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ABSTRACT 
Developments in sensor technology and sensory input processing algorithms have enabled the use of 

mobile robots in real-world domains. As they are increasingly deployed to interact with humans in our 

homes and offices, robots need the ability to operate autonomously based on sensory cues and high-level 

feedback from non-expert human participants. Towards this objective, this chapter describes an integrated 

framework that jointly addresses the learning, adaptation and interaction challenges associated with 

robust human-robot interaction in real-world application domains. The novel probabilistic framework 

consists of: (a) a bootstrap learning algorithm that enables a robot to learn layered graphical models of 

environmental objects and adapt to unforeseen dynamic changes; (b) a hierarchical planning algorithm 

based on partially observable Markov decision processes (POMDPs) that enables the robot to reliably and 

efficiently tailor learning, sensing and processing to the task at hand; and (c) an augmented reinforcement 

learning algorithm that enables the robot to acquire limited high-level feedback from non-expert human 

participants, and merge human feedback with the information extracted from sensory cues. Instances of 

these algorithms are implemented and fully evaluated on mobile robots and in simulated domains using 

vision as the primary source of information in conjunction with range data and simplistic verbal inputs. 

Furthermore, a strategy is outlined to integrate these components to achieve robust human-robot 

interaction in real-world application domains. 

 

Key Terms: Bootstrap learning, Hierarchical POMDP, Augmented reinforcement learning, 

Autonomous robots, Human-robot interaction, Visual processing, Wheeled robots. 

 

 

1. INTRODUCTION 

Mobile robots are increasingly being used in real-world application domains such as surveillance, 

navigation and healthcare due to the availability of high-fidelity sensors and the development of state of 

the art algorithms to process sensory inputs. As we move towards deploying robots in our homes and 

offices, i.e., domains with a significant amount of uncertainty, there is a need for enabling robots to learn 

from sensory cues and limited feedback from non-expert human participants. Human-robot interaction 

(HRI) poses many challenges such as autonomous operation, safety, engagement, robot design and 

interaction protocol design (Tapus, Mataric, & Scassellati, 2007). The focus of this chapter is on robust 

autonomy using sensory cues and high-level feedback from non-expert human participants. Many 

algorithms have been developed for autonomous operation based on sensory inputs, and for learning from 

manual training and domain knowledge. Real-world domains characterized by partial observability, non-

deterministic action outcomes and unforeseen dynamic changes make it difficult for a robot to operate 

without any human feedback. At the same time, human participants may not have the expertise and time 
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to provide elaborate and accurate feedback in complex domains (Fong, Nourbakhsh, & Dautenhahn, 

2003; Thrun, 2004). Recent research has hence focused on enabling a robot to acquire human feedback 

when needed and merge human inputs with the information extracted from sensory cues. However, these 

algorithms require elaborate domain knowledge or fail to model the unreliability of human inputs, 

limiting their use to simplistic simulated domains or specific real-world applications (Knox & Stone, 

2010; Rosenthal, Veloso, & Dey, 2011). 

 

 
 

Figure 1: (Left) Examples of robot platforms relevant to the research described in this chapter; (Right) 

Integrated framework that uses the dependencies between learning, adaptation and interaction to achieve 

synergetic autonomy in real-world HRI. 

 

As an illustrative example, consider the robots in Figure 1(left) deployed to interact with humans in 

offices and homes. Such real-world domains are characterized by unforeseen dynamic changes, e.g., 

existing objects move, novel objects are introduced and the environmental factors change unpredictably. 

Assume that sensory cues consist primarily of vision (monocular and stereo) in conjunction with range 

data and simplistic verbal inputs. Also assume that the robots do not manipulate domain objects and do 

not have physical contact with humans. Each robot is equipped with core algorithms to process sensory 

cues with varying levels of reliability and computational complexity. Non-expert human participants 

provide limited high-level feedback in the form of simplistic verbal inputs that reinforce the robot’s 

actions or resolve ambiguities identified by the robot. Although it is not feasible to process all inputs or 

model the entire domain and still respond to dynamic changes, each robot has to exploit relevant sensory 

cues to operate reliably. Given such a scenario, this chapter focuses on the following key questions: 

 How to best enable a robot to adapt learning, sensing and processing to different scenarios and 

participants? 

 How to best enable a robot to seek limited high-level feedback from non-expert human 

participants, and robustly merge human inputs with the information extracted from sensory 

inputs? 

While sophisticated algorithms have been developed for the learning, adaptation and interaction 

challenges in isolation, the integration of these subfields to enable robust HRI remains an open problem, 

even as it presents new opportunities to address the existing challenges in the subfields (AAAI 

Symposium, 2012). This chapter describes a novel probabilistic framework that seeks to answer the 

questions listed above by jointly addressing the associated learning, adaptation and interaction challenges. 

The framework is composed of the following components: 

 Bootstrap Learning: robots use sensory cues to autonomously and incrementally learn 

probabilistic graphical models of environmental objects. These learned models enable robots to 

detect and adapt to unforeseen changes. 
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 Hierarchical Planning: a novel hierarchical decomposition of partially observable Markov 

decision processes enables robots to automatically adapt learning, sensing and information 

processing to each of a wide range of tasks. 

 Reinforcement Learning: robots acquire high-level feedback from non-expert humans (based on 

need and availability) and merge the information extracted from human feedback with the 

information extracted from sensory inputs. 

As shown in Figure 1(right), these components inform and guide each other, e.g., planning and limited 

human feedback can constrain learning to objects and events relevant to the task at hand, while learning 

can help automate planning. The remainder of the chapter is organized as follows. Section 2 motivates the 

integrated framework for HRI by discussing related work in learning, planning and interaction. Instances 

of the individual components are then described in the context of visual inputs in Sections 3.1-3.3. These 

instantiations are accompanied by experimental results of evaluating the corresponding algorithms in 

simulated domains and on wheeled and humanoid robots deployed in indoor domains. Furthermore, this 

chapter outlines a strategy (in Sections 3.1-3.3, Section 3.4) to integrate the individual components to 

achieve the desired target of robust human-robot interaction. 

 

 

2. RELATED WORK 

The proposed framework uses vision as a major source of information. This section motivates the 

integrated framework for robust human-robot interaction by discussing the limitations of existing 

algorithms for vision-based learning, planning and interaction. 

 

2.1  Vision-based Learning and Planning 
A robot vision system typically includes segmentation, recognition and scene understanding. Computer 

vision research has produced many algorithms for segmentation (Caselles, Kimmel, & Shapiro, 1997; 

Comaniciu & Meer, 2002; Felzenswalb & Huttenlocher, 2004), and many robot domains use labeled data 

to map pixels to color labels. Algorithms have also been developed to characterize (and hence recognize) 

objects using local image gradients (Lowe, 2004; Mikolajczyk & Schmid, 2004); appearance models 

(Arashloo & Kittler, 2011; Fergus, Perona, & Zisserman, 2003); hierarchical decomposition of parts 

(Fidler, Boben, & Leonardis, 2008); or visual cortical mechanisms (Serre, Wolf, Bileschi, Riesenhuber, & 

Poggio, 2007). Recent research in computer vision has also provided algorithms that use contextual cues 

learned from images for object recognition (Li, Parikh, & Chen, 2011). Many robot applications use these 

algorithms in conjunction with temporal cues and 3D range input (e.g., Kinect, RGB-D cameras, Lidar) 

for object recognition and scene understanding (Lai, Bo, Ren, & Fox, 2011). However, many of these 

algorithms are computationally expensive, sensitive to environmental changes, or require extensive 

domain-specific information. 

Sensitivity to environmental factors is a major challenge to the use of visual features, e.g., object 

recognition algorithms based on image gradients or color distributions are sensitive to illumination, and 

stereo maps are sensitive to texture-less surfaces (Hartley & Zisserman, 2004). Algorithms developed to 

provide robustness to changes in environmental factors such as illumination typically require prior 

knowledge of illuminations and object properties and are computationally expensive (Finlayson, Hordley, 

& Hubel, 2001; Lammens, 1994). Since a mobile robot has to deal with unexpected changes, robot vision 

algorithms tend to track changes in visual feature distributions and update parameters of learned models 

(e.g., mixture of Gaussians) over time (Sridharan & Stone, 2007; Thrun, 2006). However, adaptation to 

unforeseen changes continues to be a major challenge to the use of robots in the real-world. 

In parallel to the research on vision-based learning, many algorithms have been developed for 

automatic speech recognition and understanding using grammars and probabilistic sequential reasoning 

methods (Brick & Scheutz, 2007; Guedon, 2005; Rabiner, 1989), resulting in many HRI applications. 

However, these algorithms require significant prior knowledge, cannot adapt to dynamic changes or do 

not build strong associations between language and other modalities for human-robot interaction.  
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A mobile robot in real-world application domains such as offices and homes cannot observe the 

entire domain or process all sensory inputs. Planning algorithms have hence been developed to sequence 

sensing and information processing operators based on high-level goals. Modern AI planning algorithms 

that relax the limiting constraints of classical algorithms (Ghallab, Nau, & Traverso, 2004) have been 

used in many applications (Brenner & Nebel, 2009; Petrick & Bacchus, 2004; Talamadupula, Benton, 

Kambhampati, Schermerhorn & Scheutz, 2010). Probabilistic planning algorithms have also been 

designed for tasks such as visual gesture and object recognition (Li, Bulitko, Greiner, & Levner, 2003). In 

parallel, active vision algorithms have been developed for sensor placement and multi-target tracking 

(Kreucher, Kastella, & Hero, 2005), submodular functions have been used for sensor placement (Krause, 

Singh, & Guestrin, 2008) and visual target recognition has been posed as an information maximization 

task (Butko & Movellan, 2008). However, many of these methods require manual supervision and many 

visual planning tasks are not submodular. In recent years, partially observable Markov decision processes 

(POMDPs) have been used to plan sensory processing for behavior control, navigation and grasp planning 

on robots (Brook, Ciocarlie, & Hsiao, 2011; Hoey et al., 2010). Although good performance has been 

achieved using a hierarchy in POMDPs and other planning formulations (Marthi, Russell, & Wolfe, 2009; 

Pineau, Montemerlo, Pollack, Roy, & Thrun, 2003), a large portion of the data for hierarchy and model 

creation has to be manually encoded. To enable planning in complex domains, recent work has focused 

on integrating knowledge representation and logical reasoning (Chen et al., 2010; Galindo, Fernandez- 

Madrigal, Gonzalez, & Saffioti, 2008), and on switching between classical and probabilistic planning for 

robot applications (Gobelbecker, Gretton, & Dearden, 2011; Kaelbling & Lozano-Perez, 2011). 

Researchers have also explored tractable representations for hierarchical POMDPs (e.g., dynamic Bayes 

nets and factored MDPs) (Theocharous, Murphy, & Kaelbling, 2004; Toussaint, Charlin, & Poupart, 

2008), but these algorithms are computationally expensive for complex application domains. 

 

2.2  Human-robot Interaction 
Developments in sensory input processing algorithms and cognitive architectures (Anderson et al., 2004; 

Scheutz, Schermerhorn, Kramer, & Anderson, 2007) have aided the use of robots and software agents in a 

wide range of applications such as human-computer interaction, elderly care and interaction with autistic 

children (Canemero, 2010; Robins et al., 2004). Research consortia are focusing on cognitive human-

robot interaction (CogX Project, 2011), where information from different cues (e.g., vision and speech) 

are bound based on predetermined rules. Researchers are also integrating computational cognitive models, 

multiple spatial representations and sensory cues to enable human-robot collaboration, e.g., in a 

reconnaissance task (Kennedy et al., 2007). However, adaptive visual processing, speech understanding, 

knowledge representation and optimal use of human inputs are still open challenges to natural HRI 

(Cantrell, Scheutz, Schermerhorn, & Wu, 2010). 

 Two broad design approaches typically characterize HRI efforts: biologically inspired design 

mimics social behavior and uses theories in life sciences and social sciences, while functional design 

builds computational models to match the domain’s social interaction needs. The limited applicability of 

existing HRI design guidelines causes designers to develop context-specific guidelines and evaluation 

methods for each domain (Thrun, 2004). An appealing approach is to analyze domain needs and use 

social exchange concepts to guide HRI design choices (Lawler, 2001; Wagner & Arkin, 2008). 

HRI researchers have developed sophisticated algorithms for enabling a robot to operate 

autonomously based on sensory cues. Some algorithms use computational models of social interactions 

between humans, modeling the perceived outcomes of the association and the evolving short-term and 

long-term constraints (Kleinberg & Tardos, 2008). Research shows that robots learn better when they 

consider social and environmental cues in addition to mimicking the actions of a partner (Cakmak, 

DePalma, Arriaga, & Thomaz, 2010). Similarly, research on interactions between robots and toddlers 

shows that the credibility of interactions is a major contributor to the social significance assigned to a 

robot (Meltzoff, Brooks, Shon, & Rao, 2010). Recent research also indicates that a socially assistive robot 

can use verbal and visual feedback to positively impact intrinsic motivation of elderly to perform physical 

or cognitive tasks (Fasola & Mataric, 2010). There has also been considerable work on using embodied 
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relational (virtual) agents in health care (Bickmore, Schulman, & Yiu, 2010; Rizzo, Parsons, Buckwalter, 

& Kenny, 2010). However, a key limitation of these (existing) algorithms is that they predominantly use 

manually-encoded domain knowledge in specific applications, and the use of robots in complex real-

world domains continues to be an open challenge. 

In parallel to the work on autonomous learning from sensory cues, significant research has been 

performed to enable a robot to learn from human demonstrations (Argall, Chernova, Veloso, & Browning, 

2009; Grollman, 2010; Zang, Irani, Zhou, Isbell, & Thomaz, 2010). These approaches build mathematical 

models based on research in related fields such as control theory, biology and psychology, and theories of 

human learning and social interactions among humans. However, extensive manual training requires 

participants with substantial knowledge of the domain and the robot’s capabilities. Although humans can 

provide useful information about tasks and domain, it is typically difficult for human participants to 

possess the expertise and time to provide elaborate and accurate feedback in complex domains. 

Widespread use of robots in the real-world requires the ability to interact with non-experts 

(Clarkson & Arkin, 2006; Yanco, Drury, & Scholtz, 2004). In recent times, there has been some work in 

agent domains and on robots to use limited high-level human feedback when it is available or necessary, 

e.g., the CoBot that seeks human help to navigate to desired locations (Rosenthal et al., 2011), or the 

reinforcement learning-based TAMER framework that combines human and environmental feedbacks in 

simulated game domains (Knox & Stone, 2010). However, existing methods require elaborate prior 

knowledge of the specific task and domain or do not model the unreliability of human inputs. 

 

Summary: Existing learning and planning algorithms have enabled the use of robots in specific 

applications, but they make strong assumptions regarding the task and domain, require extensive manual 

feedback and are computationally expensive. Existing methods for HRI have predominantly focused on 

teaching the robot to perform specific tasks or on enabling the robot to learn from sensory cues. Although 

it is intractable for the robot to learn complex models of all domain objects and events in all scenarios, it 

has to use the relevant information and respond in real-time to dynamic changes. Our framework 

addresses these challenges by exploiting the dependencies between learning, adaptation and interaction. 

As a result, mobile robots are able to incrementally learn object models, adapt sensing and information 

processing to the task at hand, and acquire and use high-level inputs from non-expert human participants 

based on need and availability. 

 

 

3. INTEGRATED FRAMEWORK FOR HRI 

The framework described in this chapter seeks to achieve robust HRI by enabling robots to operate 

autonomously when possible, acquiring and utilizing feedback from non-expert human participants based 

on need and availability. Consider the illustrative example in Section 1, where a mobile robot equipped 

with sensors and information processing algorithms is deployed in an office. High-level human feedback 

is in the form of simplistic verbal inputs that provide positive or negative reinforcement of the robot’s 

actions, or make a choice from multiple options posed by the robot. The integrated framework consists of 

three components. Section 3.1 describes a bootstrap learning algorithm that enables a mobile robot to 

learn layered graphical models of objects and adapt to changes. Next, Section 3.2 describes a hierarchical 

planning algorithm that uses partially observable Markov decision processes to automatically adapt 

sensing, learning and processing to the task at hand. Finally, Section 3.3 describes an augmented 

reinforcement learning algorithm that enables a mobile robot to acquire and robustly merge high-level 

human feedback with the information extracted from sensory cues. As stated earlier, each section also 

describes how the individual algorithms in the integrated framework inform and guide each other. 

Furthermore, Section 3.4 illustrates the software architecture for the integrated framework in the context 

of the learning and planning algorithms described in Sections 3.1-3.2.  
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3.1  Bootstrap Learning 

Figure 2 (left) shows an instance of bootstrap learning for visual inputs, where the mobile robot 

autonomously and incrementally: (a) learns the domain map and layered graphical object models; (b) uses 

the map and object models to learn visual feature models; and (c) uses the visual feature models to detect 

and adapt to unforeseen dynamic changes. 

 Existing simultaneous localization and mapping (SLAM) algorithms are used by the robot to 

learn and revise the domain map (Davison, Reid, Morton, & Stasse, 2007; Grisetti, Stachniss, & Burgard, 

2006). Human input can be used to provide semantic labels to locations in the map. Learning of object 

models is then based on the observation that many real-world objects tend to possess a unique 

characteristics (e.g., colors and parts) and trace well-defined motion patterns, although these 

characteristics and patterns are not known in advance. In addition, given a learned map of the domain, the 

interesting objects are typically those that can move. Candidate objects in the images are hence identified 

using motion cues, i.e., by tracking local image gradient features (used in visual SLAM) and clustering 

the features based on relative velocity. Next, discriminative and descriptive local, global and temporal 

visual cues with complementary properties are extracted from these candidate image regions to populate 

the object models. For instance, in Figure 2 (right), gradient features, connection potentials between 

gradient features, graph-based image segments and color distributions are the features under 

consideration. The second layer of the object model represents a higher level of abstraction for 

robustness, e.g., relative spatial arrangement of local gradients, neighborhood relationships of connection 

potentials between gradient features (using Markov random fields), part-based models of image segments 

and second-order image statistics of color distributions. These learned models are revised incrementally 

over subsequent images and used to recognize stationary or moving objects.  

 

 
 

Figure 2: (Left) Visual feature models, environmental map and object models bootstrap off of each other 

to incrementally refine the individual models; (Right) Layered graphical models with belief propagation 

are used to represent domain objects. 

 

An instance of this bootstrap learning approach was used to learn models for objects in different 

categories, e.g., box, book, airplane, robot, car and human, with about 5-6 different models learned for 

subcategories within each category. These experiments were conducted over a set of approximately 1000 

images, which included images captured by the wheeled robots in Figure 1 (left) and images from 

computer vision benchmark datasets (e.g., Pascal VOC 2006). The robot autonomously learned models 

for moving objects and used the models to recognize stationary and moving objects in subsequent images. 

Experimental results indicate a high classification accuracy of 90% averaged over all categories (and 

subcategories within a category). Classification errors correspond to images where a sufficient number of 

unique features were not detected or matched with the learned object models due to motion blur or the 

fact that some images provide long-shots of the objects (Li & Sridharan, 2012; Li, Sridharan & Zhang, 

2011). Figure 3 shows an example of using the learned object models to recognize a target object against 

a complex background (blue box on book shelf). Merging probabilistic evidence provided by individual 
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components of the learned object models regarding occurrence of the corresponding objects in the image 

regions enables the robot to exploit the complementary properties of different visual cues. As a result, the 

robot robustly recognizes the target object (blue box in this example) in the appropriate image region. 

  

 
Figure 3: (Left) Test image of a box in a complex background; (Center) Individual match probabilities— 

the best subcategories within each category are shown along the x-axis; and (Right) Net match 

probabilities across different object categories—merging evidence from different components of the 

learned object models results in robust object recognition . 

 

The learned map and object models are used to maintain revised models of the underlying visual features. 

For instance, distributions of image gradients are organized as histograms to characterize objects, while 

color distributions are modeled as Gaussian mixture models. Statistical bootstrap tests are used to 

automatically determine suitable models for different visual feature distributions. The feature models are 

then revised incrementally using pixels from images of objects recognized using the learned object 

models. When changes in object configuration or environmental factors (e.g., illumination) cause 

unforeseen changes in feature distributions, the learned feature models and object models are used to 

correlate sensor values to these factors based on the hypothesis that images from an environmental state 

(e.g., specific illumination) have measurably similar distributions in relevant feature spaces. A 

representation is learned automatically for environmental factors using visual features. The learned 

feature models and representations are then used to detect and adapt to changes in the corresponding 

environmental factors. Instances of this learning and adaptation approach has been implemented and 

evaluated on legged and wheeled robots that autonomously learned color distributions from domain 

objects (with known/learned positions and color labels) and used the learned color distribution models to 

detect and adapt to illumination changes (Sridharan & Stone, 2009; Sridharan & Stone, 2007). Color 

distributions were modeled as Gaussian mixture models and histograms, and each illumination was 

represented by: a mapping from pixel values (of images in that illumination) to object color labels, 

probability density functions (pdfs) in color space and a distribution of distances between these pdfs. 

When minor illumination changes caused a drift in color distributions and a slow decay of capabilities 

such as segmentation, the robot automatically extracted image pixels corresponding to known objects to 

revise the color distribution models. When sudden (or large) illumination changes caused large shifts in 

color distributions, the average distance between color distributions from the new illumination and the 

learned color distributions were well outside the range of the expected distribution of distances. If the 

change was to an illumination that had been modeled, the robot smoothly transitioned to using the 

corresponding color models for subsequent operations. On the other hand, if the change corresponded to a 

new illumination, the robot augmented existing color and object models to account for this novelty. This 

learning and adaptation approach can be used to model other visual features and environmental factors. 

In practical domains, it is infeasible for the robot to observe the entire domain from a single 

position. The robot hence uses the learned object models, feature models and domain map to learn 

stochastic models that predict: (a) motion errors for different motion patterns; and (b) the likelihood of 

learning feature models in different locations. Motion planning then simultaneously maximizes the 

probability of learning desired feature (and object) models and minimizes localization errors (Ghallab, 
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Nau & Traverso, 2004). For instance, the color distribution learning and illumination adaptation approach 

described above used such a motion planning algorithm to enable the robot to plan motion sequences that 

placed the robot in the vicinity of objects suitable for learning the color distributions (Sridharan & Stone, 

2007). Furthermore, the bootstrap learning algorithm has been used to fuse stereo (visual) cues with range 

information on wheeled robots operating in indoor and outdoor environments (Murarka, Sridharan, & 

Kuipers, 2008; Sridharan & Li, 2009). 

Real-world application domains are likely to contain a large number of objects that can be 

represented using different features, making it a challenge to learn appropriate object models (Hoiem, 

Efros, & Hebert, 2007). The integrated framework will address this challenge using the relationships 

between components of the framework. Bootstrap learning will thus be made feasible using: (a) planning 

to identify relevant features for characterizing domain objects relevant to the task at hand (Section 3.2); 

and (b) human feedback for reinforcement and disambiguation (Section 3.3). Conditional probability 

distributions can also be learned to model relationships between and within the layers of the object 

models, building richer object descriptions. Furthermore, the learning and adaptation algorithms can be 

revised to work with other visual (or non-visual) sensory cues. 

 

3.2  Hierarchical Planning 

In large, complex domains, a robot cannot process all sensory inputs or learn models for all domain 

objects. At the same time, robust operation in such domains requires that the robot make best use of all 

the relevant information. Based on evidence in animals and robots (Horswill, 1993; Land & Hayhoe, 

2001), an appealing approach is to retain capabilities for many tasks, direct sensing to relevant locations, 

and consider the reliability and complexity of available algorithms to automatically determine the 

sequence of algorithms appropriate for any given task. This objective can be posed as a planning task and 

as an instance of probabilistic sequential decision-making. More specifically, this section describes the 

use of partially observable Markov decision processes (POMDPs) to tailor sensing and information 

processing to the task at hand. POMDPs elegantly model the partial observability and non-determinism of 

robot application domains. However, POMDP formulations of large real-world domains soon become 

intractable due to the exponential state explosion of such domains and the high computational complexity 

of even approximate POMDP solvers (Ong, Png, Hsu & Lee, 2010). A novel hierarchical decomposition 

is hence incorporated—Figure 4 (left) shows an instance for visual sensing and information processing. 

For a specific task, the high-level (HL) POMDP computes the sequence of 3D scenes to be analyzed. For 

a chosen scene, the intermediate-level (IL) POMDP analyzes snapshots (e.g., images) of the scene by 

choosing a sequence of salient regions of interest (ROIs) to be examined. Each ROI is modeled as a 

lower-level (LL) POMDP that computes the best sequence of algorithms to be applied on the ROI. Belief 

propagation between levels of the hierarchy and generation of suitable POMDP models in all levels of the 

hierarchy occurs autonomously at run-time. Furthermore, the hierarchy is augmented with a 

communication layer (CL) that enables each robot to merge the information extracted from sensory cues 

with the information communicated by one or more teammates (Zhang & Sridharan, 2012). 
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Figure 4: (Left) Layered POMDP hierarchy for visual sensing and information processing on a team of 

robots; (Right) Visual search based on constrained convolutional policies is more efficient than ad-hoc 

heuristic search strategies. 

 

Consider the task of visually locating a human or an object in an office with multiple rooms. The HL-

POMDP represents the 3D area as a 2D occupancy grid, which forms the state space. Since the true 

underlying state cannot be observed with certainty, a probability distribution over the grid represents the 

current belief and any prior knowledge about the resident’s location (i.e., the belief state). The HL-

POMDP’s actions cause a robot to move to specific grids and analyze 3D scenes. Planning involves 

finding the best policy that maps belief states to stochastic action choices. The challenge is that 

application domains can result in large state spaces and these state spaces can change in response to 

domain changes. For efficient operation over large areas, shift and rotation symmetries of visual search 

are exploited to learn a convolutional policy kernel from the policy for a grid map of a small region. The 

policies for grid maps of large areas are then generated automatically (at run-time) by performing an 

inexpensive convolution operation with the learned policy kernel. Action utilities in the HL-POMDP are 

modeled as the expected information gain, i.e., the reduction in entropy of the corresponding belief 

vectors. In addition, the observation functions of the HL-POMDP are computed automatically based on 

the learned observation functions of lower levels of the hierarchy. During plan execution, the computed 

policy is used to repeatedly choose an action and update beliefs based on the observed outcome. A key 

benefit of this approach is that domain map changes (e.g., objects are moved or doors are closed) are 

addressed automatically by suitably re-weighting the computed policy. In addition, the cost of robot 

motion is modeled by re-weighting the learned policy to trade-off distance of travel against the likelihood 

of finding the desired targets. Figure 4 (right) shows results where a robot located targets in a 15 × 15 

simulated grid—each point in the figure is the average over 1000 trials, with the convolutional policy 

computed from a 5 × 5 policy kernel. As seen in Figure 4 (right), for any desired accuracy (along the y-

axis), convolutional policies locate target objects much faster than heuristic (i.e., greedy) search policies. 

 Once the robot moves to a chosen grid-cell, it analyzes snapshots (e.g., images) of the scene. To 

locate a target, ROIs in a snapshot, shown enveloped in green rectangles in Figure 4 (left), can be 

processed using a wide range of visual operators based on bootstrap-learned (object) models, e.g., object 

recognition operators that use gradient features or parts. However, the POMDP in the joint space of image 

ROIs soon becomes intractable, e.g., there are approximately 50000 states for just three ROIs and two 

actions with six outcomes (each). The POMDP hierarchy partially ameliorates this state explosion 

challenge by modeling each ROI with an LL-POMDP, and using an IL-POMDP to select the ROI to be 

analyzed further using the corresponding LL policies. The IL-POMDP hence controls the application of 

relevant processing algorithms to examine all the ROIs in an image of the chosen scene. The IL-POMDP 

model parameters (e.g., reward specification and observation functions) are generated automatically at 

run-time based on the corresponding LL policies and propagated belief. Similarly, relevant LL-POMDP 

models are learned automatically for any image ROI using bootstrap learning and minimal human 

supervision. Furthermore, each robot probabilistically merges current beliefs with the beliefs 

communicated by teammates, enabling the team of robots to collaborate robustly (despite unreliable 

communication) to achieve a shared objective, e.g., find one or more target objects in the domain. 

 Instances of the IL and LL of the hierarchy have enabled robots to collaborate with humans to 

jointly manipulate and converse about tabletop objects (Sridharan, Wyatt & Dearden, 2010; Sridharan, 

Wyatt & Dearden, 2008). Instances of the entire hierarchy have enabled mobile robots to locate target 

objects in dynamic indoor domains such as offices (Zhang & Sridharan, 2012; Zhang & Sridharan, 2011).  

These experiments indicate that the hierarchical planning algorithm significantly reduces planning time in 

comparison to the POMDP in the joint space of all ROIs, as shown in Figure 5 (left). The hierarchical 

planning approach is also as efficient as state of the art contingency planners while providing 

substantially higher reliability (Sridharan, Wyatt & Dearden, 2010). Furthermore, robots are able to share 

information to collaborate robustly with teammates despite unreliable sensing and communication. As 

shown in Figure 5 (right), belief sharing in conjunction with the POMDP hierarchy enables the team to 
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identify targets with high accuracy in a much smaller number of action steps in comparison to an ad-hoc 

collaboration strategy.  

 
 

Figure 5: (Left) Hierarchical POMDP significantly reduces planning time in comparison to the POMDP 

over the joint state space of all image ROIs; (Right) Merging beliefs obtained by processing sensory cues 

with the communicated beliefs enables a team of robots to localize targets accurately while traveling a 

much smaller distance than with an ad-hoc probabilistic collaboration strategy. 

 

In real-world application domains with large state spaces and dynamic changes, automated planning 

and decision-making is a challenge. This challenge will be addressed using the hierarchical planning 

algorithm in conjunction with other components of the integrated framework. Mobile robots will then be 

able to adapt learning and planning to the domain and the corresponding tasks by: (a) representing and 

revising domain knowledge, performing logical reasoning and acquiring information from other robots or 

humans (e.g., feedback in the form of reinforcement and disambiguation) (Zhang, Bao & Sridharan, 

2012); and (b) identifying relevant objects that need to be learned and features that will capture the most 

information about these objects. 

 

 

3.3  Augmented Reinforcement Learning 

For widespread deployment of robots to interact with humans in real-world domains, robots equipped 

with the learning and planning algorithms described above still need a strategy to acquire and use limited 

feedback from non-expert human participants. This objective poses two questions: (Q1) how best to 

robustly merge high-level human input with the information extracted from sensory cues? and (Q2) when 

and how should human feedback be acquired? 
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Figure 6: (Left) Augmented reinforcement learning enables the robot to bootstrap off of high-level human 

feedback and environmental feedback in the form of sensory inputs; (Center) Single-agent Tetris domain; 

and (Right) Multiagent 3vs.2 Keepaway domain. 

 

Tasks that require an agent or a robot to learn from repeated interactions with the environment can be 

posed as a Reinforcement learning (RL) problem. RL is a well-established computational approach, 

where the desired task is modeled as a Markov decision process (MDP) and an agent repeatedly performs 

actions to receive a state estimate and a reward signal (Sutton & Barto, 1998). The RL framework has 

been used in many application domains to enable agents and robots to learn suitable action policies (i.e., 

mapping from states to actions). As stated earlier, we consider high-level feedback from non-expert 

human participants—for ease of explanation, this section only considers positive or negative 

reinforcement of actions, e.g., yes/no feedback. Including human feedback H in the RL framework is a 

challenge because H may not fit in the same range as environmental feedback R obtained from sensory 

inputs. In addition, H may be in response to a set of past (or even future) states and actions. Figure 6 (left) 

shows the augmented reinforcement learning (ARL) approach that is used to answer Q1, i.e., to robustly 

merge R and H. In the absence of human feedback, the robot uses the standard RL formulation, i.e., a 

baseline RL algorithm is used to learn an action policy by observing the effects of actions performed in 

various states. When human feedback is available, the robot uses automatically-computed performance 

measures (e.g., time for task completion) to bootstrap off of the two feedback signals and incrementally 

revise their relative contributions to the action choice policy. Specifically, the robot estimates parameters 

of a function that merges R and H such that the actions chosen by the resultant policy maximize the 

performance measure(s): )HR,(argmax fAa . For ease of explanation, consider the weighted linear 

combination function: H} wR {wargmax hrAa in the fully observable simulated game domains of 

Tetris and Keepaway soccer—see Figure 6 (center) and Figure 6 (right). The objective in Tetris is to 

maximize episode length by dropping blocks such that they complete and hence clear lines. In multiagent 

Keepaway, the objective is to maximize episode length by enabling keepers to retain ball possession from 

the takers. In the absence of human feedback, the agent(s) in these domains learn a policy from R (using 

the baseline RL algorithm) and invoke the top N action policies proportional to their relative ability to 

maximize episode length. When human feedback is available, the weights corresponding to feedback 

signals (wh and wr) are continuously and incrementally revised based on the degree of match between H 

and R, and their relative ability to maximize episode length. The individual feedback signals are thus 

merged to provide the overall action choice policy. Figure 7 shows results of experiments in the Tetris 

and Keepaway domains, using high-level feedback from four human participants 2-5 times per episode 

(the yes/no feedback signals are mapped to real-valued rewards). Figure 7 (left) shows the result of using 

a weighted linear combination function in the Tetris domain, using policy gradient (Sutton & Barto, 

1998) as the baseline RL algorithm. The ARL approach to merge R and H significantly increases the 

episode length in comparison to using R or H (not shown in Figure) individually (Sridharan, 2011). 

 Next, Figure 7 (right) shows experimental results in the 3 vs. 2 Keepaway domain, using the 

SMDP version of )(Sarsa  (Stone, Sutton & Kuhlmann, 2005) as the baseline algorithm. This domain 

changes too quickly for instantaneous human feedback of the agents’ action choices. A gamma 

distribution is hence learned experimentally to model typical human response times. This distribution is 

used for credit assignment over past states and actions. As seen in Figure 7 (right), using the ARL 

approach significantly increases episode duration in comparison to the individual feedback signals. In 

addition, using the learned gamma function for credit assignment further improves the episode duration. 

Furthermore, when different humans participating in the experimental trials provide intentionally 

incorrect feedback, agents are able to recover by revising weights of feedback signals (Sridharan, 2011). 

Since the ARL approach uses belief distributions computed in hierarchical planning to estimate 

state, Q2 is answered using information-theoretic measures and bootstrap learning algorithms. The state 

with the maximum belief is considered to be the true state and the entropy of belief distributions is used 

as a measure of uncertainty. Asking for human input is modeled as a sensing action that is sequenced to 
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maximize information gain (Zhang, Bao & Sridharan, 2012), similar to the topmost level of the POMDP 

hierarchy described in Section B.3.2.  

 
Figure 7: Results of proof of concept experiments in simulated domains: (Left) single-agent Tetris 

domain; and (Right) multiagent Keepaway domain. Merging human and environmental feedbacks 

significantly increases the episode length in comparison to individual feedback mechanisms. Probabilistic 

credit assignment over past states and actions further improves performance. 

 

The ARL approach has been described (above) in the context of simulated agent domains. RL typically 

requires knowledge of state and an estimate of the transition and reward functions—these are not readily 

available in robot application domains. The integrated framework will address this challenge by defining 

rewards based on information gain and global performance measures, states based on the belief states 

used in hierarchical planning (Section B.3.2), and transition functions based on bootstrap learning and 

limited domain knowledge (Section B.3.1). Bootstrap learning will also provide the models necessary to 

estimate the likelihood of obtaining relevant information through different query types. Furthermore, the 

ARL algorithm will be used in conjunction with an algorithm that learns associations between visual and 

verbal object descriptions, enabling simplistic natural language interactions between humans and agents 

(Swaminathan & Sridharan, 2011). The robot will thus be able to initiate and sustain interactions with 

appropriate human participants. 

  

 

3.4  Integration Overview 

Finally, consider the architecture that integrates the bootstrap learning, hierarchical planning and 

augmented reinforcement learning algorithms described above. To enable modular software development, 

all algorithms were implemented using the popular Robot Operating System (ROS) (Quigley et al., 2009). 

Figure 8 presents a subset of the architecture that focuses on visual bootstrap learning and hierarchical 

(probabilistic) planning—the corresponding graph was generated by the ROS command-line option: 

<rxgraph>. The individual nodes are described below.  

 The hierarchical planning algorithm (Section 3.2) is placed within the vs_planner node, while the 

visual bootstrap learning algorithm (Section 3.1) is placed within the vs_vision node. Communication 

between nodes is achieved by publishing topics, i.e., by passing messages. The vs_vision node repeatedly 

processes input images to learn relevant visual object models. The learned object models are used to 

recognize objects in subsequent images, populating the <v_pack> package that is sent to the vs_planner 

node. This package contains the ID of each detected object, in addition to the distance and bearing of the 

object (relative to the robot) and a (probability) measure of the uncertainty associated with the 

observation of the object. These observations are used to perform belief updates within the planning 

module, as described in Section 3.2. Belief updates occur: (1) when the robot arrives at a desired grid cell 

and processes one or more images of the scene—belief updates consider presence and absence of the 

target object; or (2) when the robot detects the target by processing images while moving to a desired grid 
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cell. After the belief update, the planner node sends the coordinates of any desired grid cell to the 

movement control node move_base (in the goal message) and waits for a response. The move_base node 

receives the current domain map from the map_server (which can also perform simultaneous localization 

and mapping—SLAM) and laser range information from hokuyo_node, which contains the driver for the 

laser range finder. The move_base node also receives navigation goals (if any) from humans through 

navigation_goals, in addition to pose and odometry information from amcl and erratic_base_driver 

respectively. The erratic_base_driver provides the robot-specific coordinate frames (in tf) and the driver 

for the specific robot platform used in these experiments (e.g., the erratic wheeled robot in Figure 1).  The 

amcl node performs localization using particle filters to provide the pose estimate.  The move_base node 

uses A* search to find a path to the desired grid cell and provides linear and angular velocity commands 

to the robot’s driver (in cmd_vel). These commands result in the robot’s motion and one of three 

responses: arrived, canceled or not-arrived. The arrived response is received when the robot reaches the 

desired location, while the canceled response represents unexpected cancellation of the motion command. 

The not-arrived response is usually the result of a dynamic change in the environment, e.g., closing a 

door makes an office unavailable to the robot. Additional nodes are used (in a similar manner) to create 

instances of other algorithms, e.g., for augmented reinforcement learning using human feedback. 

 

 
 

Figure 8: A ROS-based framework for integrating different components. Interaction between hierarchical 

planning, visual bootstrap learning and other control modules is illustrated. 

  

This architecture has been successfully implemented and used on wheeled robots deployed in indoor 

office domains (Zhang & Sridharan, 2012). The modular architecture makes it easy to revise specific 

algorithms (e.g., for autonomous learning or planning) and to use the architecture on other robot platforms 

in different application domains. Furthermore, other nodes can be added (as and when required) to create 

instances of algorithms that augment the existing components in the integrated framework. Results of 

recent experimental trials, including some images and video demos can be viewed online: 

http://www.cs.ttu.edu/~smohan/RobotAssist.html 

  

 

4. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

This chapter described a novel integrated (probabilistic) framework that jointly addressed the learning, 

adaptation and interaction challenges associated with robust human-robot interaction in real-world 

application domains. This framework consists of three components: (1) a bootstrap learning algorithm 

that enables mobile robots to autonomously learn layered graphical models of environmental objects, and 

to detect and adapt to unforeseen domain changes; (2) a hierarchical planning algorithm based on partially 

http://www.cs.ttu.edu/~smohan/RobotAssist.html
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observable Markov decision processes that enables a team of robots to collaborate robustly by sharing 

beliefs and automatically adapting sensing and information processing to the task at hand; and (3) an 

augmented reinforcement learning algorithm that enables robots to acquire limited high-level feedback 

from non-expert human participants, and to robustly merge human feedback with the information 

extracted from sensory cues. Instances of these algorithms have been implemented in a modular software 

architecture and evaluated on mobile robots and simulated agents interacting with non-expert human 

participants in indoor office domains and multiagent game domains.  

 As stated in Section 1 (and illustrated in Sections 3.1-3.4), the integrated framework enables the 

individual algorithms to inform and guide each other, posing novel challenges and providing new 

opportunities to address the tough challenges in the individual fields. Future work will investigate the full 

integration of the bootstrap learning, hierarchical planning and augmented reinforcement learning 

algorithms. For instance, planning will be used to choose the objects and events relevant to the tasks that 

need to be performed, and to identify features suitable for modeling these objects, e.g., to select visual 

features that provide the most information about the objects of interest. Similarly, bootstrap learning will 

be used to autonomously learn the model parameters required to automate hierarchical planning in 

complex domains. Future work will also focus on building richer object descriptions by integrating visual 

and verbal cues, resulting in natural language interactions between robots and humans.  

 As mobile robots are increasingly deployed to interact with humans in real-world application 

domains such as homes and offices, there is a pressing need for enabling robots to operate autonomously 

by learning from sensory cues and high-level feedback from non-expert human participants. The 

integrated framework described in this chapter represents a significant (and novel) step towards this long-

term goal of robust human-robot interaction in a wide range of real-world application domains. 
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