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1 Introduction

In the PlayMate scenario we were concerned with understanding the prob-
lems that an intelligent system must face if it must interact with humans
in an object rich environment. In particular while certain problems, such as
manipulation, are peripheral aspects of the project. We want to understand
how a robot can share a space with a human in which they both manipulate
objects, and in which they can talk about those objects. This requires many
abilities. The robot must be able to understand and generate references to
objects, actions with them, their properties and spatial relationships. It must
understand how actions alter the relationships between objects, be able to
recognise actions the human performs with objects, and it must be able to
learn about the effects of actions on objects, both by discovery and by watch-
ing others. If there are several opportunities for action it must choose between
a number of potential goals at any one time. Finally, since it is working with
a human, the human may change the world while the robot is acting. Thus
the robot must meet many of the requirements that we outlined in Chapter 2,
and utilise many of the technologies that we described in the remaining chap-
ters. In this chapter we describe how we integrated these technologies to solve
some of the tasks that exist in the PlayMate scenario. We will describe both
the complete PlayMate system, and the major innovations in the PlayMate.
It is important to note that the system we describe is the last of a series of
systems. Each of these systems has been used as an experimental platform,
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and the lessons we have learned have been used to revise both our approaches
to the individual problems, and the architecture employed.

To help us in our exposition we will use a single example that runs through
the chapter and shows the various problems that we encounter in building a
robot with multiple modes of vision and action. The script for this example
is given in Figure 1.

Human (H) puts a blue square down on the table

H: ‘‘This is a blue square.’’

Robot (R): ‘‘OK.’’

H puts down a red square to the right of the blue square.

H: ‘‘This is a red square.’’

Robot (R): ‘‘OK.’’

H picks up the red square and puts down a red triangle to the right

of the blue square.

R: ‘‘What is the thing to the right of the blue square?’’

H: ‘‘It is a red triangle.’’

R: ‘‘Ok.’’

H picks up the red triangle and the blue square and puts down a

blue triangle.

H: "What colour is this triangle?"

R: "It is blue."

H picks up the blue triangle and puts down a green triangle on the

right and a red circle on the left.

H: ‘‘What shape is this thing?’’

R: ‘‘Do you mean the green thing or the red thing?’’

H: ‘‘The red thing on the left.’’

R: ‘‘It is a circle.’’

H: ‘‘Put the circle to the right of the triangle.’’

R picks up the circle and puts it to the right of the triangle.

Fig. 1. An example script of an interaction between the PlayMate and a human.

The ability to handle this script requires that the robot be able to handle a
number of situations. First it must be able to understand not just the content,
but the role of an utterance in the interaction, when the human says ‘‘This
is a blue square.’’ the robot must have a way of knowing that it should
learn something. Second of all, the robot must be able to bind information from
one modality to that from another, so that when the red square appears it
understands which visual object is being referred to when the human refers to
‘‘a red square’’. When it is learning this will require it identify the object
to be learned about using information other than the description of the object
given as the learning signal. It must also have ways of finding information that
is required by one modality (e.g. language) from another (e.g. vision). So that if
the human asks a question — ‘‘What is the thing to the right of the
blue square?’’ — it can produce the answer. Alternatively, since the robot
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is required to learn about the relationships between two modalities (vision and
language) it must also have the ability to learn mappings between aspects of
the two, i.e. to perform cross-modal learning. If the information available to
the robot is insufficient for it to be able to perform its task it must acquire it. In
other words the robot must plan clarification processing to resolve ambiguities.
An example of this is when the human asks a question but the referent of the
question is unclear — ‘‘What shape is this thing?’’ — so that the robot
has to ask which thing is being referred to. Also, if the robot is unsure about
something it should be able to raise its own questions, so that it can learn.
An example of this is when the robot realises that it doesn’t know the red
triangle it is motivated to ask its own question. In understanding the references
to objects the robot to map between quantitative and qualitative notions of
spatial arrangement. When the human tells the robot to put the circle to the
right of the triangle the robot has to map from a qualitative notion to a metric
one (it has to put the circle in a particular place). Whereas in order to be able
to make the utterance ‘‘What is the thing to the right of the blue
square?’’ it must perform the mapping in the other direction, from metric
to qualitative. Finally, while performing all these activities we desire that the
robot perform them in as computationally efficient a manner as possible and
make its interaction with the human as comfortable and natural for the human
as possible. For us this will mean that we try where possible to have the robot
build up its understanding of the scene incrementally. This is challenging when
the scene changes frequently.

This script is only one of a large number that the PlayMate can han-
dle, but it illustrates many of the key issues. In the next section (Section 2)
we will give a sketch of the components and shared representations that the
PlayMate employs. In that section we focus on two of the generic sub-systems
that are employed in all activities: the binding system, and the motivation
and planning system. This system sketch will provide a framework for under-
standing the content of Section 3 where we describe the cross-cutting issues
and the innovative solutions employed in the PlayMate. These issues include
those raised in the discussion of the script above, but we highlight our ap-
proach to cross-modal learning, incremental processing, disambiguation and
clarification, and mediation between different levels of abstraction.

2 System Overview

In the previous section we outlined the kinds of tasks the PlayMate robot can
be engaged in, and some of the requirements arising from those. In Chapter
2 we also outlined the requirements that arise generically on the architecture
for both the PlayMate and Explorer scenarios. In this section we describe a
specific system, built using CAST, which makes much stronger architectural
commitments than CAS itself. We in fact built a series of systems to address
different aspects of the PlayMate scenario over the four years of CoSy. In this
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Fig. 2. An overview of the PlayMate System. There are seven sub-architectures,
each of which corresponds to a functional and development unit.

section we give an overview of the system structure as it stands at the end of
the project. Following this we will describe how the system structure supports
principled solutions for a number of possible tasks.

The PlayMate system is an architectural instantiation of the CAS schema.
It follows a broadly functional decomposition contra much recent work in
robotics, but utilises parallelism and incrementality to build up its represen-
tation of the environment efficiently. Thus the PlayMate system makes much
stronger architectural commitments than CAS itself.

Following this broadly functional decomposition, there are seven sub-
architectures (SAs) in the PlayMate. These are concerned with visual pro-
cessing (Vision SA), Communication (ComSys SA), spatial representation and
reasoning (Spatial SA), manipulation (Manipulation SA which includes rele-
vant visual processing), ontological representations and reasoning (Coma SA),
binding of information between modalities (Binding SA), and control of moti-
vation and planning (Motivation and Planning SA). In the PlayMate central
roles are played by the last three of these sub-archtictures. In the latter part of
this chapter we will show how we use these three to control most of the reason-
ing processes and flow of control, thus provided general control solutions for
a variety of potential tasks (question answering, question asking, cross-modal
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learning, manipulation, handling ambiguities). We now briefly sketch the com-
ponents employed in each sub-architecture and the representations that they
share in their working memories. The reader should refer to Figure 2 to aid
understanding.

2.1 Vision SA

The visual system operates in two ways: it has the ability to analyse static
scenes (e.g. categorising objects and their spatial relations), and to analyse
dynamic scenes (e.g. recognising actions with objects). When new objects
enter the field of view and then cease moving as they are placed on the table
the resulting static scene is analysed. A simple change detector is used to
determine whether the scene is, or has stopped changing. If the scene ceases
changing, Regions of Interest in the scene are segmented from the background,
and information about them is written to the working memory. It is important
to note that all the information is exchanged between components on the
working memory, and that most of this is captured in two types of structure.
The first of these structures captures information about regions of interest
(ROIs) in the image, and the second captures hypotheses about objects that
may exist in the world. At the moment in the integrated system we rely on
there being a one to one correspondence between ROIs and objects. Clearly
this is not always the case, due to occlusion and partial occlusion, and in our
work on planning of visual routines we have begun to develop methods to split
ROIs into smaller regions that are more likely to correspond to single objects.
Given our initial assumption about lack of occlusion the segmentor creates, for
each ROI, not just a structure representing the ROI, but also one representing
the object. These are linked, using the references that CAST allows between
items on working memories, and each of is a slot and filler structure that allows
components to work in parallel to on different slots. These slots for the object
include descriptions of the object’s category (by the categoriser component),
global shape classification and colour classification. The ROI slots include the
segmentation of the object within the ROI, and features calculated by the
feature extractor. This calculates, for example, many local shape and colour
features for each region of interest. This split in the level of abstraction is quite
useful: ROI structures typically store quantitative local visual features, and
object structures capture the more abstract classification of the whole object
into a smaller number of qualitatively different classes. This correspondence
between local-quantitative and global-qualitative is part of the process by which
we gradually produce abstract representations suitable for planning and high
level reasoning. The other key notion from the architectural schema CAS that
is displayed here is that the components in the visual system incrementally
refine, in parallel, these shared representations of what is in the scene.

When a static scene starts changing again, either because the robot or the
human intervenes, dynamic scene analysis starts. In the case of objects, all
the objects that have been segmented from the previous static scene analysis
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are tracked by the object tracker, giving their full pose. In addition we sepa-
rately track hands that appear with a hand-tracker, and analyse not only their
position, but also any pointing gestures that they may make. These pointing
gestures can be used to manipulate the salience of different objects or areas
within the scene. Hand information is stored in a separate hand structure on
the visual working memory. When objects and hands are being tracked infor-
mation about their pose is constantly updated on the working memory. Many
quantitative spatial features are also extracted from the tracking information
that describe the relative pose of hands and objects, and these are used by the
event analyser to classify simple and complex actions as described in Chapter
7. This allows the system to recognise some of the actions that are performed
by the human with an object.

In addition to the ability to describe regions of the scene, objects in the
scene, and actions performed with those objects, the visual system also per-
mits learning of object properties. The learner/recogniser learns correlations
between the low level features of associated with ROIs (e.g. colour histograms)
and abstract classifications associated with objects (e.g. the ball being red).
To learn this requires a feedback signal. There are many possible feedback
signals, but in our case we utilise the information from language. This cross-
modal learning is described in more detail in Chapter 7, and also in Section 3.1
below.

2.2 Communication SA

The Communication sub-architecture (or ComSys) has a number of compo-
nents concernd with understanding and generation of natural language ut-
terances. The main discussion of the techniques employed occurs in Chapter
8, but it is worth highlighting some points here. First a speech recogniser is
used to convert speech to a text string. But even at this early stage the en-
tities that exist as recorded on the binding sub-architecture are used to bias
the likelihoods of recognising certain words. This is an important example of
how tentative binding can be used to assist early processing of information by
cutting down the space of hypotheses. This process of using binding to limit
interpretations is also carried out by the parser. This uses a combinatorial
categorial grammar with semantics expressed in a modal logic. As described
in Chapter 8, this produces logical forms that correspond to semantic inter-
pretations of an utterance. In the ComSys we have the ability to perform
interpretation incrementally, i.e. as the elements of the text string arrive from
recognition. Whether parsing is performed incrementally or not, the possible
bindings of the discourse referents in the possible semantic interpretations cut
down the interpretations that can be considered. Each utterance is interpreted
as it arrives, and both the content of the utterance and its intent are modelled.
The resulting interpretations of all the utterances in the dialogue to date are
grouped together in what we call a packed logical form. We think about this as
a forest of trees, where each tree corresponds to the logical form from a single
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utterance. The dialogue model includes a packed logical form, information on
all the discourse referents, a representation of events as well static scenes, and
contextual information. All of this information is communicated to the bind-
ing and motivation sub-architectures by the ComSys binding monitor. This
creates proxies representing both the indexical and intentional content of the
utterances in the dialogue. In rough terms the indexical content (information
about entities in the world) is used by the binder to link with information
from other modalities, particularly vision. Meanwhile the intentional content
(information about the purpose of the utterance) is used by the motivation
and planning sub-architecture to raise goals for activity elsewhere in the sys-
tem. The ComSys is able to signal to the overall system whether information
is intended by the speaker to be new information, e.g. in an utterance that
provides a description of an object to be learned. This is useful when it comes
to cross-modal learning between language and vision.

2.3 Manipulation SA

Because our primary integration goal in the PlayMate scenario was to un-
derstand the integration and architectural issues some of our components
replicate the state of the art, rather than each pushing forward the bound-
aries of each sub-field. This is true for manipulation where we utilise standard
approaches to grasping and path planning for the manipulator. The manip-
ulation is given the identity of objects it must manipulate, and their desired
target locations. It plans trajectories through space to a suitable location to
commence grasping by using a probabilistic road map planner with optimi-
sation of the planned trajectories to minimise energy costs and path length.
Having reached the location to commence grasping a local reactive controller
utilises information from a visual analysis of the area in front of the ma-
nipulator. The manipulator has a camera on the hand, and this provides a
high-resolution image of the objects to be grasped. Because of the mechanical
restrictions imposed by two fingered manipulators (we use a jaw gripper) we
have restricted our objects to always have graspable surfaces in the form of
handles, or to objects that naturally afford grasping (e.g. upright oblong boxes
of a suitable width). Given these objects however the visual analysis must still
correctly identify the graspable surface from within the image. This analysis
is performed using edge detection and anytime perceptual grouping methods
reported by previously by Zillich [1]. These analyse the image and find can-
didate graspable top surfaces. The surface that best matches the hypotheses
from the visual sub-system about the location and size of the object is cho-
sen, and a power grasp is executed on the object. This approach is simple,
but effective.

2.4 Spatial SA

The robot may receive information about the spatial configuration of objects
from either language or vision. From language we have a representation that
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is essentially qualitative. Utterances that the PlayMate might typically be ex-
pected to handle include several different types of spatial references, such as
projective references, e.g. "The box to the left of the red ball", "The
square in front of the triangle" or proximal ones, e.g. "The triangle
near the red thing". Both of these types of reference are essentially qual-
itative. The visual system can also produce a representation of spatial rela-
tions, but this is essentially metric. The spatial sub-architecture captures both
metric and qualitative representations of space, which it derives from visual
input. How the mapping from these metric to qualitative representations is
performed is described in Section 3.3. But note here that this process of ab-
straction is central to the representational problems the PlayMate faces. In
addition that any solution to it that is suitable for supporting communica-
tion must also take account of the context sensitive way in which humans use
spatial references. The spatial SA has a component called the scene manager
which monitors changes in the information on the visual working memory.
When a new object appears there it creates a record called a location struc-
ture of the corresponding metric location on its own working memory. These
location structures point back to the visual information from which they were
derived, creating the kind of processing trail that was discussed in Chapter 2.
Because, during a dynamic scene, the position of objects can change quickly
the actual location information recorded in the spatial working memory is
only recomputed when the scene ceases changing. The set of the locations
that hold during a period of stasis are grouped by reference in a scene struc-
ture. This grouping is also performed by the scene manager, which creates
an ordered stack of scenes. This means that the spatial system has memory,
which is necessary to enable the system to reason about the changes induced
by previous trains of action. The spatial system also builds a qualitative rep-
resentation of the spatial relations between scene locations. Two components
search for proximal relations and projective relations between these locations,
and create scene relations which are also referenced by the corresponding
scene structure. These relations are detected in a context sensitive manner
using potential field models that are described in detail in Section 3.3. The
qualitative spatial description thus derived is related to descriptions from lan-
guage by the binding sub-architecture. Our approach to binding is described
in the next sub-section.

2.5 Binding

We have already described the binding problem in Chapter 2. We described
how CAS allows two levels of solution to the binding problem. Within sub-
architectures the results of processing by components are bound by design
time decisions about the structure of the representations that reside on the
working memory. We referred to this as implicit binding. However, as explained
in Chapter 2 this is not enough in many cases. If in the PlayMate scenario
there are two objects on the table, and we refer to "the blue circle" we
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need to relate structures on the communication working memory to those on
the visual working memory. We cannot use implicit binding to relate these
two structures. This is because those structures will have been created at
different times. Also because there are many ways of referring to an object,
and many ways of interpreting a reference — especially ambiguous references,
which may require accommodation or reinterpretation of the scene — the
binding of structures from across modalities must be done at run time, and
done in context sensitive way that produces an interpretation of the scene
that is consistent across both modalities and objects.

Because we have chosen a largely functional decomposition for the Play-
Mate systems we have built, explicit binding is largely a cross-modal affair: we
only have to perform explicit binding on entities across modalities. This is not
to say, however, that binding can occur only after the results of modality spe-
cific processing have been completed. In Chapter 8 we described how we use
possible bindings between entities in the visual scene and discourse referents
in the utterances to incrementally interpret the utterances. This use of incre-
mental binding means that binding becomes a way of achieving cross-modal
inference. This is a powerful feature of the architectural approach taken in
CoSy.

However, it would be reasonable to hypothesise that there are several dif-
ferent ways that binding could be performed within a system like the Play-
Mate. Our approach is carried out using a central mediator and amodal rep-
resentations that are abstractions from the modality specific representations.
This is a very old approach, with a pedigree that in some sense goes all the
way back to the Shakey project. An alternative approach would be to perform
explicit binding pair-wise across sub-architectures, i.e. to perform distributed
explicit binding as opposed to our approach of centralised explicit binding.
This would mean that if entities from N different sub-architectures were all
related to one another N ∗ (N − 1) pairwise bindings would be required, giv-
ing an overall complexity order of O(N2). In our scheme N abstractions must
be performed and N bindings performed on those abstract representations,
giving an overall complexity order of O(N). The relative overall run-time also
depends on the relative processing cost of the processes of abstraction and
binding on abstract representations, versus that of the processes of binding
on non-abstracted representations. In the PlayMate we have found that the
abstraction process is time consuming to design, but quick at run-time. Per-
haps the run time of binding on non-abstract representations can also be low
(it may be performed rapidly by using a content based memory for exam-
ple). A second challenge for distributed explicit binding is that bindings must
be made consistent, and that this must be done incrementally across all the
sub-architectures involved. This would make an interesting topic for future
work.

We now describe how our binding process works for the case of some
simple steps in our example. The discussion should be followed with reference
to Figure 3. It is important to note that to simplify the discussion we treat
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the steps of the process as if they were synchronous. In fact all the processing
runs asynchronously. First recall the script:

Human (H) puts a blue square down on the table
H: ‘‘This is a blue square.’’

This simple example requires that the robot understand that the sole ob-
ject in view is the object being referred to. In one sense to bind these two
information items (the scene object in the visual working memory and the
discourse referent in the communication system working memory) is trivial,
the robot must simply associate the only visual object there is with the only
discourse referent there is: "blue square". But to do the binding in a way
that is general requires that the robot understand that binding them is per-
missible because of what is known about them. In this first step, since the
robot does not yet understand from visual input alone that the object is blue
and square, the binding must occur purely on the basis that since they are
both structures represent physical things they could be the same. Since no
other binding is possible they are bound.

Figure 3 shows this process. As described in Chapter 2, within each sub-
architecture a binding monitor component looks for new entities in that sub-
architecture’s working memory. When a new information structure is created,
the monitor writes an abstract amodal representation of that structure’s con-
tents to the working memory of the binder. This abstract representation is
called a proxy. A binding monitor may write several proxies to the binder to
capture different aspects of the information. In our example, after time t = 1
when thescene object is created in the visual working memory, the visual
binding monitor creates three proxies. The first proxy represents the physical
object, the second proxy the location of this object, and the third proxy the
relation between the first two proxies — in this case the simple fact that the
object is at the location. Each proxy is essentially a bag of features, which are
attribute-value pairs. In our example, the first proxy has the feature that it’s
a type of physical thing, and the second that it is a location. Note that the
abstraction process into these amodal descriptions of the objects is entirely
decided by the binding monitor.

Also by time t = 2 a separate entity has been created for the spatial
location in the spatial sub-architecture. By time t = 3 a proxy for this has
also been created on the binding working memory. Recall that the purpose
of the binder is to decide which proxies are related to which other proxies.
If proxies are related it groups them into a set called a union. The precise
algorithm for matching is described in Chapter 2, but in the basic idea is that
if enough common features of proxies have values that match, and if there are
no features in common that mismatch, the proxies are bound into a union. To
restrict binding the binder also assumes that different proxies from the same
sub-architecture can’t be bound. In other words the binding process trusts
that the modality specific sub-systems generate the right proxies.
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In our example, since the spatial proxy with a location and the visual
proxy representing that location match (the locations are the same) they are
bound into the same union. Since the spatial information here was derived
from vision this seems redundant. In fact it is not since we could equally
derive spatial information from language, and the spatial sub-system does not
tell the binder the origin of it’s representations. Thus the binder is blind to
the processing trails that exist from the proxies back to the source data.

During this processing the human has made the utterance: "This is a
blue square.". Parsing leads to a logical representation of the semantic con-
tent of the utterance, together with a record of the discourse referent. The
binding monitor for the communication sub-architecture creates a proxy from
the discourse referent, as seen at time t = 4. This proxy contains information
that the referent is blue, square, and that it is a physical thing. Since the only
feature this proxy has in common with the visual proxy for the object is type,
and the types match (they are both physical things) the proxies are bound
into the same union. So if one modality provides a richer description of an
entity than another modality this does not prevent binding. In our example
the binding process ends here.

One key design decision is the abstract set of features and values employed
for binding. These form our core amodal language. In our case, not only are
these features chosen carefully, but they are related in a type network or
ontology. This type network allows matching of entities lower in the type
hierarchy with entities higher up. Thus if the visual system sees a toy cow on
the table, but the human refers to it as an animal the type network allows
matching. This kind of reasoning about types and their relations is performed
by the Coma sub-architecture. This is mostly used in the Explorer scenario,
so we do not discuss it here, but it allows what we call ontology mediated
binding. This is another powerful aspect of our approach.

We have now covered the basic notions of binding as they are realised
in the PlayMate system. We have introduced the ideas of implicit, explicit,
incremental and ontology mediated binding. We have described in detail how
explicit binding occurs. We have emphasised that it relies on the ability to
abstract from modality specific representations into a common amodal repre-
sentation. Our implementation of this binding approach is also asynchronous,
and does not depend on information arriving from different modalities in any
particular order. This is important when trying to integrate representations
that change at different rates. As mentioned in Chapter 2, an important as-
pect of the abstract features we have chosen for the PlayMate is that they are
temporally stable. We now turn to the other central system: the motivation
and planning sub-architecture.

2.6 Motivation and flow of control

The motivation and planning sub-system plays the role of receiving poten-
tial system goals from other sub-systems, and then deciding which ones the
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Fig. 3. A timeline for a simple binding between a visual object and an utterance.
In a real system run these events will occur asynchronously and thus in a relative
order that depends on the timing of the utterance and the placement of the object.
For simplicity we have presented the system state here at chosen fixed points. Ar-
rowed links indicate one way references, while non-arrowed connections indicate two
way references between representations. The rows represent the working memory
contents for each sub-architecture listed on the left.

whole system should pursue (motive management) and how (planning). We
wanted to achieve this in as flexible and general purpose a way as possible. For
overall system behaviour the planning occurs at an abstract level, using rep-
resentations that are essentially those employed by the binder. Within other
sub-architectures (manipulation, communication and vision) domain specific
planners fill out the details of individual steps of the high-level plan.

The motivation sub-system has a monitor component. This is a different
to monitors elsewhere in that it essentially keeps an up to date local record
of entities on the binding working memory that can be used for planning. It
watches the proxies and unions that appear on the binding working memory
and keeps a list of them - grouped by union - with pointers to the proxies
themselves. This list is referred to as the Address-Variable Map (AVM). The
AVM is used by the planner to access information about the world via the
binder.

New system goals are adopted in a three-stage process. First a sub-system
such as the communication system or the visual system posts a proxy to the
motivation sub-architecture working memory. These proxies contain informa-
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tion relevant to deciding what kind of system goal might be raised. This allows
sub-systems to raise potential system goals in parallel and asynchronously. In
the second stage the motive generator component then reads each proxy as
it arrives, and decides whether or not to generate a motive structure on the
working memory. In the third stage the motive structure is picked up by a
motive manager and a decision is made about whether to turn that motive
into a system goal. If so then the motive will be turned into a goal posted to
the motivation working memory, which will make reference to variables listed
in the address variable map. This three-stage process allows local sub-systems
to raise potential system goals, for the system to filter these and to maintain
a resulting set of motives, and then to choose which of these motives will be
acted upon now. This allows the system to switch goals if urgent new mo-
tives arrive, and not to forget old motives that were of low priority, but which
can be acted on later. Motives can therefore be thought of as very similar to
desires in a BDI framework.

This system goal, posted by the motive manager, will in turn be picked up
by the planner. Before planning can begin the planner asks for the information
from the proxies (referred to by the AVM) in a form suitable for planning. This
translation process is carried out by a state generator component. Following
the planning process an action dispatcher sends action requests to different
sub-architectures, and checks that the sub-architectures claim they have been
executed. The planner, being continual, also includes an execution monitor
which checks the achievement of the plan steps via the state generator, the
AVM and the proxies referenced by the entries in it.

To illustrate the process of raising and acting on motives we return to our
example. In the following sections we will show how the binding and motiva-
tion approaches described above provide a general way to tackle both tutor
driven learning, self-driven learning, clarification, and following instructions
or answering of human posed questions.

3 Key innovations

In the following sections we will go through the steps of our example, using this
as a way to describe the commonalities in how the PlayMate handles different
types of activity at a system level. The example script requires that the Play-
Mate be able to handle cross-modal learning, question answering, question
asking for clarification, and mediation between qualitative and metric repre-
sentations of space. Since the component technologies have been described in
detail in various chapters we will not focus on the details of those here, but
on how the system level flow of information allows the right sub-systems to
be active at the right time.
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3.1 Cross Modal learning

In Chapter 7 we described methods for cross modal learning at an algorithmic
level. In particular we described a continuous learning algorithm that is used
for learning maps between vision and language. Specifically it learns the cor-
relations between the abstract qualities of objects (colour and shape names)
or relations between objects (names for spatial relations), and features calcu-
lated directly from low-level image properties (such as colour histograms or
local shape features). The framework described in Chapter 7 allows for the
learning to be either tutor driven or tutor supervised. To recap, in the first
approach the tutor drives the learning process by choosing the descriptions of
the objects that provide the qualitative labels. In tutor supervised learning,
the learner raises queries about the visual objects presented in order to obtain
qualitative descriptions. In our example the first exchange is tutor driven:

Human (H) puts a blue square down on the table
H: ‘‘This is a blue square.’’

Whereas the second exchange is an example of tutor supervised learning:

H picks up the red square and puts down a red triangle to the
right of the blue square.
R: ‘‘What is the thing to the right of the blue square?’’
H: ‘‘It is a red triangle.’’
R: ‘‘Ok.’’

At a systems level the challenge is to decide when to engage in one type
of learning or another. In addition the system must distinguish between when
learning activity is required, versus another kind of activity (question an-
swering, physical action). To do this we use the motivation system described
above. Sub-systems raise potential system wide activities, and the motivation
sub-system chooses between them. Learning also raises a second problem for
our broad approach. When I give a description intended for learning, how does
the learner know which object is being referred to? In the section on binding
above (Section 2.5) we described how we handle this, binding only on com-
mon features, and where necessary using the ontology to handle binding across
the type hierarchy. To understand how the motivation and binding solutions
work together to enable cross-modal learning at a systems level we return
to our simple example of "This is a blue square". To aid the discussion
Figure 4 shows a timeline that begins where the time-line from Figure 3 ends.
As described in the section on motivation, when the utterance is processed a
proxy telling the system about the intent of the utterance is posted on to the
working memory of the motivation sub-architecture (time t = 1). This proxy
contains the information that the ComSys has identified as new. The motive
generator has a number of templates for creating motives from proxies posted
by other sub-systems. In this case it raises a motive and posts it onto the
motivation working memory (t = 2). Motives are essentially possible system



The PlayMate System 373

Fig. 4. The extended timeline for learning activity for the "This is a blue

square." example.
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goals, expressed in the language of the planner. The goal arising from the
statement "This is a blue square" is:

(for all ?sa (want-colour-info ?sa) (K ?sa (colour v1:blue))
and
(for all ?sa (want-shape-info ?sa) (K ?sa (shape v1:square)))

where ?sa refers to any sub-architecture, and K is a modal operator for
believes, such that (K agent fact) means that some agent believes some
fact. As described in Chapter 6, our planning language allows us to make both
epistemic states into system goals. In addition we model the architecture as a
multi-agent system in which the sub-architectures are agents. In order to take
advantage of this all the other sub-architectures register with the motivation
and planning sub-architecture which kinds of beliefs they are concerned with.
These information service offers/wants are stored during the entire run of the
system on the motivation sub-architecture working memory. To support cross-
modal learning both the ComSys and Vision sub-architectures register that
they can offer information about colour and shape. They also register that they
want to be told information about colour and shape that may be provided
by other sub-systems. In the case of cross modal learning the goal created
essentially says that all agents that want information of the type that has just
arrived should believe this new information. If the motive is adopted by the
motive manager the goal is adopted by the planner. It requests an abstract
description of the state suitable for planning, which is in turn supplied by
the state generator and posted onto the working memory (t = 3). This state
includes information about the general service offers and wants of different
sub-architectures. It also represents the specific beliefs that sub-architectures
have. As mentioned previously, the objective of binding is partly to provide
stable entities to support planning. The state generator essentially uses the
abstract state descriptions used by binding, and re-represents them in the
language of the planning domain. A plan is produced (t = 4) and its steps are
executed one by one (t = 5, t = 6). After each plan step has been executed
the continual planner we employ performs execution checking, again using the
abstracted state description provided via binding and the state generator. The
plan in this case is very simple:

(acknowledge motive comsys)
(tell-val colour vision v1 blue)
(tell-val shape vision v1 square)

It simply asks the motivation system to tell the ComSys that its request is
being dealt with, and then tells the vision system about the colour and shape
of the object. This plan has two important features. First it does not decide
whether or not the human needs an acknowledgement. That decision is left
to a separate dialogue management and planning process. This means that
our continual planner is isolated from some aspects of the system’s activity:
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planning is carried out in a distributed fashion by a variety of specialised
planners. The second point is that the discourse referent blue square and
the visual object were bound explicitly, but the new information to support
learning was sent to vision, avoiding the binder. Thus in this case learning oc-
curs mediated centrally, but information exchange occurs between modalities,
not via a central world model.

In our second learning exchange recall that the learning is driven by the
robot:

H picks up the red square and puts down a red triangle to the
right of the blue square.
R: ‘‘What is the thing to the right of the blue square?’’
H: ‘‘It is a red triangle.’’
R: ‘‘Ok.’’

This is handled at a system level in a very similar way to the tutor driven
learning. When the visual system realises that it is unsure of the qualitative
colour and shape labels for the red triangle it posts a proxy to the motive
sub-system. Rather than containing new information this proxy is marked as
representing a question. This time the motive generator creates a goal that
the vision sub-architecture wants information on the colour and shape of a
visual object:

(K Vision (Colour v1 ?c))

This goal is then planned for as previously, and a plan will be produced
of the following form:

(acknowledge-goal-accepted vision)
(ask-val colour motive comsys v1 ?c)
(ask-val shape motive comsys v1 ?s)
(tell-val colour motive vision v1 ?c))
(tell-val shape motive vision v1 ?s))

In this case the planner realises that the ComSys can be asked about the
colour and shape of the object and that it can then send this information
directly to the vision sub-system to support learning. It is of course perfectly
possible that a motive for learning would be raised on behalf of vision while
the speaker was making an utterance intended to support learning. In this
case the system should be able to catch this by realising that a simpler plan
will suffice.

3.2 Clarification and Question answering

We now briefly show how both question answering and clarification requests
can be handled using essentially the same mechanisms described above for
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tutor driven and tutor supervised learning. Recall that in the dialogue there
is the following exchange:

H picks up the red triangle and the blue square and puts down
a blue triangle.
H: "What colour is this triangle?"
R: "It is blue."

In this case the proxy will be raised by the ComSys, and converted into a
goal for the ComSys to know what the colour of the triangle is. In this case
the plan will be:

(acknowledge-goal-accepted comsys)
(tell-val colour motive comsys v1 blue)

Because the visual system has analysed the scene, and confidently classified
the object’s colour this information has been stored in binding. Thus the
planner has access to this. The discourse referent for "this triangle" has
also been bound to the visual object. This means that the planner doesn’t
need to ask vision. Essentially the reason for this boils down to the fact that
in our current system visual processing is data driven, so information flows
directly from vision to the binder. In Chapter 2 we outlined how the visual
system could have task driven processing. This would make it much more like
language, in that vision would need to be asked, so that the plan would need
an extra ask-val step as did the one for tutor-supervised learning. Note that
both cases are handled by the planning process, rather than by the designer.

So far we have seen that our system handles two kinds of learning, and
question answering in essentially the same manner. Finally we see that clari-
fication requests can also be handled in a similar way. In the next step of the
dialogue the human places two objects on the table:

H picks up the blue triangle and puts down a green triangle
on the right and a red circle on the left.
H: ‘‘What shape is this thing?’’
R: ‘‘Do you mean the green thing or the red thing?’’
H: ‘‘The red thing on the left.’’
R: ‘‘It is a circle.’’

In this dialogue the utterance from the human is ambiguous. Perhaps the
robot should assume that the most salient, or recently deposited object is
the topic of the query. However, lacking such information it must clarify the
ambiguous reference. In our case this occurs in the process of the system’s
attempt to raise a motive to answer the question: ‘‘What shape is this
thing?’’. There will be three relevant proxies on the binder: one from vision
for the green triangle (v1), one from vision for the red circle (v2), and one
from language for the discourse referent for "thing" (v3). Since there is not
enough information from the binder to bind the linguistic proxy to either of the
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others the question cannot be directly answered. An important design decision
is how this is handled. On the one hand the ambiguity could be written into
the planning state, together with actions that have the effect of removing
ambiguities. This presents problems in that expressing the possible bindings
in terms of planning operators is extremely challenging. An alternative is for
the motive generator to perform simple reasoning to establish that the goal
will be unachievable without further information. This is the approach we
take. Thus when presented with an ambiguity that leads to an unachievable
goal the motive system instead posts a goal to resolve the ambiguity. When
this is resolved it posts the goal to answer the original question:

(K Binder (Colour v3 ?c))
(K ComSys (Shape v3 ?s))

The first goal is to enable the binder to get the information it needs to
distinguish which object the referent should be bound to. The reasoning to
generate the distinguishing features is performed by the binder itself. When
v3 has been bound to one of v1 or v2 the next goal of the ComSys knowing
the shape of the object can be adopted. The plan for the initial goal in this
case will be:

(acknowledge-goal-accepted comsys)
(ask-val colour motive comsys v3 ?c)

which will cause the ComSys to generate the clarification question: "Do
you mean the green thing or the red thing?" as a way of obtaining the
required colour information to complete the binding of v3. When the answer
is: "The red thing on the left." v3 and v2 are bound, and the second
goal is planned for:

(tell-val shape motive comsys v2 ?s)
A comparison of the relationship between these different types of control

flows is given in Figure 5.

3.3 Mediating between qualitative and quantitative
representations

In the final step of our example the human gives the robot an instruction to
move one of the objects:

H: ‘‘Put the circle to the right of the triangle.’’
R picks up the circle and puts it to the right of the
triangle.

To act on the kinds of action commands we are interested in, the robot
must be able to translate from the qualitative linguistic spatial description of
the location to place the object, to both a geometric description of the loca-
tion that can be used by the manipulation system (i.e. a geometric waypoint
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Fig. 5. Question asking, question answering, clarification of ambiguity, tutor driven
and tutor supervised learning are all handled in a similar framework. Essentially each
begins with a proxy posted on the motivation and planning SA working memory.
Then a motive/goal is created, which takes into account the desired knowledge state
of the various agents. Finally the planner creates a plan which includes knowledge
generating actions. These actions may cause specialised planning processes to be
run in other sub-systems.

positioned in the robot’s world), and a logical description for the planning do-
main (i.e. a symbolic representation of this waypoint and its relationships with
other waypoints). This translation involves constructing geometric models of
the semantics of spatial terms. In our approach we use potential field models
to create abstract spatial relationships from metric information in the spatial
sub-architecture. These potential field models are very simple, but are able to
take into account the context when interpreting spatial relationships. For in-
stance, the notion of the nearness of two objects is mediated by the proximity
and salience or size of other objects that may act as landmarks. The potential
field models thus let us extract qualitative spatial relations that correspond
to the terms as used by humans. In moving from qualitative to metric we
simply take the mode of a field with respect to some landmark. This is how
we generate actual goal locations for objects when given instructions like the
one in the final step of our example.

4 Conclusions and Discussion

In this chapter we have looked at some of the issues involved in building a
robot controller for situations where the robot and a human can talk about and
manipulate a set of objects in a shared space. Working from requirements we
explained how the PlayMate architectural solution provides a specialisation
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of CAS. Essentially the PlayMate is a functional instantiation of the CAS
architecture schema. This is only one possible instantiation among many. The
functional approach, while still deeply unfashionable in parts of robotics has
some advantages. In particular it is one way that we can produce abstract
enough representations to support planning of system wide activity. While we
do embrace an abstract world model we wish to emphasise that the approach
here is not that of Shakey or similar. There are a number of design choices
that we have embraced and from which we believe others could benefit. These
are:

• Shared Representations: while systems like Shakey employed a central
representation and a serial processing model we have used parallel process-
ing of distributed representations and explicit sharing of representations.
Brooks criticised approaches that pass representations as being subject
to a ”strong as the weakest link” problem. Sharing representations can
overcome this weakness because by refining shared representations we can
leverage many sources of information to refine our hypotheses and ren-
der our conclusions more reliable. This is already a feature of statistical
inference in AI, we have taken the same principle and employed it at an
architectural level. We have also explored one set of approaches for parallel
and incremental refinement. The sharing rather point to point transmis-
sion of representations, and the parallel rather than serial refinement make
the model very different to that of early representation heavy systems like
Shakey.

• Abstraction: In our view the ability to coordinate system wide behaviour
requires that we have quite abstract, stable representations that are suit-
able to support symbolic planning. This was another criticism of the
Shakey approach: that such abstract representations are hard to come and
brittle in the face of change. In the PlayMate we employ ideas like process-
ing trails to allow the stable and abstract representations to point back to
rapidly changing information without being corrupted by this change. In
addition we employ a variety of levels of abstraction: within vision for in-
stance we maintain both low level visual features, and qualitative descrip-
tions of objects, in the spatial system we store both metric and qualitative
descriptions of spatial relations. Finally we have looked for ways that we
can move in both directions: from metric to qualitative and back again.

• Binding: Once the benefits of representations that are distributed across
many sub-systems are accepted there is a price to be paid. This is really
the binding problem: that it will not always be obvious without some in-
ference the way in which representations from one sub-system are related
to those from another. We can think of our approach to explicit binding as
being a way of tying together elements across a field of evolving represen-
tations rather than as a single monolithic central representation. We have
shown in different parts of this book how a cognitive system with such a
distributed set of representations can benefit from strategies such as incre-
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mental binding, implicit binding and ontology mediated binding. We have
employed all these in the PlayMate system to good effect.

• Processing control: Once we think about a distributed system com-
posed of many processing agents, we need to address the issue of how that
processing is controlled, and how information flows through the system.
How can the system produce coherent behaviour from these many parts?
Rather than take an approach in which coordination emerges we have pur-
sued one in which it is the result of informed decision making. This idea —
that we can model the internal informational effects of processing — is a
very powerful one. The idea need not be restricted to planning approaches
as here: it is perfectly reasonable to suppose that learning strategies could
be employed to acquire some aspects of processing control. In this chapter
we have focussed on the way that a variety of different activities can be
modelled using planning operators.

Overall in this chapter we have presented, at a systems level, a synthesis
of old and new approaches from AI and robotics to building complete cogni-
tive systems. We draw on, and synthesise, several traditions: representational
approaches to AI, aspects of parallel processing from robotics, and ideas from
statistical machine learning. The problems their synthesis posed resulted in
new architectural ideas. Their synthesis in the PlayMate in particular has
been an important driver in preventing us from shying away from hard issues
we would otherwise have ignored.
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