
Architecture and Representations

Nick Hawes1, Jeremy L Wyatt1, Aaron Sloman1, Mohan Sridharan1,
Richard Dearden1, Henrik Jacobsson2, and Geert-Jan Kruijff2

1 Intelligent Robotics Lab, School of Computer Science, University of
Birmingham, Birmingham, UK, {nah,jlw,axs,rwd}@cs.bham.ac.uk

2 DFKI GmbH, Saarbrücken, Germany, {henrikj,gj}@dfki.de

1 Introduction

The study of architectures to support intelligent behaviour is certainly the
broadest, and arguably one of the most ill-defined enterprises in AI and Cog-
nitive Science. The basic scientific question we seek to answer is: ”What are
the trade-offs between the different ways that intelligent systems might struc-
tured?” These trade-offs depend in large part on what kinds of tasks and
environment a system operates under (niche space), and also what aspects of
the design space we deem to be architectural. In CoSy we have tried to answer
that question in several ways. First by thinking about the requirements on ar-
chitectures that arise from our particular scenarios (parts of niche space). Sec-
ond by building systems that follow well-defined architectural rules, and using
these systems to carry out experiments on variations of those rules. Third by
using the insights from system building to improve our understanding of the
trade-offs between different architectural choices, i.e. between different partial
designs. Our objective in CoSy has not been to come up with just another
robot architecture, but instead to try to make some small steps forward in a
new science of architectures.

When the project started we had several specific scientific goals for our
work. First, we wanted to identify a space of possible architectures that in-
cludes most of the good ones for our scenarios. Our methodology is to define
this space of possible architectures using an architectural schema, which is a
simply a set of constraints and rules on what architectures we allow. We refer
to specific points within it as architectural instantiations. Second we aimed
to develop a toolkit and an experimental methodology to explore this space,
identifying the trade-offs as we move through it. Finally, our third goal was
to use our toolkit to implement quickly and easily robotic systems that adhere
to certain architectural principles. Those systems are described in Chapters 9
and 10. In this chapter we will describe our schema; some specialisations of
it; experiments showing the trade-offs between some of those specialisations;
and the toolkit we devised. In addition we will describe how our work sits in

50 Hawes et al.

between the two major camps of work on architectures for intelligence. The
specific contributions are:

• a set of requirements for embodied cognition as a way of generating an
architectural schema.

• a new architectural schema that draws on important work from both cog-
nitive architecture and robotic architecture traditions.

• a toolkit for implementing architectures within this schema.
• a series of robotic implementations that utilise the schema and provide a

proof of concept (covered in Chapters 9 and 10).
• a set of well defined problems in architectures, posed if the schema is

accepted: binding; filtering; management; action fusion.
• experimental profiling of the effects of steps through schema space, specif-

ically with respect to the filtering problem.

The contributions are sequenced in the chapter as follows. First we make
some introductory remarks about the science of architectures, our methodol-
ogy, and define our terminology. Second we describe run-time and design-time
requirements that arise from the needs of the CoSy scenarios, and of which
our architectural theory must take account. After this we describe our archi-
tectural schema (CAS) and show how it meets these requirements. Fourth, we
describe how the schema poses at least four further problems that we refer
to as the binding problem, the filtering problem, the processing management
problem, and the action fusion problem. Solutions to these problems provide
a second level of constraints and thus a more specific architectural schema.
Fifth, we describe the relationship between CAS and other schemas. We follow
these contributions with a brief discussion of future research directions.

2 Architectures and the science of cognitive systems

We start by clarifying the role of work on ”architectures”. AI is a science
that attempts to understand intelligent systems partly through the process of
synthesising them, and partly by analysis of the systems that result. In most
areas of AI while the problems are technically difficult, the methodology is
clear. When considering integrated systems, however, the methodology itself
is a stumbling block. How can we objectively compare the architectures for
two systems that might perform different tasks, in different environments,
using different processing content? The short answer is that we can’t. Yet
most examples of work on architectures in robotics are precisely systems that
combine architectural choices with task specific processing content, and that
are evaluated in different environments from one another. From the point of
view of a science of architectures for embodied intelligence this is no good. For
a science of architectures we need to separate the processing content from the
architectural bones on which it is hung. In other words we want to assess how

Architecture and Representations 51

the changes in the architecture alter the run time properties of that system,
independent of changes in the information processing content.

This is tricky, since in both natural and artificial systems the shape of the
architecture is intimately related to the shape of the pieces it pulls together. In
nature, moreover, the information processing architecture is intimately related
to the hardware implementation and the information processing functions
implemented in that hardware. On the engineering side, complete cognitive
systems are still so difficult to construct that the architecture is essentially
almost always bespoke. Separation of architecture and content in a theory is
made harder by the fact that the processing in an intelligent system can be
described at a variety of levels of abstraction. We may speak of the neural or
machine architecture, of information processing architecture, or of the cogni-
tive architecture. In a complete theory of architectures for intelligence we need
a clear account of how these different levels of description are related. At the
current time we do not even have a clearly defined terminology to distinguish
the different uses of the word.

There is an important distinction in the literature between architectures
that are entirely specified in advance and those that are partially specified. In
CoSy, following [26, 21], we use the notion of an architectural schema to refer to
architectures of the latter type. In simple terms we can think of an architectural
schema as a set of constraints that defines a space of possible architectures
and ways of moving through that space. We can add constraints to a schema
to create sub-schemas, i.e. sub-spaces. If we add enough constraints we can
create a fully specified architecture, and these we refer to as architectural
instantiations. Hereon, we frequently use the terms schema and instantiation
as shorthand for these terms.

If we have a software toolkit that implements a particular schema, it can
be used to implement specific working systems that follow the schema. These
implemented systems require us to make both a complete set of architectural
choices, and to have processing content. As described above the two are very
hard to separate. Our approach must therefore be based on a judicious division
of our design choices into architectural ones (i.e. ones we can easily vary in
the schema), and those concerned with content (i.e. which vary outside the
schema).

In CoSy the specific schema we have designed is called CAS (Cognitive sys-
tems Architecture Schema). Our toolkit implementing this schema is called
CAST. It allows researchers to implement systems that fall within the space
defined by CAS. CAST is particularly powerful because it allows us to imple-
ment a system, and then change some of the architectural choices independent
of the processing content of that specific system. Thus CAST allows us to take
steps through the architectural space, and to isolate the effects on system
behaviour due to architectural changes. Thus CAST provides an important
element necessary for a science of architectures as described above.

Overall our architectural work in CoSy is neither concerned with trying to
model humans or any other specific type of animal, nor with trying to compete

52 Hawes et al.

on performance on a specific set of tasks. Rather it is concerned with trying
to understand the possibilities and trade-offs involved in different designs in
relation to different sets of requirements. In our approach we have several
stages through which we must go:

• We identify sets of scenarios (tasks and environments) that we want our
systems to solve. We then identify the requirements on architectures arising
from these scenarios.

• These requirements lead us to hypothesise an initial architectural schema,
together with a toolkit implementing the schema.

• Using the scenarios and the schema toolkit we produce one or more systems
based on one or more instantiations of the schema. In these designs there
is, as far as possible, a clear separation between the architectural choices
and the processing content.

• We analyse our architectural choices, both empirically, and by introspect-
ing on the flaws in our designs. We use the toolkit to make architectural
changes to these designs, while holding the processing content fixed.

• Using the insights gained we can refine our schema.

In the rest of this document we will step through this process, stopping
along the way to reflect on the choices we made, and to compare our schema
with previous work. We now turn to the two scenarios driving CoSy, and to
the requirements arising from them.

3 Requirements for architectures for cognitive robots

As stated previously our starting point is to analyse scenarios in order to
define requirements for architectures. This is an example of backward chaining
research in which we consider goals beyond our immediate capabilities, and
work backwards to define sub-problems that are more easily tackled — while
also understanding a little of the way their solutions might be composed. In
the CoSy project we picked scenarios based on robot systems that are able
to interact with humans, either while mobile in an office or home setting (the
Explorer); or while manipulating objects in a space shared with a human (the .
PlayMate). In the Explorer scenario typical tasks might be human augmented
mapping of an office environment, using natural language utterances to name
and describe places, and with mixed initiative dialogue. For example in this
scenario the robot can ask the human what type of room it is in, if it is unsure,
and must understand questions, instructions to learn, and instructions to act.
In the PlayMate scenario the tasks include the robot answering questions
about the identity and properties of objects on the table and also about the
spatial relationships between them. The robot may be given instructions to
manipulate the objects to alter their spatial relationships, and to learn not
just word labels for objects, but also the meanings of the property words used
to describe an object (e.g. what visual features correspond to the word red).

Architecture and Representations 53

What sorts of requirements do these scenarios and other typical robot
scenarios place upon the robot designs, and in particular upon the manner in
which the pieces of the intelligent system are put together? There are a number
of well-known properties of the robot-environment interaction that any robot
system operating in human environments typically has to deal with. Our run-
time requirements therefore include the ability to deal with the following
properties of this interaction:

• Dynamism: The world changes frequently, rapidly and independently of
the robot.

• Uncertainty: Sensors are inaccurate, and the actions of the robot often fail
to have the planned for consequences.

• Multiple modalities: Many robots — but especially the robots in our two
scenarios — must use information from multiple sensory modalities in or-
der to make decisions. In our case these include simple haptics, vision,
proprioception and speech. All but the most trivial robot also has multi-
ple modes of action (manipulation, looking, facial expression, utterances,
locomotion) enabled by multiple motor systems and the actions of these
must be coordinated.

• Re-taskability: In our scenarios our robots must be re-taskable, either by
others, or autonomously. Behaviour should be goal directed, but not to
the extent that it cannot be re-tailored to the context, perhaps on the fly,
switch to a new task, or interleave new tasks with old ones.

These are quite general run-time requirements on the interaction between
a robot and its environment, i.e. requirements on the system during per-
formance. Out of these arise run-time and design-time requirements on the
architectural schema itself. Architectures for artificial cognition do not just
structure the way components work together during a system run, but struc-
ture the engineering efforts of the designers. A good software implementation
of an architecture or architecture schema should therefore assist the design
process. This means that the architecture should make it easier to design a
cognitive system, and easier to evaluate a system, and understand the causes
of its particular behaviour. A proper engineering science of cognition will also
require the architecture to have a number of other properties:

• Understandability: Cognitive systems of the order of complexity we are
describing must be understandable. This means that at least some of the
tokens within the system need to be semantically transparent to the de-
signers at some level of abstraction. If we are to understand why our robots
succeed or fail in a task, and how they can be re-engineered, then we must
have the ability to look at the tokens within the system, and to allocate
them meaning as designers. An architecture schema for cognitive systems
therefore needs to provide a variety of clear ways by which tokens can be
related to one another.

54 Hawes et al.

• Incrementality in design: Large, bug-free, complex software systems need
to be constructed and tested incrementally. This requires that a schema
allow new sub-systems to be added without completely redesigning the
existing sub-systems.

• Multiple specialist representations: the field of AI has fragmented, and
the sub-disciplines have developed their own specialist representations for
inference and decision- making. In designing robots with multiple forms of
sensing and acting we need to bridge the gaps between them.

• Parallel processing: many of the algorithms employed in vision, language
processing, planning, and learning are computationally demanding. A se-
rial model of processing is thus unworkable. There is a need for perceptual
components to run in parallel, so that the system may respond rapidly to
change. Action components must also run in parallel so that the robot can
do more than thing at a time, e.g. looking and reaching.

• Asynchronous updating: information arrives in different modalities at dif-
ferent rates. In addition processing in some modalities is slower than in
others. This requires us to accept that updating of information will occur
asynchronously across the system.

Given these constraints the management of information flow in the robot
system becomes key. How should information from one sub-system be commu-
nicated to others? How should decisions to act be combined and sequenced?
How should we determine whether separate pieces of information are related?
These are questions to which we should provide architectural answers. Follow-
ing from our requirements together with the specification of the Explorer and
PlayMate scenarios are a number of useful properties of robot control systems
that would satisfy those requirements (though they may not be the only way
of satisfying them), and of an architectural schema should take account. In
order to satisfy our requirements in our scenarios we will assume the following
principles:

1. Our robots will have representations of entities in the world at a variety
of levels of abstraction from the sensory information.

2. Some of these representations will have roots in multiple sensory modali-
ties.

3. There will be many concurrently running sub-systems in our robots refin-
ing and using these representations.

4. Both the PlayMate and the Explorer must represent and reason about
hypothetical future states, in order to be able to plan, answer questions,
etc. They will therefore require representations that support this kind of
reasoning.

5. A large part of what our architectural solution will be concerned with is
the refinement, sharing and transmission of these representations by and
to these different sub-systems.

Architecture and Representations 55

6. The system will not be able to draw all possible inferences from the avail-
able sensory information, and thus will have to make judicious choices
about which processing to perform.

7. There will multiple modes of action which have to be coordinated.

In the next section we describe the architectural schema CAS. CAS en-
compasses systems that satisfy our assumptions above, and also satisfies the
requirements that precede them. In the following sections we also explain why.

4 A new architectural schema

The requirements and assumptions described in the previous section give rise
to a space of possible architecture schema designs. In order to produce a single
schema to constrain our research work we must design a schema that satis-
fies all of these requirements, whilst still being general enough to capture a
selection of the space of possible designs. It is also important that any design
reflects both our previous experiences as system designers (i.e. we have knowl-
edge about what works and what doesn’t work), and the experience of the
wider research community (i.e. what concrete designs have proven successful
in the past). Given all of these (interacting) constraints, it is not possible to
claim that the following design is the best possible schema design for our sce-
narios. Instead we put it forward as an initial attempt at producing a schema
to satisfy our requirements given our experience.

4.1 Key Features of CAS

To quickly convey the features of CAS we summarise them below. More detail
is given in the following sections.

• Distributed shared memory: The schema contains sub-architectures each
of which has a blackboard (working memory). These sub-architectures
are loosely coupled to reduce complex inter-dependencies. Systems could
contain sub-architectures for motor control, vision, action, planning, lan-
guage etc. The structure is recursive: sub-architectures can contain other
sub-architectures.

• Parallel refinement of shared representations: Each sub-architecture con-
tains a number of processing components which run in parallel and
that asynchronously read and update shared information via the sub-
architecture specific working memory.

• Limited privileges: Each of these sub-architecture working memories is only
writable by processes within its sub-architecture, and by a small number
of privileged global processes (e.g. a global goal manager).

• Control of information and processing: Information flow is controlled by
goals generated within the architecture at run time, allowing it to deal with

56 Hawes et al.

new problems and opportunities. This allows the schema to support differ-
ent approaches to processing (e.g. incremental processing, forward chain-
ing, backward chaining etc.). The schema distinguishes between two classes
of goal: global goals (that require coordination across sub-architectures),
and local goals (that are dealt with inside a single sub-architecture).

• Knowledge management by ontologies: The knowledge that can be used
within a sub-architecture is defined by a set of ontologies for that sub-
architecture. Relationships between the ontologies in different sub-architectures
are defined by a set of general ontologies. These ontologies can also be used
to define knowledge at an architecture-general level.

4.2 Sub-architecture design

Components

Our schema starts on the level of a collection of processing components. Ev-
ery component is concurrently active, allowing them to process in parallel.
This satisfies our requirement of supporting concurrent processing. We do not
specify any constraints on the contents of components: they could have be-
have like a node in a connectionist network, an activity in a behaviour based
system [2], or a unit of processing in a decomposition by information pro-
cessing function. Components can take input either directly from sensors, or
from the working memory. They can also directly control actuators in the
manner of closed loop controllers, or initiate fixed action patterns. Compo-
nents can have processing triggered by the appearance of certain information
on the shared working memory, and can modify structures on that memory.
Components may also have their own private memory. Finally components
are of two types: managed and unmanaged. Unmanaged components are low-
latency processes that run all the time. They are useful for several types of
processing. They can be used for low-latency early processing of information
coming directly from sensors at a high rate. In a visual system, for exam-
ple, they could correspond to the earliest stages of pre-attentive processing,
pulling high bandwidth data from cameras at frame rate and pumping the pro-
cessed frames onto the working memory. Alternatively they could implement
reflexes, providing rapid reaction to sensory information; or they could imple-
ment monitors on signals that raise alarms or actions elsewhere in the system,
or modify global parameters. Managed components by contrast are typically
computationally expensive processes, and the schema assumes that there are
not the computational resources available to run them all. They therefore post
requests to run to the task manager associated with the sub-architecture.

Shared Workspaces

Rather than exchange information directly, processing components are con-
nected to a shared working memory. The content of the working memory is

Architecture and Representations 57

solely composed of the outputs of processing components. Working memories
also connect to and exchange information with other working memories in
other sub-architectures. In our implementation of CAS the communication
method between the working memory and the components determines the ef-
ficiency of the model. But for now let us consider simply that the schema itself
allows reading and writing to working memories, and transfer of information
between them.

This use of shared working memories is particularly well suited to the
collaborative refinement of shared structures. In this approach to information
processing, a number of components use the data available to them to in-
crementally update an entry on shared working memory. In this manner the
results of processing done by one component can restrict the processing op-
tions available to the others in an informed way. As all components are active
in parallel, the collective total processing effort (i.e. the amount of work done
by all the components in solving a problem) may be reduced by sharing infor-
mation in this way. This feature turns out to be very powerful aspect of the
schema.

Processing management

Our previously discussed requirements included the requirement that any de-
sign should support the explicit control of processing. Although control strate-
gies could be implemented using communication via working memory entries,
failing to support control requirements in the schema would mean that they
would fall outside of the regions of design space we could explicitly manipu-
late with it. It would also mean that system designers would have to reinvent
the control strategies they required with each new instantiation. The schema
therefore supports control strategies by including a dedicated control compo-
nent, the task manager, in each sub-architecture. In addition to the usual com-
ponent connections to working memory, each task manager has a dedicated
control connection to each component in its sub-architecture. Task managers
are also connected across sub-architectures, allowing control strategies to be
coordinated across entire instantiations. The task manager can operate in ei-
ther a demand driven mode or in request mode. In the demand driven mode
components request permission to perform a particular task and then have
this request accepted or rejected by the task manager. In request mode, the
task manager sends task requests to components which can then be accepted
or rejected.

4.3 System wide design

While a system could be composed of a single sub-architecture we intend that
there should typically be several sub-architectures in operation. Support for
multiple sub-architectures is required in the schema for a number of reasons.
It allows the designer of an instantiation to include separate modules in their

58 Hawes et al.

Fig. 1. Left panel: A single sub-architecture within CAS. There are components,
which run in parallel, asynchronously updating shared structures on a common
working memory. They can also take input from sensors or give output to actuators.
The task manager determines whether managed components are able to run, while
unmanaged components always run. Right panel: sub-architectures are coupled to
make an overall system. Local changes are transmitted globally between working
memories, not components directly.

system, where each sub-architecture plays a specialised role in processing.
This contributes towards satisfying the requirement of supporting the multiple
representations required to develop a robotic system from currently available
technology. Multiple sub-architectures also, if implemented correctly, improve
support for concurrency.

In the integrated systems we describe in Chapters 9 and 10 we have be-
tween three and nine sub-architectures. The schema, note, makes no assump-
tions about whether system decomposition should be predominantly according
to behaviour or information processing function. What is important is that
the decomposition groups components that commonly exchange information
via shared structures. When events occur on a working memory computation
linear in the number of components must be performed to trigger process-
ing by the right components. Early on in our system building experiences
we discovered that doing this for all components in the whole system meant
the system was paralysed by information change. One of the main benefits of
having distributed working memories is precisely that the working memory
can act as a gate-keeper for its local components, only letting them become
aware of events elsewhere in the system when necessary. We show why this
arrangement is beneficial in our exploration of different sub-schemas later in
the chapter. Having loosely coupled sub-architectures also allows us to explore
architecture sub-schemas where there are global controllers that utilize very

Architecture and Representations 59

abstract representations. We explore some specific architectural instantiations
in Chapter 10.

In the next subsection we describe in more the way that CAS is imple-
mented in CAST. This includes discussion of the memory model, and the
communication model. Following that we define four problems that are raised
by CAS, and indeed by any architecture schema which satisfies our assump-
tions from Section 3. After describing these we describe sub-schemas for CAS
that address each of the four problems.

4.4 CAST: A toolkit implementing CAS

In Section 4 we described how CAS works at an abstract, conceptual level.
However, the details of the implementation of our schema in CAST determine
a great deal about its efficiency, and how easy (or hard) it is for it to be
specialised in one way or another — i.e. the kinds of moves the implementation
supports through the space of architectures. In particular the communication,
filtering and memory access models employed by CAST are key in how efficient
particular architectural instantiations of the schema tend to be.

In our schema, a working memory is an associative container that maps
between unique identifiers and working memory entries. Each entry is an in-
stance of a type, which can be considered as analogous to a class description. A
working memory entry can be any information that can be encapsulated into
a single object class. A system that includes visual components may, for exam-
ple, include entries that describe regions of interest and visually determined
objects. A system that must navigate through a building may have entries
representing maps of various floors, and objects that have been detected.

Components can add new entries to working memory, and overwrite or
delete existing entries. Components can retrieve entries from working mem-
ory using three access modes: id access, type access and change access. For
id access the component provides a unique id and then retrieves the entry
associated with that id. For type access the component specifies a type and
retrieves all the entries on working memory that are instances of this type.
Whilst these two access modes provide the basic mechanisms for accessing the
contents of working memory, they are relatively limited in their use for most
processing tasks. Typically most component-level processing can be charac-
terised by a model in which a component waits until a particular change has
occurred to an entry on working memory, before processing the changed entry
(or a related entry). To support this processing model, components can sub-
scribe to change events. Change events are generated by the working memory
to describe the operations being performed on the entries it contains. Dif-
ferent instantiations of the schema may support different content for change
events, but a minimum set of useful information is the unique id and type
of the changed entry, the name of component the made the change, and the
operation performed to create the change (i.e. whether the entry was added,
overwritten or deleted).

60 Hawes et al.

As stated previously an instantiation of the schema can be composed of one
or more sub-architectures. The addition of multiple sub-architectures requires
that the single sub-architecture schemes for working memory access are ex-
tended. We assume that a design would not include multiple sub-architectures
unless necessary for imposing modularity on the processing, and so use sub-
architecture boundaries to impose restrictions on cross sub-architecture com-
munication. By default a change event is only broadcast within the sub-
architecture in which it was generated. This restricts knowledge about the
changes on working memory to within a sub-architecture. If a component
should require information about changes on a working memory in a differ-
ent sub-architecture, it can choose to subscribe to these changes. This action
opens up a connection between the two working memories in question (the
working memory where the change was generated, and the working memory
local to the component requesting the information), down which all requested
changes are sent as they are generated. The receiving working memory then
includes any changes it receives from other sub-architectures in the list of
changes it broadcasts within its sub-architecture. The schema allows restric-
tions to be placed on which working memories a component can access. The
default is that a component can read entries from any working memory, but
only write to the working memory in its own sub-architecture. Any variation
of this scheme can be specified by an instantiation of the schema, allowing
components to write to working memories as required.

As described in Section 4 support for multiple sub-architectures is required
in the schema for a number of reasons. One of these is that in the given
an efficient implementation it increases the support for concurrency in the
system. In CAST although components are concurrently active, their parallel
interactions via working memory have the potential to become a bottleneck
in processing. By distributing processing across multiple working memories,
CAST allows designers to avoid these potential delays caused by unrelated
processing.

5 Four problems

From our first year of system building experience in the PlayMate, and our
attempts to build systems using other architectures (e.g. OAA) we realised
that there were a number of problems that must be addressed by all embod-
ied intelligent systems that exchange representations between different sub-
systems, and which must satisfy the requirements and assumptions we listed
in Section 3. We refer to these as the binding problem, the filtering problem,
the processing management problem and the action fusion problem. We define
them as follows.

The binding problem arises as soon as we have a system with two pieces of
information in different places that refer to the same entity. In some instances,
to produce coherent decision-making and action execution we need to relate

Architecture and Representations 61

those pieces of information to one another. For example, if I have several blue
objects in front of me, and someone refers to an entity as being ”blue” how do
I decide which entity that I can see is the object of the referent? In general,
given many pieces of information residing in different sub-systems, how should
the overall system efficiently decide which pieces are related to which other
pieces and in what ways? In short how do we match information from one
component with information from another? The binding problem occurs in
many forms, and is a well studied phenomenon in the visual system [30], and
in neural architectures [29].

The filtering problem arises as soon as a piece of information is created
in one sub-system. How should the system decide where else that piece of
information is needed? The key issue here, as stated above, is that we do
not want to share all information with all sub-systems. The problem is that
where information is needed depends both on the context and the problem
the system is trying to solve [24]. We call this the filtering problem because
we think of it precisely as the problem of deciding what information to send,
and what information to filter away, i.e. to hold back from other sub-systems.
Filtering mechanisms need to be cheap, context sensitive and to generate few
false positives, and very few false negatives.

The processing management problem is the problem that arises because we
do not have enough computational resources to draw all possible inferences
from the sensory data. It is acknowledged that many animals utilise some
form of attention to limit processing. On the one hand we can limit what
information is processed, and on the other we can limit the processing that
is done to the information selected. In other words we want to manage the
processing according to the task. We want to investigate the different possible
mechanisms and the trade-offs between them. In some solutions or models
of human processing the solutions to the binding, filtering and processing
management problems are intimately related.

The action fusion problem arises when different sub-systems recommend
actions to motor systems that need to be fused or otherwise coordinated. Per-
haps two behaviours are vying for control of a motor subsystem, or perhaps
the activities of two separate motor systems need to be coordinated. In either
case the architectural schema must have mechanisms for enabling this coordi-
nation. Behaviour based systems use arbitration or fusion mechanisms, which
are limited to a very small number of tasks. Planners use action models to
coordinate activity, and can produce controllers on the fly for many different
tasks, but each of which has only limited feedback. The architectural question
is again what the trade-offs are between different approaches. In CoSy we have
not yet investigated this question, but sketch some possible choices at the end
of the chapter.

We now go on to describe, for each of the first three problems, the solution
spaces that we have investigated. We have captured the best of these solutions
and incorporated them into CAS as sub-schemas, i.e. as more specific parts
of our architectural schema.

62 Hawes et al.

5.1 Binding

Requirements on binding

Earlier, we stated that systems suitable for the PlayMate and Explorer scenar-
ios often need to connect related information across sub-systems. We referred
to this as the binding problem3 [15, 13]. As a simple example take a system
that can discuss and manipulate objects in a tabletop scene. Perhaps it re-
ceives the instruction ”put the blue things to the left of the red thing”. To
carry this out it must be able to relate disparate pieces of information. The
object identities and their properties from vision must be connected with cor-
responding information from the utterance. The robot also needs to connect
not just information about physical entities, but also about relations between
them — there is information in this example about current spatial relation-
ships from both vision and language. Finally the goal state from language
must be related to a possible spatial configuration, and the objects in this
hypothetical state related to the objects in the current state. In fact the bind-
ing problem exists in a much larger range of designs than those necessary for
the PlayMate or Explorer or indeed those covered by CAS. It exists in any
system where information from multiple sub-systems must be fused in order
to make decisions. The binding problem is related to theory tethering4 and
symbol grounding [8], in that some kind of binding must underlie either ap-
proach. After four years of investigating different approaches we have included
a method for solving the binding problem in CAS. In this section we describe
our solution as it currently stands.

There are two constraints from our scenarios that have influenced our ap-
proach to binding. The first is that one of the main features of both our sce-
narios is the need for an ability to perform deliberative reasoning, by which
we mean processes that explicitly represent and reason about hypothetical
world states. The second is that because the systems are also embodied, de-
liberation relies on representations derived from perceptual subsystems that
are unreliable and update at unpredictable rates. Embodiment also requires
that representations are interpretable by effector sub-systems.

These constraints lead us to impose the following three requirements on
our solution to the binding problem. First, binding must produce representa-
tions that are stable for the duration of the deliberative processes they are
involved in. For example, a representation of an object from vision should
remain stable across multiple image frames if that object is to be involved in
a planning process. Second, these representations produced by binding must
be at a level of abstraction appropriate for the processing they will be involved
in. For example, the positions of objects on a tabletop could be represented
metrically or as predicate relations. The first is necessary for visual servoing,

3 We realise that there are other binding problems in other fields, e.g. neuroscience,
but they are somewhat different to the problem here.

4 See http://www.eucognition.org/wiki/index.php?title=Symbol Tethering

Architecture and Representations 63

the second for understanding utterances about the scene. The two require-
ments are linked: the level of detail influences temporal stability, in that more
abstract representations are typically more durable. Our third requirement
arises because the symbols to be bound come from concurrently active, asyn-
chronously updating sub-systems, binding cannot happen in a synchronous
manner. To keep a representation of the state as current as possible, it is im-
portant that perceptual information is processed as soon as it is generated.
Therefore it is important that any representation generated by binding can
be incrementally and asynchronously extended as soon as new information is
available. To summarise, the requirements on our approach to binding are:

• The representations it produces should be stable across the lifetime of the
processing for which they are necessary.

• The representations should have the appropriate level of abstraction for
the processing for which they are necessary.

• The process of binding must be proceed in an asynchronous and incremen-
tal manner.

The binding solution: overview

Implicit Binding

Our solution to the binding problem within CAS relies on the separation
of representations into two levels of abstraction. At the low level we have
sub-architecture specific representations (Figure 2). Within a sub-architecture
the representations that reside on the working memory can be structured,
they could for example be slot and filler structures. These structures allow
the results of components to be bound together: two components can fill
in different slots in the same structure. This could be because the different
pieces of information in the two slots were derived from the same original
data (e.g. the same Region of Interest in an image), or from two different data
items that the system designers deem to be related (e.g. a ROI tracked across
two frames). This kind of binding therefore relies entirely on the structure
of the representations, and the relationship of the processing components as
decided at design time. The binding is not explicitly decided by the system,
and thus we call it implicit binding. Implicit binding has turned out to be
a very powerful feature of CAS. In addition since structures on the working
memories may contain links to other structures — possibly on other working
memories — there is the ability to use implicit binding to bind information
along a single processing trail. This kind of book-keeping turns out to be
another powerful feature of CAS. The reason for this is that it allows us
to abstract information that changes slowly from information that changes
rapidly, e.g. the identity of an object from the visual description of that object.
We can then store the slowly changing information in a new structure that has
a reference back to the fast changing structure. So, in our example, the pose of

64 Hawes et al.

the object could be recovered without re-abstraction by using the references
in the processing trail. This is another kind of implicit binding.

Implicit binding, while powerful, is not suitable in all situations. If the
decision to bind two pieces of information from two different sub-architectures
must be made at run-time then we need explicit binding. In explicit binding
the two pieces of information are translated into a general representation, and
in this form are written to the working memory of a specialised binding sub-
architecture. A third comparison component decides whether they should be
bound into a set. This set is written to the binding working memory and is
globally readable by the whole system.

The motivation for this centralised approach rather than any other is one
of minimising the effort of translation. Suppose we have no general represen-
tation. This means that if every one of N sub-architectures needs information
from all the others N · (N − 1) pair-wise translation processes are required.
Whereas if we have a general representation only at most N ·2 translators are
needed5. From a systems engineering viewpoint, translation to a single general
representation makes the translation process more modular and less redun-
dant (although this depends on implementation details). It is more modular
in the sense that all translations from a collection of sub-architecture specific
representations happen in one place in the system, rather than (potentially)
in N − 1 places. It reduces redundancy because the N − 1 translations may
feature many similar operations, whereas these can all be grouped into a single
translation into the general representation.

Fig. 2. The binding sub-architecture.

To implement this scheme (see Figure 2) each sub-architecture has a spe-
cial component called a binding monitor that translates any structures on its
working memory into binding proxies that are written to the binder’s work-
5 This assumes separate steps for translating into and out of the general represen-

tation, which may be reduced into a single step in practice.

Architecture and Representations 65

ing memory. A proxy is simply a set of binding features. Features are in turn
simply attribute-value pairs. For example, a visual sub-architecture may cre-
ate proxies for visible objects that have feature attributes for colour, shape,
ontological category etc. The role of a binding monitor is to keep its proxies
linked to the source information in its sub-architecture, and to update them
as that source changes. This link allows other components to operate on the
proxies in place of the source data.

All the binding monitors in the system write their proxies to the work-
ing memory in the binding sub-architecture. There a collection of components
which we will refer to as the binder groups these proxies into binding unions
based on whether their features match. Unions also have minimal internal
structure, but are instead composed of the union of the sets of features from
its bound proxies. The set of unions on binding working memory represents
the current best architecture-wide hypothesis of the current state of the things
the sub-architectures can represent about the world (including its own inter-
nal processing). This is based on the assumption that the underlying prox-
ies and features are also the best hypotheses from the corresponding sub-
architectures. The comparison of features is performed by feature compara-
tors. Each comparator compares features to determine whether they could
refer to the same underlying item of information (e.g. whether the colour or
spatial location of two objects is the same). The collected results of these com-
parisons is used to determine whether a proxy could be bound into a union
with other proxies. We now give a formal description of binding.

The binding solution: details

The set of possible features is broad:

Definition 1. A feature space Φx ∈ Φ is any data format in the space of all
possible data formats, Φ. φxi ∈ Φx denotes an instantiation of a particular
representation where x should be interpreted as any feature space name.

For example, φColourLabelred ∈ ΦColour denotes the colour “red” in the repre-
sentation space of colours. In our CAST instantiation, Φ corresponds to any
representation that may inhabit a working memory.

Information from the sub-architectures (SAs) is shared as a collection of
proxies:

Definition 2. A binding proxy is a structure p = 〈Fp, up〉 where Fp is a set
of instantiated features of different types (i.e. Fp = {φx1

1 , φx2
2 . . . φxn

n }) and up
refers to a binding union with which the proxy is bound (see below).

The unions should express information from proxies that, by all accounts (cf.
Algorithm 3), refer to the same entity. Unions simply inherit the features of
the bound proxies and are defined as:

66 Hawes et al.

Definition 3. A binding union is a structure u = 〈Fu,Pu〉 where Pu refers
to the subset of proxies unified by the union u and Fu is defined as the union
of the features in all proxies in Pu.

The problem for the binder is to assess whether two proxies are matching
or not. By matching we mean that they should refer to the same thing. To
do this, all new or updated proxies are compared to all unions on the basis
of their respective features. The basis of this comparison is that each pair of
feature types has an associated comparator function:

Definition 4. A feature comparator is a function ∆ : Φx × Φy → {true,
false, indeterminate} returning a value corresponding to whether two fea-
ture instances are equivalent (or similar enough) or not. The comparator can
also choose to not return a definite answer if the answer is undefined, or the
uncertainty is too big (i.e. indeterminate).

Obviously, indeterminate is the only answer most such comparators can
return, e.g. the comparison of a ΦColour and a ΦPosition is likely undefined6.
However, for many pairs of features there exist informative comparators. For
example, features such as linguistic concepts can be compared to other con-
cepts (with ontological reasoning) or physical positions can be compared to
areas.

Definition 5. Two feature spaces (Φx, Φy) are comparable iff ∃(φxi , φyj) ∈
(Φx, Φy) such that ∆(φxi , φ

y
j) 6= indeterminate.

The more pairs of features from different SAs that are comparable, the more
likely it is that proxies from these SAs will be accurately matched.

To compare a proxy and a union, the corresponding feature sets are the
basis for scoring:

Definition 6. The binding scorer is a function S+ : P ×U → N where P and
U denote the set of all proxies and unions respectively and

S+(p, u) =
∑
φx

i ∈Fp

∑
φy

j∈Fu

{
1 if ∆(φxi , φ

y
j) = true ∧ φxi 6= φyj

0 otherwise

where Fp and Fu are the feature sets of p and u respectively.

Note that identical features are not counted. This to prevent a union getting
a higher score just because it is compared to one of its member proxies (this
would sometimes prevent a proxy switching to a better union). The number
of feature mismatches is also counted (i.e. with true replaced with false in
S+). That function is here denoted S− : P × U → N.

S+ and S− are the basis for selecting the best among all unions for each
new or updated proxy. This is conducted by the function bestUnionsforProxy

6 Of course, in the implementation, such undefined comparators are never invoked.
Mathematically, however, this is exactly what happens.

Architecture and Representations 67Architecture and Representations 23

bestUnionsforProxy(p,U)
Input: A proxy, p, and the set of all unions, U .
Output: Best union(s) with which a proxy should bind.
begin

best := ∅;
max := 0;
for ∀u ∈ U do

if S−(p, u) = 0 ∧ S+(p, u) > max then
best := {u};
max := S+(p, u);

else if S−(p, u) = 0 ∧ S+(p, u) = max then
best := best ∪ {u};

end

end
return best;

end
Algorithm 1: The algorithm which computes the set of best candidate
unions for being bound with a new or updated proxy (see definitions 1-6 for
an explanation of the notations).

Note that identical features are not counted. This to prevent a union getting
a higher score just because it is compared to one of its member proxies (this
would sometimes prevent a proxy switching to a better union). The number
of feature mismatches is also counted (i.e. with true replaced with false in
S+). That function is here denoted S− : P × U → N.

It is important to state that S+ and S− are implemented asynchronously
with respect to the comparators. Until a comparator has returned an answer,
S+ and S− will simply assume that the answer is neither true or false, i.e.
indeterminate.

S+ and S− are the basis for selecting the best among all unions for each
new or updated proxy. This is conducted by the function bestUnionsforProxy
described in Algorithm 1. The result of best = bestUnionsforProxy is a set
of zero, one or more unions. If |best| = 0 then a new union will be created for
the proxy p alone (i.e. with all the features of p). If |best| = 1, then the proxy
is bound to that union.

When |best| ≥ 2 we are faced with a disambiguation problem. To avoid
deadlocks in such cases the binder can select a random union from best for
binding. However, bindings are sticky, meaning that if an already bound proxy
subsequently matches a union in a larger “best”-list, then it will not switch to
any of those unions. This to avoid excess processing in, and signalling from,
the binder. This also helps to satisfy our requirement for symbols to be stable
as far as possible. Disambiguation problems cannot be solved by the binder
itself, but it can request help from others SAs. This may result, for example, in
the communication SA initiating a clarification dialogue with a human tutor.

Fig. 3. The algorithm which computes the set of best candidate unions for being
bound with a new or updated proxy (see definitions 1-6 for an explanation of the
notations).

described in Algorithm 3. The result of best = bestUnionsforProxy is a set
of zero, one or more unions. If |best| = 0 then a new union will be created for
the proxy p alone (i.e. with all the features of p). If |best| = 1, then the proxy
is bound to that union.

When |best| ≥ 2 we are faced with a ambiguity. To avoid deadlocks in such
cases the binder can select a random union from best for binding. However,
bindings are sticky, meaning that if an already bound proxy subsequently
matches a union in a larger “best”-list, then it will not switch to any of those
unions. This to avoid excess processing in, and signaling from, the binder.
This also helps to satisfy our requirement for symbols to be stable as far as
possible. Ambiguities cannot be solved by the binder itself, but it can request
help from other SAs. This may result, in principle, in the communication SA
initiating a clarification dialogue with a human tutor.

Relations and Groups

The proxies and unions described so far have been assumed to roughly corre-
spond directly to physical objects. They may also correspond to more abstract
entities as well. To support this, two special proxy types are implemented in
a slightly different manner: proxies denoting groups of proxies, and proxies
denoting relationships between proxies.

Since proxies contain features that are of any representable type, prox-
ies can also have features attributable to groups and relations, e.g. cardinality
and relative metric information respectively, and explicit references to relating
proxies. Currently we handle groups in a fairly simple yet direct way: a spe-
cial kind of “group proxy” is created exactly like an ordinary binding proxy

68 Hawes et al.

with all the features that the members of the group have in common (e.g.
“the blue balls to the left of the mug” creates a group with features φConceptball

and φColourLabelblue and with a spatial relation φSpatialRelleft of -proxy to the φConceptmug -
proxy. A separate process in the binding SA (the “group manager”) then
spawns off individual proxies which inherit the features of the group proxy.
Every time an individual is bound to something, a new proxy is spawned7. To
all the other processes, the individuals appear as an endless supply of normal
proxies.

Relation proxies are implemented in a similar way as standard proxies, but
with additional features indicating the other proxies involved in the relation.
Features of relation proxies are thus compared using the same mechanism
that compares the features of standard proxies. For example, spatial metric
features, e.g. φR3

(x,y,z), could in principle be compared to a linguistic feature

describing the same relation, e.g. φSpatialRelleft of . It has turned out that features
that link relations to normal proxies and vice versa make the scoring ineffi-
cient. Therefore, a separate scoring scheme similar to that in definition 6 is
used to assess how well proxies match to unions w.r.t. their relational context.

Assume that union u1 has a relation (union) u1→2 to union u2 If a now
three additional proxies are added, arranged internally as two proxies and a
relation proxy between them, pa, pb and pa→b respectively, it is possible that
they will be bound with the existing unions. First of all, if S+(pa, u1) = 0 and
S−(pa, u1) = 0, then pa may be unified despite no convincing score if pa→b is
unified with u1→2. In other words, the relational context of an ordinary proxy,
as defined by the relational proxies, can tip over the balance and favour that
it binds with an existing union despite that there are no features that match.
The relational proxy pa→b may also be unified under similar conditions (i.e.
where pa is unified with u1). If S−(pa, u1) > 0 or S−(pb, u2) > 0, however, the
relation will not bind even if S+(pa→b, u1→2) > 0 and S−(pa→b, u1→2) > 0.
The reason is that two relations that are between entities that cannot be the
same, can also not be the same relation.

Visual & Spatial Reference Resolution

To illustrate how our binder supports a number of behaviours typically re-
quired of robots that interact with humans, the following sections present a
number of examples taken from the Explorer and PlayMate systems. Perhaps
the most common use of information fusion systems is to interpret linguistic
references in terms of visual information. Our binder handles this task as an
instance of a more general problem of information fusion. We will here con-
sider the simple situation where we have a red object and two blue objects on
the table. The objects are arranged in a straight line of alternating colours.
The human then asks the robot to “put the blue objects to the left of the red
objects”.
7 With some obvious limitations to allow finite groups and to prevent excess proxies

being generated when members of different groups merge.

Architecture and Representations 69

We will start our example in the visual sub-architecture, where change
detection, tracking and segmentation components create representations of
the objects in the scene. These objects have 3D poses and bounding boxes
and a number of slots for visual properties such as colour, shape and size.
These slots are filled by a recogniser that has been previously trained (see
Chapter 7) using input from a human trainer [25]. For this example we assume
the recogniser correctly extracts the colours of the objects as red and blue.
When the scene becomes stable (determined by the change detector) the visual
subarchitecture binding monitor creates a proxy for each of the currently
visible objects. As the visual property recogniser processes the objects, the
monitor updates the proxies with features reflecting these properties. This is
an incremental process, so the visual proxies are updated asynchronously as
the objects are processed. At this point only the visual proxies are present in
the binding working memory, each one is bound to its own union.

The presence of objects in the visual working memory is also noticed by
the components in the spatial subarchitecture. These abstract the objects as
points on the tabletop, and the spatial binding monitor creates a proxy for
each. These proxies are tagged with the ID of the visual proxy for the corre-
sponding object so they are bound correctly8. Concurrently with the proxy
creation, qualitative spatial relations between the spatial objects are added
to working memory. These are generated by components using potential-field-
based models of spatial relations [3]. In our example the two blue objects are
to the left and to the right of the red object respectively. They are both also
near the red object (but not near each other). As these relations are added,
the spatial binding monitor reflects them on the binding working memory as
relation proxies between the spatial proxies. The binder uses these as the ba-
sis of relations between the unions featuring the spatial proxies. This provides
our basic model of the current state.

When the human speaks to the robot, a speech recognition module in the
communication subarchitecture is triggered. The resulting speech string is
written to the communication working memory. This triggers a cycle of deep
sentence analysis and dialogue interpretation, yielding a structured logical
description of the utterance’s content. From this structure the communication
binding monitor generates communication proxies for the discourse referents
from the utterance and the relations between them. These proxies include
features that can match against both those attached to visual proxies (colour,
shape and size), and those attached to spatial proxies (relations based on
spatial preposition). In the example two proxies are generated: one normal
proxy for the red object, and one group proxy for the blue objects. The binder
uses the features of these communication proxies to bind them into unions
with the visual and spatial proxies. In the example the φColourLabelred -proxy is
bound together with the visual and spatial proxies relating the red object,

8 A similar, but more general, functionality could be generated by matching
location-derived features.

70 Hawes et al.

and the φColourLabelblue -proxies spawned from the corresponding group proxy
(see Section 5.1) are bound with the remaining proxies for the blue objects.
This provides the system with an interpretation of the utterance in terms of
the visual scene.

In this example, the process of reference resolution involves simply ensuring
that the communication proxies referring to visual entities (i.e. those referring
to objects in the tabletop scenario) are bound to unions that have a visual
component. If the utterance contains spatial language, then relation proxies
are generated by the communication binding monitor. This causes the binding
process to bind proxies via the relations between proxies as well as the features
of single proxies. Failure to bind proxies can trigger a number of different
processes.

Binding summary

In this section we have described two main mechanisms to tackle the binding
problem: implicit binding and explicit binding. Implicit binding is essentially a
design time choice, while explicit binding is a run time decision by the system
itself. We have described how implicit binding also allows us to implement
stable abstract features that are linked to rapidly changing features via the
creation of processing trails. Finally we have described how explicit binding
occurs. In addition to the basic mechanism we have also explored the problem
of early binding. This is when possible bindings can be used to cut down the
number of possible interpretations in some sub-architecture specific process. In
other words tentative bindings across sub-architectures can prune hypotheses
within those sub-architectures. This kind of approach we term incremental
binding and it is described in Chapter 8. The key issue with binding is whether
or not a centralised approach to the problem is the right one. We have shown
that it is possible, not for which kinds of niches it is the right choice.

5.2 Filtering

Previously we described the filtering problem as being how to decide effi-
ciently where a piece of information that arises in one sub-system needs to be
sent. In other words it is a problem of efficient information sharing. In CAS
our atomic information generating sub-systems are components. There is a
space of possible models for information sharing between components, rang-
ing from point-to-point communication (i.e. that used by our OAA-based first
PlayMate system) to a broadcast model. Between these two extremes exist
a range of possible systems in which components share information with a
subset of components. Which model is chosen can have a great impact on the
final system behaviour. In this section we use the shared memory-based de-
sign of CAS to explore the effects of varying the information sharing patterns
between components empirically. Specifically we achieve this by altering the
ratio of components to sub-architectures in a subset of the PlayMate system.

Architecture and Representations 71

We start with an n-m design where n components are divided between
m sub-architectures, where n > m > 1. The design is part of the Play-
Mate system described in Chapter 10, in which components are assigned to
sub-architectures based on functionality (vision, binding or qualitative spatial
reasoning), although for this experimental work arbitrary n-m assignments
are also possible (and would explore a wider area of design space). We then
reconfigure this system to generate architectures at two extremes of the de-
sign space for information sharing models. At one extreme we have an n-1
design in which all n components from the original system are in the same
sub-architecture. At the other extreme of design space we have an n-n design
in which every component is in a sub-architecture of its own. Each of these
designs can be considered a schema specialisation of the CAS schema from
which a full instantiation can be made.

These various designs are intended to approximate, within the constraints
of CAS, various possible designs used by existing systems. The n-1 design
represents systems with a single shared data store to which all components
have the same access. The n-m design represents systems in which a designer
has imposed some modularity which limits how data is shared between com-
ponents. The n-n design represents a system in which a no data is shared, but
is instead transmitted directly between components. In the first two designs
a component has do to extra work to determine what information it requires
from the available shared information. In the latter two designs a component
must do extra work to obtain information that is not immediately available
to it (i.e. information that is not in it’s subarchitecture’s working memory).

In order to isolate the effects of the architectural alterations from the
other runtime behaviours of the resulting systems, it is important that these
architectural differences are the only differences that exist between the final
CAS instantiations. It is critical that the systems are compared on the same
task using the same components. CAST was designed to support this kind
of experimentation: it allows the structure of instantiations to be changed
considerably, with few, if any, changes to component code. This has allowed
us to take the original implementation described above and create the n-1,
n-m, and n-n instantiations without changing component code. This means
that we can satisfy our original aim of comparing near-identical systems on
the same tasks, with the only variations between them being architectural
ones.

To measure the effects of the architecture variations, we require metrics
that can be used to highlight these effects. We previously presented a list of
possible metrics that could be recorded in an implemented CAS system to
demonstrate the trade-offs in design space [9]. Ultimately we are interested
in measuring how changes to the way information is shared impacts on the
external behaviour of the systems, e.g. how often it successfully completes
a task. However, given the limited functionality of our experimental system,
these kind of behaviour metrics are relatively uninformative. Instead we have

72 Hawes et al.

Fig. 4. Left panel: Average number of relevant change events received per compo-
nent. Right Panel: Average filtering effort per relevant change event received.

chosen to focus on lower-level properties of the system. We have compared
the systems on:

1. variations in the number of filtering operations needed to obtain the
change events necessary to get information to components as required by
the task.

2. variations in the number of communication events required to move
information around the system.

As discussed previously communication and change events underlie the be-
haviour of almost all of the processing performed by a system. Therefore
changes in these metrics demonstrate how moving through the space of infor-
mation sharing models supported by CAS influences the information process-
ing profile of implemented systems.

We studied the three different designs in two configurations: one with
vision and binding sub-architectures, and the second with these plus the ad-
dition of the QSR subarchitecture. This resulted in six final instantiations
which we tested on three different simulated scenes: scenes containing one ob-
ject, two objects and three objects. Each instantiation was run twenty times
on each scene to account for variations unrelated to the system’s design and
implementation.

The results for the filtering metric are based around the notion of a rele-
vant event. A relevant event is a change event that a component is filtering
for (i.e. an event that it has subscribed to). Figure 4 demonstrates the per-
centage of relevant events received per component in each instantiation. 100%
means that a component only receives change events it is listening for. A lower
percentage means that the connectivity of the system allows more than the
relevant change events to get the component, which then has to filter out
the relevant ones. This is perfectly natural in a shared memory system. The
results demonstrate that a component in an n-1 instantiation receives the low-
est percentage of relevant events. This is because within a subarchitecture, all

Architecture and Representations 73

changes are broadcast to all components, requiring each component to do a
lot of filtering work. A component in an n-n instantiation receives the greatest
percentage of relevant changes. This is because each component is shielded by
a subarchitecture working memory that only allows change events that are
relevant to the attached components to pass. In the n-n case because only a
single component is in each subarchitecture this number is predictably high9.
This figure demonstrates the benefits of a directly connected instantiation:
components only receive the information they need.

However, this increase in the percentage of relevant changes received comes
at a cost. If we factor in the filtering operations being performed at a subar-
chitecture level (which could be considered as “routing” operations), we can
produce a figure demonstrating the total number of filtering operations (i.e.
both those at a subarchitecture and a component level) per relevant change
received. This is presented in Figure 4. This shows a striking similarity be-
tween the results for the n-1 and n-n instantiations, both of which require a
larger number of filtering operations per relevant change than the n-m instan-
tiations. In the n-m systems, the arrangement of components into functionally
themed sub-architectures results in both smaller numbers of change events be-
ing broadcast within sub-architectures (because there are fewer components in
each one), and a smaller number of change events being broadcast outside of
sub-architectures (because the functional grouping means that some changes
are only required within particular sub-architectures). These facts mean that
an individual component in an n-m instantiation receives fewer irrelevant
change events that must be rejected by its filter. Conversely a component in
the other instantiations must filter relevant changes from a stream of changes
containing all of the change events in the system. In the n-1 instantiations
this is because all of these changes are broadcast within a subarchitecture.
In the n-n instantiations this is because all of these changes are broadcast
between sub-architectures. Figure 5 (left panel) shows that these results are
robust against changes in the number of objects in a scene. Also, the nature
of the results did not change between the systems with vision and binding
components, and those with the additional QSR components.

Figure 5 (centre panel) demonstrates the average number of communica-
tion events per system run across the various scenes and configurations for the
three different connectivity instantiations. This shows that an n-n instantia-
tion requires approximately 4000 more communication events on average to
perform the same task as the n-1 instantiation, which itself requires approxi-
mately 2000 more communication events than the n-m instantiation. Figure 5
(right panel) demonstrates that this result is robust in the face of changes to
the number of objects in a scene. The nature of the results also did not change
between the systems with vision and binding components, and those with the
additional QSR components.

9 The events required by the manager component in each subarchitecture mean the
relevant percentage for the n-n instantiations is not 100%.

74 Hawes et al.

Fig. 5. Left panel: Average filtering effort per relevant event compared to scene
complexity. Centre panel: Average total communication events per instantiation run.
Right panel: Average total communication events per instantiation run compared
to scene complexity.

This result is due to two properties of the systems. In the n-n system,
every interaction between a component a working memory (whether it’s an
operation on information or the propagation of a change event) requires an
additional communication event. This is because all components are sepa-
rated by sub-architectures as well as working memories. In addition to this,
the number of change events propagated through the systems greatly effect
the amount of communication events that occur. In the n-n and n-1 instanti-
ations, the fact that they effectively broadcast all change events throughout
the system contributes significantly to the communication overhead of the
system.

5.3 Filtering summary

From these results we can conclude that a functionally-decomposed n-m CAS
instantiation occupies a “sweet spot” in architectural design space with ref-
erence to filtering and communication costs. This sweet spot occurs because
having too much information shared between components in a system (the
n-1 extreme) means that all components incur an overhead associated with
filtering out relevant information from the irrelevant information. At the other
extreme, when information is not shared by default (the n-n extreme) there
are extra communication costs due to duplicated transmissions between pairs
of components, and (in CAS-derived systems at least) the “routing” over-
head of transmitting information to the correct components (i.e. the filtering
performed by working memories rather than components).

In addition we have demonstrated here an empirical approach to compar-
ing different points within design space, where we have held the content of the
system constant, while making architectural changes. In this way we have also
shown how to use CAST to help carry out the empirical part of the science of
architectures we discussed at the beginning of the chapter. We now proceed
to discuss the third of our problems, that of managing processing across the
system.

Architecture and Representations 75

5.4 Processing Management

In this section we discuss the problem of how a complex artificial cognitive
system such as the Explorer or PlayMate systems we describe in Chapters 9
and 10 should manage their internal activity. In particular, when the process-
ing possibilities exceed the processing resources, how should the robot choose
what kind of processing to do? We refer to this as the processing management
problem. We sketch several possible solutions to it, and then discuss the solu-
tion we have been exploring, which relies on technologies for planning under
uncertainty.

To begin with consider a visual system that contains some of the many
algorithms and representations described in Chapters 4 and 7. Each of these
requires considerable computation to run, even in their classification (or non-
learning) mode. In a robot with multiple competences we will need all of
those vision algorithms and many more besides. For any natural visual scene
running all such algorithms on all parts of the image is not feasible. This is
not a problem in so far as we never need to perform all visual processing on
a scene: the vision we need is determined by the task we are performing. To
tackle this there has been much work on attention, and in particular the use
of visual saliency models to identify which parts of the scene to process. There
has been little or no work, however, on how to select which algorithms to run.
It is this issue that we address here.

In our PlayMate domain, both a robot and human can converse about
and manipulate objects on a table top (see [10]). As described previously,
typical visual processing tasks in this domain require the ability to find the
colour, shape identity or category of objects in the scene to support dialogues
about their properties; to see where to grasp an object; to plan an obstacle
free path to do so and then move it to a new location; to identify groups
of objects and understand their spatial relations; and to recognize actions
the human performs on the objects. Each of these vision problems is hard
in itself, together they are extremely challenging. The challenge is to build a
vision system able to tackle all these tasks. One early architectural approach to
robot vision was to attempt a general purpose, complete scene reconstruction,
and then query this model for each task. This is still not possible and in the
opinion of many vision researchers will remain so. An idea with a growing body
of evidence from both animals and robots is that some visual processing can
be made more effective by tailoring it to the task/environment ([18, 12, 17].

Consider the scene in Figure 6, and consider the types of visual operations
that the robot would need to perform to answer a variety of questions that a
human might ask it about the scene: “is there a blue triangle in the scene?”,
“what is the colour of the mug?”, “how many objects are there in the scene?”.
In order to answer these questions, the robot has at its disposal a range of
information processing functions and sensing actions. But, in any reasonably
complex scenario (such as the one described above), it is not feasible (and
definitely not efficient) for the robot to run all available information processing

76 Hawes et al.

Fig. 6. A picture of the typical table top scenario—ROIs detected for processing
are bounded by rectangular boxes.

functions and sensing actions, especially since the cognitive robot system needs
to respond to human queries/commands in real-time.

There are many approaches that could be taken. The key choices concern
how bottom up and top down processing are mixed. Within the constraints
provided by CAS we have explored at least three approaches. In the first two
approaches, processing opportunities can be identified as data arrives, and
requests for processing resources be posted by the components to a local task
manager. The task manager may simply have a policy which is unvarying,
e.g. it permits all requests, or grants them up to some load threshold. This
is what we have done for most our visual systems to date, because they have
been very small. Alternatively the allocation policy could change according
to the mode that the task manager is in. This is the approach we took in the
communication sub-system for the Explorer and PlayMate systems. In this
sub-architecture the task manager has modes, which it can switch between,
and which are associated with different resource allocation policies. The third
approach, and the one we detail here is to drive the processing in a largely
top down way. In reality a mix of both top down and bottom up processing
will be required. A top down approach essentially takes the current robot
task, and uses this to determine which processing will be performed. There
are several ways that we can conceive of the top determination of processing.
In principle a (perhaps learned) task specific visual routine could be invoked
from a library. The problem with this approach is that it is not at all obvious
how to generalise from one task to another from a set of learned instances.
A different approach would be to use planning to compose a completely new
visual routine on the fly. The problem with this approach is that the planning
process is itself expensive. However, we explore this approach, and show that
it can work.

There already exists a body of impressive work on planning of image pro-
cessing ([6, 28, 22, 19]). However, it is largely used for single images, requires
specialist domain knowledge to perform re-planning or plan repair, has only
been extended to robotic systems in the most limited ways, and poses the
problem in an essentially deterministic planning framework or as a MDP
([19]). In our approach we push the field of planning visual processing in

Architecture and Representations 77

a new direction by posing the problem as an instance of probabilistic sequen-
tial decision making. We pose it as a Partially Observable Markov Decision
Process (POMDP), thereby taking explicit, quantitative account of the un-
reliability of visual processing. Our main technical contribution is that we
show how to contain one aspect of the intractability inherent in POMDPs for
this domain by defining a new kind of hierarchical POMDP. We compare this
approach with an earlier formulation based on the Continual Planning (CP)
framework of [4]. Using a real robot domain, we show empirically that both
planning methods are quicker than naive visual processing of the whole scene,
even taking into account the planning time. The key benefit of the POMDP
approach is that the plans, while taking slightly longer to execute than those
produced by the CP approach, provide significantly more reliable visual pro-
cessing than either naive processing or the CP approach. We give an overview
of the POMDP approach here, describe the results, and relate it back to the
CAS framework.

A POMDP formulation of visual processing

In robot applications, typically the true state of the world cannot be observed
directly. The robot can only revise its belief about the possible current states
by executing actions, for instance one of the visual operators.

We pose the problem as an instance of probabilistic sequential decision
making, and more specifically as a Partially Observable Markov Decision Pro-
cess (POMDP) where we explicitly model the unreliability of the visual op-
erators/actions. This probabilistic formulation enables the robot to maintain
a probability distribution (the belief state) over the true underlying state.
To do this we need an observation model that captures the likelihood of the
outcomes from each action. In this paper, we only consider actions that have
purely informational effects. In other words, we do not consider actions such
as poking the object to determine its properties, with the consequence that
the underlying state does not change when the actions are applied. However,
the POMDP formulation allows us to do this, which is necessary if we wish
to model the effects of operators that split ROIs, move the camera, or move
the objects to gain visual information about them.

Each action considers the true underlying state to be composed of the
normal class labels (e.g. red(R), green(G), blue(B) for color; circle(C), trian-
gle(T), square(S) for shape; picture, mug, box for sift), a label to denote the
absence of any object/valid class—empty (E), and a label to denote the pres-
ence of multiple classes (M). The observation model for each action provides a
probability distribution over the set composed of the normal class labels, the
class label empty (E) that implies that the match probability corresponding to
the normal class labels is very low, and unknown (U) that means that there is
no single class label to be relied upon and that multiple classes may therefore
be present. Note that U is an observation, whereas M is part of the underlying
state: they are not the same, since they are not perfectly correlated.

78 Hawes et al.

Since visual operators only update belief states, we include “special ac-
tions” that answer the query by “saying” (not to be confused with language-
based communication) which underlying state is most likely to be the true
state. Such actions cause a transition to a terminal state where no further
actions are applied. In the description below, for ease of explanation (and
without loss of generality) we only consider two operators: color and shape,
denoting them with the subscripts c, s respectively. States and observations
are distinguished by the superscripts a, o respectively.

Consider a single ROI in the scene—it has a POMDP associated with it
for the goal of answering a specific query. This POMDP is defined by the tuple
〈S,A, T ,Z,O,R〉:
• S : Sc × Ss ∪ term, the set of states, is a cartesian product of the state

spaces of the individual actions. It also includes a terminal state (term).
Sc : {Eac , Rac , Gac , Bac ,Mc}, Ss : {Eas , Cas , T as , Sas ,Ms}

• A : {color, shape, sRed, sGreen, sBlue} is the set of actions. The first two
entries are the visual processing actions. The rest are special actions that
represent responses to the query such as “say blue”, and lead to term. Here
we only specify “say” actions for color labels, but others may be added
trivially.

• T : S ×A× S → [0, 1] represents the state transition function. For visual
processing actions it is an identity matrix, since the underlying state of
the world does not change when they are applied. For special actions it
represents a transition to term.

• Z : {Eoc , Roc , Goc , Boc , Uc, Eos , Cos , T os , Sos , Us} is the set of observations, a
concatenation of the observations for each visual processing action.

• O : S×A×Z → [0, 1] is the observation function, a matrix of size |S|×|Z|
for each action under consideration. It is learned by the robot for the visual
actions (described in the next section), and it is a uniform distribution for
the special actions.

• R : S ×A → <, specifies the reward, mapping from the state-action space
to real numbers. In our case:

∀s ∈ S, R(s, shape) = −1.25 · f(ROI-size)
R(s, color) = −2.5 · f(ROI-size)
R(s, special actions) = ±100 · α

For visual actions, the cost depends on the size of the ROI (polynomial
function of ROI size) and the relative computational complexity (the color
operator is twice as costly as shape). For special actions, a large +ve (-ve)
reward is assigned for making a right (wrong) decision for a given query.
For e.g. while determining the ROI’s color:
R(RacT

a
s , sRed) = 100 · α,R(Bac T

a
s , sGreen) = −100 · α

but while computing the location of red objects:

Architecture and Representations 79

Fig. 7. Policy Tree of an ROI—each node represents a belief state and specifies the
action to take.

R(Bac T
a
s , sGreen) = 100 · α. The variable α enables the trade-off between

the computational costs of visual processing and the reliability of the an-
swer to the query.

Our visual planning task for a single ROI now involves solving this
POMDP to find a policy that maximizes reward from the initial belief state.
Plan execution corresponds to traversing a policy tree, repeatedly choosing
the action with the highest value at the current belief state, and updating the
belief state after executing that action and getting a particular observation. In
order to ensure that the observations are independent (required for POMDP
belief updating to hold), we take a new image of the scene if an action is
repeated on the same ROI.

Actual scenes will have several objects and hence several ROIs. Attempting
to solve a POMDP in the joint space of all ROIs soon becomes intractable due
to an exponential state explosion, even for a small set of ROIs and actions.
For a single ROI with m features (color, shape, etc.) each with n values, the
POMDP has an underlying space of nm; for k ROIs the overall space becomes:
nmk. Instead, we propose a hierarchical decomposition: we model each ROI
with a lower-level (LL) POMDP as described above, and use a higher-level
(HL) POMDP to choose, at each step, the ROI whose policy tree (generated by
solving the corresponding LL-POMDP) is to be executed. This decomposes
the overall problem into one POMDP with state space k, and k POMDPs
with state space nm. Space does not permit us to give the full details of the
hierarchical POMDP formulation here, but these can be found in [27]. The key
technical point is that in the HL-POMDP the observation function and the
cost/reward specification for each action is based on the policy tree of a LL-
POMDP that corresponds to that action. An example of the type of policy
tree found for a LL-POMDP is given in Figure 7 where the LL-POMDP’s
policy tree has the root node representing the initial belief when the visual
routine is called. At each node, the LL-POMDP’s policy is used to determine
the best action, and all possible observations are considered to determine the
resultant beliefs and hence populate the next level of the tree.

Once the observation functions and costs are computed, the HL-POMDP
model can be built and solved to yield the HL policy. During execution, the
HL-POMDP’s policy is queried for the best action choice, which causes the

80 Hawes et al.

execution of one of the LL-POMDP policies, resulting in a sequence of visual
operators being applied on one of the image ROIs. The answer provided by
the LL-POMDP’s policy execution causes a belief update in the HL-POMDP,
and the process continues until a terminal action is chosen at the HL, thereby
answering the query posed. Here it provides the locations of all blue objects
in the scene. For simpler occurrence queries (e.g. “Is there a blue object in the
scene?”) the execution can be terminated at the first occurrence of the object
in a ROI. Both the LL and HL POMDPs are query dependent. Solving the
POMDPs efficiently is hence crucial to overall performance.

A Continual Planning Formulation

The Continual Planning (CP) approach of [4] interleaves planning, plan exe-
cution and plan monitoring. Unlike classical planning approaches that require
prior knowledge of state, action outcomes, and all contingencies, an agent in
CP postpones reasoning about unknowable or uncertain states until more in-
formation is available. It achieves this by allowing actions to assert that the
preconditions for the action will be met when the agent reaches that point
in the execution of the plan, and if those preconditions are not met during
execution (or are met earlier), replanning is triggered. But there is no rep-
resentation of the uncertainty/noise in the observation/actions. It uses the
PDDL ([20]) syntax and is based on the FF planner of [11]. Consider the
example of a color operator:

(:action colorDetector
:agent (?a - robot)
:parameters (?vr - visRegion ?colorP - colorProp)
:precondition (not (applied-colorDetector ?vr))
:replan (containsColor ?vr ?colorP)
:effect (and

(applied-colorDetector ?vr)
(containsColor ?vr ?colorP)))

The parameters are a color-property (e.g. blue) being searched for in a
particular ROI. It can be applied on any ROI that satisfies the precondition i.e.
it has not already been analyzed. The expected result is that the desired color
is found in the ROI. The “replan:” condition ensures that if the robot observes
the ROI’s color by another process, replanning is triggered to generate a plan
that excludes this action. This new plan will use the containsColor fact from
the new state instead. In addition, if the results of executing a plan step are
not as expected, replanning (triggered by execution monitoring) ensures that
other ROIs are considered. Other operators are defined similarly, and based on
the goal state definition the planner chooses the sequence of operators whose
effects provide parts of the goal state—the next section provides an example.
The CP approach to the problem is more responsive to an unpredictable
world than a non-continual classical planning approach would be, and it can
therefore reduce planning time in the event of deviations from expectations.

Architecture and Representations 81

(a) Input image. (b) Execution Step 1.

(c) Execution Step 2. (d) Execution Step 3.

Fig. 8. Example query: “Where is the Blue Circle?” Dynamic reward specification
in the LL-POMDP allows for early termination when negative evidence is found.

But, while actions still have non-deterministic effects, there is no means for
accumulating belief over successive applications of operators. We show that
the HiPPo formulation provides significantly better performance than CP in
domains with uncertainty.

An example query

Figs 8(a)-8(d) show one execution example for an image with two ROIs.
The example query is to determine the presence and location of one or

more blue circles in the scene (Fig 8(a)). Since both ROIs are equally likely
target locations, the HL-POMDP first chooses to execute the policy tree of
the first ROI (action u1 in Fig 8(b)). The corresponding LL-POMDP runs the
color operator on the ROI. The outcome of applying any individual operator
is the observation with the maximum probability, which is used to update
the subsequent belief state—in this case the answer is red. Even though it is
more costly, the color operator is applied before shape because it has a higher
likelihood of success, based on the learned observation functions. When the
outcome of red increases the likelihood (belief) of the states that represent the

82 Hawes et al.

“Red” property as compared to the other states, the likelihood of finding a
blue circle is reduced significantly. The dynamic reward specification (α = 0.2)
ensures that without further investigation (for instance with a shape opera-
tor), the best action chosen at the next level is a terminal action associated
with the “Red” property—in this case it is sRedSquare. The HL-POMDP re-
ceives the input that a red square is found in R1, leading to a belief update
and subsequent action selection (action u2 in Fig 8(c)). Then the policy tree
of the LL-POMDP of R2 is invoked, causing the color and shape operators
to be applied in turn on the ROI. The higher noise in the shape operator is
the reason why it has to be applied twice before the uncertainty is sufficiently
reduced to cause the choice of a terminal action (sBlueCircle)—the increased
reliability therefore comes at the cost of execution overhead. This results in
the belief update and terminal action selection in the HL-POMDP—the final
answer is (s¬R1∧R2), i.e. that a blue circle exists in R2 and not R1 (Fig 8(d)).

In our HiPPo representation, each HL-POMDP action chooses to execute
the policy of one of the LL-POMDPs until termination, instead of performing
just one action. The challenge here is the difficulty of translating from the
LL belief to the HL belief in a way that can be planned with. The execution
example above shows that our approach still does the right thing, i.e. it stops
early if it finds negative evidence for the target object. Finding positive evi-
dence can only increase the posterior of the ROI currently being explored, so
if the HL-POMDP were to choose the next action, it would choose to explore
the same ROI again.

If the same problem were to be solved with the CP approach, the goal
state would be defined as the PDDL string:

(and (exists ?vr - visRegion) (and (containsColor ?vr Blue) (containsShape
?vr Circle)))
i.e. the goal is to determine the existence of a ROI which has the color

blue and shape circle. The planner must then find a sequence of opera-
tors to satisfy the goal state. In this case it leads to the creation of the
plan:

(colorDetector robot vr0 blue)
(shapeDetector robot vr0 circle)
i.e. the robot is to apply the color operator, followed by the shape operator

on the first ROI. There is a single execution of each operator on the ROI. Even
if (due to image noise) an operator determines a wrong class label as the closest
match with a low probability, there is no direct mechanism to incorporate
the knowledge. Any thresholds will have to be carefully tuned to prevent
mis-classifications. Assuming that the color operator works correctly in this
example, it would classify the ROI as being red, which would be determined
in the plan monitoring phase. Since the desired outcome (finding blue in the
first ROI) was not achieved, replanning is triggered to create a new plan with
the same steps, but to be applied on the second ROI. This new plan leads to

Architecture and Representations 83

(a) HiPPo vs. joint POMDP. Joint
POMDP soon becomes intractable.

(b) Planning times of HiPPo vs. CP.
Policy-caching makes results compara-
ble.

(c) Execution times of HiPPo, CP vs.
No planning. Planning makes execu-
tion faster.

(d) Planning+execution times of
HiPPo, CP vs. No planning. Planning
approaches reduce processing time.

Fig. 9. Experimental Results—Comparing planning and execution times of the
planners against no planning.

the desired conclusion of finding the blue circle in R2 (assuming the operators
work correctly).

An experimental study

In considering the trade-offs between the different types of solution to the
processing management problem we consider several hypotheses that we can
test. Specifically we hypothesise that:

• The hierarchical-POMDP planning (HiPPo) formulation is more efficient
than the standard POMDP formulation.

• HiPPo and CP have comparable plan-time complexity.
• Planning is significantly more efficient than blindly applying all operators

on the scene.
• HiPPo has higher execution time than CP but provides more reliable re-

sults.

84 Hawes et al.

In order to test these hypotheses we ran several experiments on the robot
in the tabletop scenario. Objects were placed on the table and the robot had to
analyze the scene to answer user-provided queries. Query categories include:

• Occurrence queries: Is there a red mug in the scene?
• Location queries: Where in the image is the blue circle?
• Property queries: What is the color of the box?
• Scene queries: How many green squares are there in the scene?

For each query category, we ran experiments over ∼ 15 different queries
with multiple trials for each such query, thereby representing a range of vi-
sual operator combinations in the planning approaches. We also repeated the
queries for different numbers of ROIs in the image. In addition, we also im-
plemented the naive approach of applying all available operators (color, shape
and sift in our experiments) on each ROI, until a ROI with the desired prop-
erties is found and/or all ROIs have been analyzed.

Unlike the standard POMDP solution that considers the joint state space
of several ROIs, the hierarchical representation does not provide the optimal
solution (policy). Executing the hierarchical policy may be arbitrarily worse
than the optimal policy. For instance, in the search for the blue region, the
hierarchical representation is optimal iff every ROI is blue-colored. But as
seen in Figure 9(a) that compares the planning complexity of HiPPo with
the standard POMDP solution, the non-hierarchical approach soon becomes
intractable. The hierarchical approach provides a significant reduction in the
planning time and (as seen below) still increases reliability significantly.

Next, we compare the planning times of HiPPo and CP approaches as
a function of the number of ROIs in the scene—Figure 9(b). The standard
hierarchical approach takes more time than CP. But, the computationally
intensive part of HiPPo is the computation of the policies for the ROIs. Since
the policies computed for a specific query are essentially the same for all
scene ROIs, they can be cached and not repeated for every ROI. This simple
adjustment drastically reduces the planning time and makes it comparable to
the CP approach.

Figure 9(c) compares the execution time of the planning approaches
against applying all the operators on each ROI until the desired result is
found. The HiPPo approach has a larger execution time than CP because it
may apply the same operator multiple times to a single ROI (in different im-
ages of the same scene) in order to reduce the uncertainty in its belief state.
In all our experiments the algorithms are being tested on-board a cognitive
robot which has multiple modules to analyze input from different modalities
(vision, tactile, speech) and has to bind the information from the different
sources. Hence, though the individual actions are optimized and represent the
state-of-the-art in visual processing, they take some time to execute on the
robot.

A key goal of our approach is not only to reduce overall planning and ex-
ecution time, but to improve the reliability of the visual processing. In these

Architecture and Representations 85

Approach % Reliability

Naive 76.67
CP 76.67
HiPPo 91.67

Table 1. Reliability of visual processing

terms the benefits are very clear, as can be seen in Table 1. The direct applica-
tion of the actions on all the ROIs in the scene results in an average classifica-
tion accuracy of 76.67%, i.e. the sensing actions misclassify around one-fourth
of the objects. Using CP also results in the same accuracy of 76.67%, i.e.
it only reduces the execution time since there is no direct mechanism in the
non-probabilistic planner to exploit the outputs of the individual operators (a
distribution over the possible outcomes). The HiPPo approach is designed to
utilize these outputs to reduce the uncertainty in belief, and though it causes
an increase in the execution time, it results in much higher classification accu-
racy: 91.67%. It is able to recover from a few noisy images where the operators
are not able to provide the correct class label, and it fails only in cases where
there is consistent noise. A similar performance is observed if additional noise
is added during execution. As the non-hierarchical POMDP approach takes
days to compute the plan for just two ROIs we did not compute the optimal
plan for scenes with more than two ROIs, but for the cases where a plan was
computed, there was no significant difference between the optimal approach
and HiPPo in terms of the execution time and reliability, even though the
policy generated by HiPPo can be arbitrarily worse than that generated by
the non-hierarchical approach.

A significant benefit of the POMDP approach is that it provides a ready
mechanism to include initial belief in decision-making. For instance, in the
example considered above, if R2 has a higher initial belief that it contains a
blue circle, then the cost of executing that ROI’s policy would be lower and
it would automatically get chosen to be analyzed first leading to a quicker
response to the query.

Figure 9(d) shows a comparison of the combined planning and execution
times for HiPPo, CP, and the naive approach of applying all actions in all ROIs
(no planning). As the figure shows, planning is worthwhile even on scenes with
only two ROIs. In simple cases where there are only a couple of operators
and/or only one operator for each feature (color, shape, object recognition
etc) one may argue that rules may be written to decide on the sequence of
operations. But as soon as the number of operators increase and/or there is
more than one operator for each feature (e.g. two actions that can find color
in a ROI, each with a different reliability), planning becomes an appealing
option.

86 Hawes et al.

Summary of processing management work

In this sub-section we have explored the implications of the fact that within
a complex cognitive system with many goals it will not be possible to per-
form all processing. We have studied this problem within the context of vi-
sion, specifically the kind of visual sub-architecture we use for the PlayMate
scenario. Architecturally there are many possible solutions. Bottom up, data-
driven processing is implemented naturally in CAS. In this section we have
shown how to augment it with top down control, achieved using techniques
for planning under uncertainty, and continual planning.

6 The relationship of CAS to previous work on
architectures

6.1 Cognitive Architectures

There have been several attempts at unified theories of intelligence from within
cognitive science. At least two of these emphasise the role of production sys-
tems. In SOAR Newell and Laird [16] proposed a production system model in
which serial application of rules, written in a common form, modified represen-
tations held in a workspace shared by those rules. An important component
of the theory was that there was a single unified representational language
within which all data held in the shared workspace was expressed. Another
key idea was that a set of meta-rules controlled the serial application of these
productions. These three key ideas: a single shared workspace, serial appli-
cation of processing elements, and a common representational language have
been extremely influential. They are both simple to comprehend and allow
the construction of effective systems. In ACT-R [1] John Andersen and col-
leagues have taken some of the elements of production systems and used them
to produce models of aspects of human cognition that produce testable pre-
dictions. In ACT-R productions now represent the serial actions of processing
in the thalamus and connect to information in buffers. Together these simu-
late the behaviour of multiple thalamic-cortical loops. ACT-R has been used
to construct models that give impressively accurate predictions for human
performance on a range of tasks, including reading and mental arithmetic.
ACT-R models rely heavily on the provision of timing information about de-
lays in each stage of processing. Both SOAR and ACT-R have in common the
fact that they have widely available languages that allow researchers to im-
plement computational models. Finally in Global Workspace Theory (GWT),
Baars and Shanahan [24] have proposed the idea that conscious thought is
explainable at an abstract level by the idea of a global workspace. The key
idea in GWT is that local processes propose items to be posted onto a single
global workspace, and that mechanisms exist that select one collection of items
that are in turn re-transmitted to all the local processes. It can be seen that

Architecture and Representations 87

all three theories emphasise the idea of a single shared workspace for parts
of cognition. There is evidence however, at least from robotics, that such a
single workspace is an incomplete architectural account of intelligence. I now
turn to describe ideas from robotics on architectures, in order to compare and
contrast them with the ideas from work on cognitive architectures.

6.2 Robotic Architectures

The first significant attempt to implement what might be loosely called a
cognitive robot was the Shakey project [23]. Detailed examination of their
approach bears fruit. The architecture in Shakey was dominated by a cen-
tral workspace within which all data about the contingent state of the world
was written in a single representational language. In the case of Shakey this
was a form of first order predicate logic minus quantification. Sensory pro-
cessing was essentially a business of abstracting from the raw sensor data to
this predicate description. Typing of entities was captured using predicates,
and the representation also captured some metric information for the highly
simplified world. Qualitative action effects were captured using STRIPS oper-
ators, which addressed some of the difficulties previously encountered by the
situation calculus. This declarative knowledge about action effects was used
in a planning process that had available all knowledge in the world model.
In addition to this the robot had fixed routines that would update the world
model when sufficient uncertainty had accumulated about its state. This was
the way that gross error recovery occurred: through re-sensing and then re-
calculating the world model. Simpler errors were handled using Intermediate
Level Actions (ILAs). These were essentially discrete closed loop controllers
that relied upon the world to settle between each step and thus couldn’t deal
easily with ongoing rapid change. Overall, Shakey shares, at an architectural
level, some of the assumptions of SOAR and ACT-R. It relies on serial appli-
cation of planning operators to simulate trajectories through the state space
and selects courses of action based on those. It uses a single representational
language, although it does reason with that representation using two differ-
ent kinds of reasoning. It has completely serial control of execution: only one
ILA is in control of the robot at a time. It collects all contingent knowledge
about the world in a single shared workspace. It handles error recovery in two
ways: re-sensing leading to model updating and re-planning, and closed loop
recovery from errors without planning. Finally it does not provide an archi-
tectural answer to the problem of sensory interpretation: perceptual routines
existed in Shakey, but there are no architectural constraints or aids to how
they operate, communicate, or share information. They serve only to provide
information to a central model in a unified language. The classic story about
Shakey given by behaviour based roboticists, is that it could never have worked
outside of its carefully controlled environment, and that even within it perfor-
mance was unreliable. Shakey was able to perform different tasks, but it relied
upon an accurate world model. It was able to construct a sufficiently accurate

88 Hawes et al.

representation under benign sensory conditions, but robot vision researchers
unsuccessfully spent the decade following the Shakey project trying to extend
this approach of scene reconstruction to more natural visual environments.
Thirty-five years later our ability to perform scene or surface reconstruction
is still poor, although it has improved. Of course to be fair to the designers
of Shakey it is not clear that they took a principled stance on whether all
aspects of a scene should be recovered, only that attempts to extend their
approach often sought to do this, and have largely failed to date. A strong
reaction to this paradigm that occurred in the mid 1980s was exemplified by
the behaviour based approach to robotics [5]. The approach is characterised
by a number of authors including proponents and sceptics. One key idea is
that the system is almost entirely representation free. The meaning of this
statement depends on what is meant by representation. Kirsch [14] describes
three types of representation: data items the values of which co-vary with
features in the world; declarative statements which release their information
when queried; and predicate descriptions that allow generalisation by type,
leading to the ability to reason about inheritance. Brooks’ early robots were
certainly representation free on the basis of either of the last two definitions.
Furthermore, while modules may have representations of the first kind, they
do not typically transmit these representations to other modules for further
processing or consumption. In other words there is no sharing of information,
only competition for control of the robot. Other important aspects of the
approach are that many controllers run in parallel, that each is relatively sim-
ple, and that their action recommendations are fused through a single global
mechanism. The obvious weakness of the behaviour based approach is the lack
of evidence of its ability to scale to higher cognitive functions, despite nearly
a quarter of a century of effort. Instead, roboticists typically use behaviours
as the lowest level of control in a hierarchical system. Three tiered architec-
tures such as 3T [7] employ behaviours at the lowest level, and link these to a
symbolic planning level via a sequencing level in which transitions are made
from behaviour to behaviour using a finite state machine like representation.
Representations have made a re-appearance via advances in filtering and sta-
tistical approaches imported from machine learning. Behaviours, rather than
truly behaviour based approaches have thus been merged into the tool-box
of techniques employed by most roboticists within architectures, rather than
being an architectural choice in their own right.

7 Summary of contributions and conclusions

In this chapter we have explored a small part of the space of designs for a par-
ticular part of niche space. Working from run and design time requirements
imposed by our combination of task and environment (our two scenarios) we
have suggested one architectural schema (CAS). We have argued that CAS
includes a large number of architectural instantiations and sub-schemas that

Architecture and Representations 89

meet those requirements. From our experience of building real robot systems
using the software implementation of the schema (CAST) we have identified
four problems which are common to a very large range of systems, and which
we argue warrant architectural solutions. These are the problems of binding,
filtering, processing management and action fusion. We have gone on to detail
our work within CAST to create solutions to each of these problems. Finally
we have tried to show that an empirical science of architectures is possible.
The work in this aspect of CoSy has been exceptionally useful in allowing us
to integrate the work of many of the other chapters. In particular we believe
that any true systems approach to AI must include an architectural theory. We
believe that CAS represents a significant step forward in architectures for em-
bodied cognitive systems because of the way that it combines the parallelism
and incrementality of behaviour based systems with the use of representations
that should lie at the heart of any cognitive system.

References

1. J. Anderson, D. Bothell, M. Byrne, S. Douglass, C. Lebiere, and Y. Qin. An
integrated theory of the mind. Psychological Review, 111(4):1036–1060, 2004.

2. Ronald C. Arkin. Behavior-Based Robotics. Intelligent robots and autonomous
agents. MIT Press, 1998.

3. M. Brenner, N. Hawes, J. Kelleher, and J. Wyatt. Mediating between qualitative
and quantitative representations for task-orientated human-robot interaction. In
Proc. of the Twentieth International Joint Conference on Artificial Intelligence
(IJCAI), Hyderabad, India, 2007.

4. M. Brenner and B. Nebel. Continual Planning and Acting in Dynamic Multia-
gent Environments. In The International PCAR Symposium, 2006.

5. Rodney A. Brooks. Intelligence without representation. Artificial Intelligence,
(47):139–159, 1991.

6. R. Clouard, A. Elmoataz, C. Porquet, and M. Revenu. Borg: A knowledge-based
system for automatic generation of image processing programs. PAMI, 21, 1999.

7. E. Gat. On three-layer architectures. In Artificial Intelligence and Mobile
Robots. 1997.

8. Stevan Harnad. The symbol grounding problem. Physica D: Nonlinear Phe-
nomena, 42:335–346, 1990.

9. Nick Hawes, Aaron Sloman, and Jeremy Wyatt. Towards an empirical explo-
ration of design space. In Proc. of the 2007 AAAI Workshop on Evaluating
Architectures for Intelligence, Vancouver, Canada, 2007. To appear.

10. Nick Hawes, Aaron Sloman, Jeremy Wyatt, Michael Zillich, Henrik Jacobsson,
Geert-Jan M. Kruiff, Michael Brenner, Gregor Berginc, and Danijel Skocaj. To-
wards an Integrated Robot with Multiple Cognitive Functions. In The Twenty-
second National Conference on Artificial Intelligence (AAAI), 2007.

11. Jorg Hoffmann and Bernhard Nebel. The FF Planning System: Fast Plan Gen-
eration Through Heuristic Search. Journal of Artificial Intelligence Research,
14:253–302, 2001.

12. Ian Horswill. Polly: A Vision-Based Artificial Agent. In AAAI, pages 824–829,
1993.

90 Hawes et al.

13. Henrik Jacobsson, Nick Hawes, Geert-Jan Kruijff, and Jeremy Wyatt. Cross-
modal content binding in information-processing architectures. In HRI ’08:
Proceedings of the 3rd ACM/IEEE international conference on Human robot
interaction, pages 81–88, New York, NY, USA, 2008. ACM.

14. D. Kirsch. Today the earwig, tomorrow man? Artificial Intelligence, 47:161–184,
1991.

15. Geert-Jan M. Kruijff, John D. Kelleher, and Nick Hawes. Information fusion for
visual reference resolution in dynamic situated dialogue. In Elisabeth Andre,
Laila Dybkjaer, Wolfgang Minker, Heiko Neumann, and Michael Weber, editors,
Perception and Interactive Technologies: International Tutorial and Research
Workshop, PIT 2006, volume 4021 of Lecture Notes in Computer Science, pages
117 – 128, Kloster Irsee, Germany, June 2006. Springer Berlin / Heidelberg.

16. J. E. Laird, A. Newell, and P. S. Rosenbloom. Soar: An architecture for general
intelligence. Artificial Intelligence, 33(3):1–64, 1987.

17. M. F. Land and M. Hayhoe. In What Ways do Eye Movements Contribute to
Everyday Activities. Vision Research, 41:3559–3565, 2001.

18. D. N. Lee. The Optical Flow-field: The Foundation of Vision. Philosophical
Transactions of the Royal Society London B, 290:169–179, 1980.

19. L. Li, V. Bulitko, R. Greiner, and I. Levner. Improving an Adaptive Image In-
terpretation System by Leveraging. In Australian and New Zealand Conference
on Intelligent Information Systems, 2003.

20. D. McDermott. PDDL: The Planning Domain Definition Language, Technical
Report TR-98-003/DCS TR-1165. Technical report, Yale Center for Computa-
tional Vision and Control, 1998.

21. Marvin Minsky, Push Singh, and Aaron Sloman. The st. thomas common sense
symposium: Designing architectures for human-level intelligence. AI Magazine,
Summer 2004, 2004.

22. S. Moisan. Program supervision: Yakl and pegase+ reference and user manual.
Rapport de Recherche 5066, INRIA, Sophia Antipolis, France, December 2003.

23. N Nilsson. Shakey the robot. Technical Report Tech Note 323, AI Center, SRI
International, April 1984.

24. M. P. Shanahan and B. J. Baars. Applying global workspace theory to the frame
problem. Cognition, 98(2):157–176, 2005.

25. D. Skočaj, G. Berginc, B. Ridge, A. Štimec, M. Jogan, O. Vanek, A. Leonardis,
M. Hutter, and N. Hawes. A system for continuous learning of visual concepts.
In International Conference on Computer Vision Systems ICVS 2007, Bielefeld,
Germany, 2007.

26. Aaron Sloman and Matthias Scheutz. A framework for comparing agent archi-
tectures. In In UK Workshop on Computational Intelligence, pages 169–176,
2002.

27. Mohan Sridharan, Jeremy Wyatt, and Richard Dearden. HiPPo: Hierarchi-
cal POMDPs for Planning Information Processing and Sensi ng Actions on a
Robot. In Proceedings of the 18th International Conference on Planning and
Sch eduling, ICPAS-2008, 2008.

28. M. Thonnat and S. Moisan. What can program supervision do for program
reuse? IEE Proc. Software, 2000.

29. Frank van der Velde and Marc de Kamps. Neural blackboard architectures of
combinatorial structures in cognition. Behavioral and Brain Sciences, 29:37–70,
2006.

Architecture and Representations 91

30. J.M. Wolfe and K.R. Cave. The psychophysical evidence for a binding problem
in human vision. Neuron, 24(1):11–17, 1999.

