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Abstract. Our architecture seeks to enable transparency in a robot’s
decision making, which is crucial in Human-robot Interaction. For any
given goal, the robot performs non-monotonic logical reasoning with in-
complete commonsense domain knowledge to compute a plan to achieve
the goal. In addition, it reasons with domain knowledge and Theory of
Mind (ToM) models of specific human users to provide user-specific con-
textual descriptions of the relevant decisions and beliefs in response to
the user’s questions. These capabilities are illustrated with a motivating
scenario of a simulated robot assisting a human in an indoor domain.

Keywords: Theory of Mind · Transparent decision making · Human-
robot interaction.

1 Introduction

Consider a mobile robot assisting Mary, a recently retiree. While largely inde-
pendent, she benefits from the robot’s help with some tasks in her house, e.g.,
fetching or putting away objects. Mary’s trust in the robot will depend on the
robot’s ability to consider Mary’s preferences and prior knowledge to identify
and communicate the information relevant to the task or query posed by Mary.

A robot’s ability to ”explain” its behavior by describing its decisions and
beliefs to the human user is a key requirement for effective human-robot collab-
oration [1,13]. This transparency in decision making is related to the rich body of
work on explainable AI [2,15]. Our work is directed towards transparency in in-
tegrated robot systems that sense, reason, interact with, and learn from complex
dynamic domains. In this paper, we describe an architecture that enables a robot
to reason with prior domain knowledge (e.g., some domain/robot attributes, ac-
tion effects) for planning and providing on-demand relational descriptions of its
decisions and beliefs. Specifically, our architecture:

– Performs non-monotonic logical reasoning with commonsense domain knowl-
edge (i.e., robot and domain attributes, axioms governing change) at different
resolutions to compute and execute plans to achieve the desired goal.

– Reasons with domain knowledge, a Theory of Mind model of the human in-
teracting with it, and formal definitions of relevance, to automatically con-
struct a response to the human’s query about its decisions and beliefs.
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We use Answer Set Prolog (ASP) to represent and reason with prior domain
knowledge and ToM models in order to construct the desired relational descrip-
tions. We abstract away the architecture’s components for sensing, actuation,
and learning; other work in our group has explored these components [22]. We
use execution traces to illustrate the architecture’s capabilities in the context of
a simulated robot assisting humans in an indoor domain.

2 Related work

Work in explainable AI can be broadly classified into two groups [2,15,16]. Meth-
ods in the first group modify or map learned models or reasoning systems to
make their decisions interpretable, e.g., frameworks that approximate learned
”black box” models by equivalent interpretable models [18,19], or bias a plan-
ning system towards making decisions easier for humans to understand [23]. The
second group consists of methods that seek to make a reasoning or learning sys-
tem’s decisions more transparent, e.g., by mapping a model’s decisions to input
features [10], describing planning decisions [5], or justifying decisions based on
non-monotonic logical reasoning [6].

Theory of Mind (ToM), defined as “the cognitive capacity to attribute mental
states to self and others” [4], has been used extensively to model beliefs and
generate explanations that promote human understanding. In methods that use
ToM models, the accuracy of the model determines the accuracy (or even the
need) for explanation [11]. Examples of such work include the use of model
reconciliation to address knowledge discrepancies between agents in the context
of plan explanation [21], and making human-generated plans understandable [9].
Recent work has used epistemic logic planners for decision making, and extends
the ToM model to include nested beliefs and epistemic goals, supporting the
generation of user-specific descriptions of current state [20].

Our work is directed toward transparent, reliable, and efficient reasoning and
learning in integrated robot systems in dynamic domains. It is inspired by work
on explainable agency [12] in the context of robot architectures that reason and
learn with relevant knowledge at different resolutions using some commonsense
domain knowledge and observations [17,22].

3 Proposed architecture

Our proposed architecture (see Figure 1) performs non-monotonic logical rea-
soning with commonsense domain knowledge for planning, diagnostics, and in-
ference. The architecture builds a ToM model to dynamically represent and
reason about the user’s beliefs. Guided by the user interaction, the robot ex-
tracts relevant information from the ToM model and its history of observations
to construct suitable explanations of its decisions and beliefs.

Example Domain 1 [Assistive Robot (AR) Domain]
Consider the robot assisting Mary in her house. The robot has some prior com-
monsense domain knowledge, i.e., some attributes of robot and domain (e.g.,
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Fig. 1. Architecture overview: non-monotonic logical reasoning with commonsense
knowledge supports planning and diagnostics; reasoning with ToM model provides
on-demand descriptions of relevant decisions and beliefs adapted to user queries.

map of house, size and location of objects), relations between objects, and ax-
ioms governing change. It is able to plan and execute actions, and has some prior
understanding of Mary’s domain knowledge, preferences, and beliefs.

Mary asks the robot to bring her the cookbook that is usually in a designated
box in the kitchen. However, instead of the cookbook, the robot finds a crossword
puzzle inside the box; it eventually finds the cookbook in the living room. Mary
asks the robot why it went to the living room. To answer this question, the robot
must consider Mary’s current beliefs and communicate the relevant information,
e.g., that the cookbook was not found in its expected location.

3.1 Knowledge Representation and Reasoning

We first describe the basic knowledge representation and reasoning component.

Action Language In our architecture, the domain’s transition diagrams are
described in action language AL [8], a formal model of parts of natural language
used for describing the behavior of dynamic systems. AL has a sorted signature
with statics, fluents and actions. It allows three types of statements; causal
law, state constraint, and executability condition.

Domain Representation Domain representation consists of system descrip-
tion D, a collection of statements of AL, and history H. D has a signature Σ and
axioms. Σ has basic sorts, e.g., loc, agent, object, container; domain attributes,
e.g., static next to(loc, loc) and fluent in hand(agent, object); robot actions, e.g.,
pick up(agent, object)); and exogenous actions, e.g., exo remove(object, container).
Also, relation holds(fluent, step) implies that a particular fluent is true at a par-
ticular timestep. H records the robot’s observations, i.e., obs(fluent,Bool, step),
and action executions, i.e., hpd(action, step), at specific time steps. Action exe-
cution in the physical world may require a finer-granularity representation, e.g.,
to pick up objects from specific locations. To support this ability, our architecture
has transition diagrams at two resolutions, with the finer-granularity represen-
tation (grids in rooms, parts of objects) defined formally as a refinement of the
coarse-granularity representation [22]; the robot automatically zooms to the part
of the fine-granularity representation relevant to tasks at hand.
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Theory of Mind For each human user i that it interacts with, the robot
maintains a Theory of Mind model Ψi that has a format similar to the robot’s
domain description, i.e., a system description Dψi and history Hψi . Axioms in
DΨi capture the robot’s understanding of how user i’s beliefs change over time,
including axioms governing the domain dynamics, default knowledge (e.g. ”books
are usually in the study”), initial beliefs, and axioms for identifying and resolving
cognitive dissonance. Other work has explored how domain knowledge can be
acquired incrementally [17]; here, we focus on reasoning with given ToM models.

Reasoning with Knowledge To perform the reasoning tasks, i.e., planning, di-
agnostics, and inference, the robot automatically constructs a program Π(D,H)
in CR-Prolog [3], which is an extension of ASP1. Π includes generic helper ax-
ioms (e.g., inertia axioms, goal specification). Reasoning is reduced to computing
answer sets of Π that represent the set of inferred beliefs of an agent associated
with the program. When the robot has to reason with the ToM model Ψi (e.g.,
for generating explanations below), it constructs and solves Π(DΨi ,HΨi); the
resulting answer set is the robot’s model of the user’s beliefs.

3.2 Constructing relevant explanations

When a human user poses a question Q, the robot provides an explanation
E(Q, σg) in the form of a relational description of relevant decisions and beliefs.
This response is tailored toQ, current goal σg, and the user’s beliefs, by reasoning
with D, H, and Ψi (i.e., Dψi

and Hψi
). The robot executes the following steps:

1. Identify relevant object constants in Σ, i.e., relCon(Q, σg), using σg and Q.
2. Reason with Ψi to compute updated beliefs of user i. Use any user beliefs

that violate the robot’s beliefs to identify relevant object constants.
3. Identify relevant signature Σ(Q,σg) using relCon(Q, σg).
4. Restrict D and H to signature Σ(Q,σg) to obtain D(Q, σg) and H(Q, σg).
5. Construct relevant explanation E(Q, σg).

We briefly describe definitions used by the robot to construct suitable explana-
tions for a given user question Q and goal σg.

Definition 1 [Relevant object constants]
Let user’s question Q be a set of ground literals {q}. Let σg be the robot’s goal,
and relCon(Q, σg) be the set of object constants identified as follows:

1. Iff(x1, ..., xn, y) is a literal formed of a domain attribute and occurs in Q, all
object constants of the sorts of arguments x1, ..., xn, y are in relCon(Q, σg).

2. Iff(x1, ..., xn, y) is a literal formed of a domain property, and belongs to σg
then object constants x1, ..., xn, y are in relCon(Q, σg).

3. If Bi,v is a non-empty set of violated beliefs obtained by restricting the
user i’s beliefs (Bi) to object constants identified above, and identifying
fluent literals whose range is not the robot’s current beliefs, only object

1 ”ASP” and ”CR-Prolog” are used interchangeably in this paper.
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constants that are arguments of beliefs in Bi,v and the arguments of the
corresponding violating (robot’s) beliefs remain in Bi,v and the arguments
of the corresponding violating (robot’s) beliefs.

First two conditions help identify relevant constants for different types of ques-
tions; the third one constrains this set whenever the user’s beliefs (based on Ψ
for user) are violated by robot’s own beliefs. Then relCon(Q, σg) is the set of
object constants relevant to the explanation E(Q, σg) for query Q and goal σg.

Definition 2 [Relevant signature]
Let Σ be the signature of D. Let Σ(Q, σg) be the signature computed as follows:

1. Sorts of Σ with a non-empty intersection with relCon(Q, σg) are in Σ(Q,σg).
2. For each basic sort of Σ corresponding to the range of a static attribute, all

constants of the sort are in Σ(Q,σg).
3. For each basic sort of Σ corresponding to the range of a fluent, or domain

of a fluent or static, constants of the sort in relCon(Q, σg) are in Σ(Q,σg).
4. Domain properties restricted to basic sorts of Σ(Q,σg) are in Σ(Q,σg).

Then Σ(Q, σg) is the signature relevant to the explanation E(Q,σg).

Definition 3 [Relevant system description]
Let D be the robot’s system description such that DΨ ∈ D. Then, D(Q,σg), the
system description relevant to explanation E(Q,σg) comprises signatureΣ(Q, σg)
and axioms of D restricted to Σ(Q,σg). We make the reasonable assumption that
the robot’s knowledge includes the ToM models of specific users.

Definition 4 [Relevant history]
If history H is the set of the robot’s observations of domain attributes and the
occurrences of actions. H(Q, σg) is the restriction of H to relCon(Q,σg).

4 Execution traces and Discussion

We present two execution traces to demonstrate our architecture’s capabilities.

Execution Example 1 [Question of the form ”Why X?”]
Recall the situation inExample Domain 1, with Mary asking the robot (robot1)
to find her cookbook.

1. Robot’s goal can be stated as: σg = in hand(robot1, cookbook), while the
subsequent question is:Q = in room(robot1, living room). The relCon(Q, σg)
(without belief violations) includes cookbook, robot1 and all rooms of sort
loc, i.e., living room, kitchen, and bedroom.

2. Reasoning with relevant parts of its history H(Q, σg) and that of the ToM
model HΨ (Q, σg), the robot identifies Bv : in room(cookbook, kitchen) and
the corresponding in room(cookbook, living room) as belief violations. Not
all incorrect beliefs are included (e.g., inside(cookbook, box)), as they are
not fully defined by the object constants in relCon(Q, σg). The revised set
of relevant object constants is: cookbook, living room and kitchen.
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3. Next, the robot reasons with its relevant history and the beliefs in the user’s
ToM to find the literals fully defined by the revised relCon(Q, σg). The fol-
lowing literals are identified to form explanation E(Q, σg) to Mary’s question:

exo move room(cookbook, living room), 0).

obs(in room(cookbook, living room), false, 2),

obs(in room(cookbook, kitchen), true, 3).

The robot explains that it found the cookbook in the living room, potentially
because it had been exogenously moved there from the kitchen.

Execution Example 2 [Question of the form ”What X?”]
Having received the explanation from Execution Example 1., Mary asks the
robot ”What was in the box instead of the cookbook?”.

1. This new question can be expressed as inside(#object, box), while the goal
remains the same. The relevant object constants relCon(Q, σg) are thus box
and all constants of sort object, e.g., cookbook, crossword puzzle, crime novel.

2. Based on the relevant histories H(Q, σg) and HΨ (Q, σg), the robot identified
the violated beliefs Bv: inside(cookbook, box) and inside(crossword puzzle, box).
The relCon(Q, σg) is limited to box, cookbook and crossword puzzle.

3. The explanation E(Q, σg) consists of:

hpd(exo remove(cookbook, box), 0),

hpd(exo place(crossword puzzle, box), 1),

obs(inside(cookbook, box), false, 2),

obs(inside(crossword puzzle, box), true, 2).

The robot explains that it found the crossword puzzle in the box instead of
the cookbook, potentially due to an unobserved exogenous action.

Discussion: Although these examples show an instance of two types of ques-
tions, our architecture can handle different types of questions, i.e., those based on
why, what, when, how, where etc. These correspond to descriptive, contrastive,
and counterfactual questions, which are known to be important in the context
of interactions between robots and/or humans [7,14]. In addition, if the user
requires information at a finer-granularity, the robot can automatically provide
that using the refined domain descriptions. Furthermore, reasoning with com-
monsense knowledge enables the robot to guide learning and recover from any
incorrect inferences drawn. Future work will describe examples corresponding
to these capabilities, demonstrate the use of this architecture in conjunction
with the modules for sensing, actuation, and learning (e.g., of ToM models), and
explore the impact of the generated relational descriptions on effective human-
robot interaction in complex domains.
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