of C), the velocity profile is:

v(τ) =


v1 + (v2−v1)e−1/τ

e−1/τ+e−1/(1−τ) if 0 < τ < 1,

v1 if τ ≤ 0

v2 if τ ≥ 1

(7)

where τ = t/T = t/(t2 − t1). When 0 < τ < 1, e−1/τ has continuous derivatives
of all orders at every point τ on the real line. Since v(τ) has a strictly positive
denominator for all points on the real line, it is smooth. Due to the enforcement
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of velocity limits when τ is outside [0, 1], the velocity profile provides a smooth
transition from v1 to velocity v2 in interval [t1, t2]. Although defined as being
piece-wise, the function is continuous along the real line.

Fig. 3: Velocity plots with matched position, acceleration, and jerk plots. Velocity
varies from 1.2 to 0.5 in unit time.

The velocity profile and its associated position, acceleration and jerk plots
are shown in Figure 3. The position trajectory is obtained by integrating the
velocity profile with respect to τ . All motion derivatives are continuous through-
out the transition. The timeline of the new velocity profile v(τ) for any given
contact) can be used to modify the target trajectory P such that the velocity
transition is completed as the robot reaches pc. As the velocity transition du-
ration (Equation 7) and the controller transition duration (Equation 6) are the
same, the robot will become compliant and slow down just before it enters C.

Note that only the position is adapted according to the C∞ profile; the
orientation profile is modified using SLERP, a linear interpolation of points in
the spherical space of quaternions. This approach may cause position-orientation
mismatch in complex manipulation tasks involving significant orientation changes
at transition regions.

6 Experimental Analysis

We experimentally evaluated the following hypotheses:
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H1: Our contact prediction approach accurately predicts contact pose and im-
proves estimate over time, reducing the task-completion delay and trajectory
tracking error;

H2: A learned relation between approach velocity and the impact force provides
an accurate estimate of the approach velocity for a desired impact force; and

H3: Overall framework produces smooth motion dynamics (velocity, acceleration,
etc.) throughout the manipulation task with multiple contact changes.

For experiments, we used a 7-DoF Franka Emika Panda robot operating on a
tabletop (Figure 1) and its simulated version in PyBullet. We focus on describing
and discussing the results obtained on the physical robot platform in this paper;
a video of the physical robot and additional simulation results are in the supple-
mentary material1. The evaluation measures include position tracking accuracy,
task completion time, and the time spent in the transition-phase.

6.1 Contact Anticipation

To evaluate the contact prediction ability (H1), we used a task-space trajectory
that required the robot to approach a (static) table from above, move back up
without making contact, and move down and make contact with the surface,
resulting in a zig-zag trajectory along the z-axis. The initial guess of the contact
position was provided manually to simulate input from an external planner or
vision system. The robot should ideally be compliant and moving with a lower
velocity when approaching a contact point, but it should spend as little time
as possible in this low-velocity, low-stiffness transition phase to reduce tracking
error and delay in task completion. This desired behavior is dependent on the
robot’s ability to incrementally and quickly improve its belief about the location
of each contact position in the task space.

The initial state of the predictor is provided manually and is associated with
a larger covariance (0.175 along each of the three dimensions, with distance
measured in meters) emulating the uncertainty associated with a noisy vision
sensor or planner. The target motion trajectory in conjunction with the large
covariance caused the robot’s region of anticipated contact (C) to overlap with
points in the first ‘valley’ of the zig-zag pattern when there is no actual contact
with the table’s surface. If the contact prediction improves over time, we expect
the robot to obtain a tighter estimate of C over time. The robot should then
not switch to the transition-phase controller in the first valley, but do so when
it approaches the table the second time. Given the focus on contact prediction,
we empirically chose safe values for the transition-phase control parameters (i.e.,
approach velocity and stiffness).

We observed a significant reduction in covariance, e.g., from 0.175 to 0.07 in
just three iterations in a set of trials summarized in Figure 4, which enabled the
robot to avoid going to the transition-phase in the first dip in the trajectory.

1 https://drive.google.com/drive/folders/1mN0r5Gi37TT4goHmumt029rz0nhZ5Wdd?

usp=sharing

https://drive.google.com/drive/folders/1mN0r5Gi37TT4goHmumt029rz0nhZ5Wdd?usp=sharing
https://drive.google.com/drive/folders/1mN0r5Gi37TT4goHmumt029rz0nhZ5Wdd?usp=sharing
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Fig. 4: Tracking position of end-effector (EE) during trial-1 and trial-3 of con-
tact prediction with Kalman filter. The red horizontal line is the edge of the
covariance ellipsoid in trial 1; the violet line is the ellipsoid boundary in trial 3.
Updated covariance in trial 3 enables the robot to avoid going to the transition-
phase in the first dip of zig-zag trajectory and reduce the tracking error.

Also, the average Euclidean position tracking error of the end-effector (EE) per
time step reduced from 1.3 cm in the first trial to 0.16 cm in the third trial,
and the task completion time reduced from 7.9 s in the first trial to 7.2 s in the
third trial; the expected (ground truth) motion duration is 7 s. Similar results
were obtained with other target trajectories, indicating support for H1, i.e., that
the contact prediction quickly improves the belief about the contact position,
reducing delays in task completion as well as errors in trajectory tracking. These
results also indicate that using the transition-phase controller only when it is
required reduces the deviation from the desired motion trajectory.

6.2 Approach Velocity and Impact Force

To test the relation between approach velocity and impact force on contact, the
robot was given a target motion trajectory involving moving in free space and
making contact with table; this is also shown in the supplementary video. The
task was repeated with different velocities ranging from 0.02m/s to 0.16m/s
in steps of 0.02, each repeated four times, and we measured the correspond-
ing force on contact. We observed that a line whose parameters were estimated
by linear regression provided a reasonably good fit for the relationship between
end-effector approach velocity and the end-effector force along the direction of
motion; see Figure 5. The variance in the fit can be attributed largely to the
noise in the force-torque sensor, which is significantly troublesome during dis-
continuities such as collisions.
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Fig. 5: Approach velocity vs force on impact. Orange line denotes the estimated
linear relationship.

Target
Force (N)

Estimated reqd
velocity (m/s)

Measured
force (N)

Error
force (N)

10 0.047 7.4 2.6
12 0.063 15.1 3.1
15 0.086 15.3 0.3
18 0.11 16.7 1.3

Table 1: Linear relationship can be used to specify approach velocity as a function
of the desired impact force. Errors observed predominantly at lower values of
target force due to sensor noise.

Given such a learned relationship, the robot was asked to perform the same
target trajectory (as above) but choose its approach velocity so as to achieve a
given impact force on contact. The ground truth force measured after contact
was compared with the desired impact force. Table 1 summarizes results for four
trials for four of the 11 target force values we tested (10−20N at 1N increments).
We observed that the robot was able to compute an approach velocity that
resulted in an impact force similar to the desired value, with an error of ∼ 3 N.
These errors were more likely at lower values of the target impact force and can
largely be attributed to sensor noise, i.e., the learned model is limited by the
accuracy, sensitivity, and resolution of the force-torque sensor, joint encoders,
and the robot’s forward kinematics model.

The velocity update rule based on Equation 4 was then tested on the robot
without providing the previous linear model. The initial value of the approach
velocity was set to 0.1m/s, the target impact force Fd = 10 N, and β = 0.003.
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Fig. 6: Approach velocity adaptation over different trials to achieve target impact
force of 10 N.

Figure 6 shows the evolution of approach velocity across 10 trials. It can be
seen that the velocity of approach remains roughly around 0.045m/s from the
fifth iteration of the task, after which the noise of force torque sensor at impact
makes further convergence difficult. The error between measured and desired
force reduced from 8.5 N to 0.2 N at the end of 10 iterations. Similar results were
obtained for other values of initial approach velocity and target impact force.
These results indicate that in the absence of the learned linear model, it takes
the robot a greater number of iterations (and a suitable choice of initial velocity)
to compute a suitable approach velocity for a target impact force. These results
thus indicate support for H2.

6.3 Smoothness of Motion

The motion profiles (i.e., velocity, acceleration, etc.) of a changing-contact ma-
nipulation task are expected to have large spikes in the absence of a framework
for predicting the contact locations and adapting the velocity and stiffness dur-
ing the approach to a contact position. This hypothesis was tested in a simulated
environment which showed that using the framework significantly reduces the
spikes in the overall motion profile of the robot in a task, while also ensuring
safe interaction during contact changes. The results from these simulation ex-
periments can be found in the supplementary material, and are not included in
this paper due to space limitations.

To evaluate the overall framework and the resulting dynamics on a physical
robot, the robot (with a wooden block attached to end-effector) was asked to
move vertically down to the table (contact 1), slide along y-axis (on table surface)
to a wall (contact 2), and slide along the wall (on table surface) to hit another
obstacle (contact 3), as shown in Figure 1. The robot was provided significantly
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(a) Experiment trial 1.

(b) Experiment trial 5.

Fig. 7: Velocity, acceleration, force, and controller activation levels in: (a) Ex-
perimental trial 1; (b) Experimental trial 5. Use of our framework reduces un-
certainty in estimates of contact positions, reduces the time spent using the
transition-phase controller, and minimizes discontinuities.

wrong initial guesses of the contact positions with noise (see Table 2). The
robot had to repeat the task while reducing the deviation from the given motion
pattern by improving its belief about the positions of the contacts. The robot
also had to modify its approach velocity from the initial value of 0.05m/s to
produce a desired impact force of 8 N. Since each contact in the task is in the
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Prediction Error (m) Initial Final (trial 5)

Contact 1 (Z-axis) 0.12 ± 0.3 0.016 ± 0.039
Contact 2 (Y-axis) 0.09 ± 0.2 0.011 ± 0.04
Contact 3 (X-axis) 0.1 ± 0.2 0.018 ± 0.036

Table 2: Euclidean error in the estimated contact locations in the first and fifth
trials of the task shown in Figure 1. Values represent errors along the most
significant axis for each contact (in parenthesis). The corresponding values along
the diagonal of the covariance matrix are shown as the standard deviation.

presence of different environment dynamics (e.g., motion in free space, motion
against surface friction), the velocity required to attain the desired impact force
was expected to be different. The robot also had to incrementally update its
approach velocity for each contact using gradient descent till the desired velocity
for that environment was achieved. The robot also had to perform all the trials
with smooth overall motion dynamics with minimum spikes in the velocity or
acceleration profiles.

Figure 7a shows the velocity, acceleration, and EE force in the first trial, and
Figure 7b shows these values after five trials. The results in these figures and
in Table 2 show that the uncertainty in the estimates of the contact positions
is reduced, as indicated by a significant reduction in the size of the covariance
ellipsoids, and the robot spends significantly less time using the transition-phase
controller and the associated lower velocity. The activations of the default con-
troller and the transition-phase controller are indicated in the last plot of these
figures. The overall task could be completed in 9.2 s in the fifth trial as opposed
to 14.4 s in the first trial. The covariance ellipsoids converged in the first three
trials of the task, but the task was repeated to evaluate the ability to compute
and set the approach velocity for different transition-phase controllers.

The framework converged to a suitable approach velocity for the first contact
(from motion in free space) in five iterations. It was, however, difficult for the
robot to adjust its approach velocities for contacts 2 and 3, which required the
robot to use force control along one and two directions (respectively). Contact
3 was particularly challenging because it involved sliding along two different
surfaces, resulting in very noisy readings from the force-torque sensor due to the
different values of frictional resistance offered by the two surfaces. The impact
force being along the same direction as friction also made it more difficult to
isolate the impact force from the force due to surface friction.

7 Discussion and Future Work

This paper described a framework towards addressing the discontinuities in
changing-contact manipulation tasks. The framework introduces a transition-
phase controller in a hybrid force-motion variable impedance controller for con-
tinuous contact tasks. Our representational choices enable us to simplify and
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address the associated challenges reliably and efficiently. Specifically, a Kalman
filter-baed approach is used to incrementally improve the estimates of the contact
positions. These estimates are used to minimize the time spent in the transition
phase (with lower velocity and stiffness), and the velocity profile is modified
automatically to smooth motion and a desired impact force.

The framework opens up many directions of further research. First, we only
focused on collisions due to translational motion, and did not address collisions
due to rotations of the end-effector. This could be addressed by defining a region
of anticipated collision in SO(3). Second, we observed that updating approach
velocity for collisions when the robot is already in contact with another surface
is more complicated. This is because of the difficulty in differentiating the sensor
readings obtained due to reactive forces from the existing contact and the sensor
readings obtained due to the impact force generated when colliding with another
object. One possible way to address this issue is to learn a better forward model
for the contact mode such that it can accurately predict the forces due to the
first contact. Third, we only modified the velocity profile and position trajectory
to achieve the desired smooth motion; future work will explore the relationship
between stiffness values and the impact forces, and adapt the orientation as well.
Initial experiments indicate that this is a challenging problem. Furthermore, we
could explore the use of other kinds of sensors (e.g., cameras) to provide addi-
tional information about contact positions. The overall objective is to eliminate
or minimize discontinuities in changing-contact robot manipulation tasks.

References

1. Barragän, P.R., Kaelbling, L.P., Lozano-Pérez, T.: Interactive bayesian identifi-
cation of kinematic mechanisms. In: International Conference on Robotics and
Automation (2014)

2. Brogliato, B., Orhant, P.: On the transition phase in robotics: impact models,
dynamics and control. In: International Conference on Robotics and Automation
(1994)

3. Freeman, P.: Minimum Jerk Trajectory Planning For Trajectory Constrained Re-
dundant Robots. Ph.D. thesis, Washington University in St. Louis (2012)

4. Grassmann, R., Johannsmeier, L., Haddadin, S.: Smooth point-to-point trajectory
planning in se(3) with self-collision and joint constraints avoidance. In: Interna-
tional Conference on Intelligent Robots and Systems. pp. 1–9 (2018)

5. Huang, P., Xu, Y., Liang, B.: Global minimum-jerk trajectory planning of space
manipulator. International Journal of Control, Automation, and Systems 4(4),
405–413 (2006)

6. Hunt, K., Crossley, E.: Coefficient of restitution interpreted as damping in vibroim-
pact. Journal of Applied Mechanics (1975). https://doi.org/10.1115/1.3423596,
https://hal.archives-ouvertes.fr/hal-01333795
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